/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkNx_DEFINED #define SkNx_DEFINED //#define SKNX_NO_SIMD #include "SkScalar.h" #include "SkTypes.h" #include // The default implementations just fall back on a pair of size N/2. // These support the union of operations we might do to ints and floats, but // platform specializations might support fewer (e.g. no float <<, no int /). template class SkNx { public: SkNx() {} SkNx(T val) : fLo(val), fHi(val) {} typedef SkNx Half; SkNx(const Half& lo, const Half& hi) : fLo(lo), fHi(hi) {} SkNx(T a, T b) : fLo(a), fHi(b) {} SkNx(T a, T b, T c, T d) : fLo(a,b), fHi(c,d) {} SkNx(T a, T b, T c, T d, T e, T f, T g, T h) : fLo(a,b,c,d), fHi(e,f,g,h) {} SkNx(T a, T b, T c, T d, T e, T f, T g, T h, T i, T j, T k, T l, T m, T n, T o, T p) : fLo(a,b,c,d, e,f,g,h), fHi(i,j,k,l, m,n,o,p) {} static SkNx Load(const void* ptr) { auto vals = (const T*)ptr; return SkNx(Half::Load(vals), Half::Load(vals+N/2)); } void store(void* ptr) const { auto vals = (T*)ptr; fLo.store(vals); fHi.store(vals+N/2); } #define OP(op) SkNx operator op(const SkNx& o) const { return {fLo op o.fLo, fHi op o.fHi}; } OP(+) OP(-) OP(*) OP(/) OP(&) OP(|) OP(^) OP(==) OP(!=) OP(<) OP(>) OP(<=) OP(>=) #undef OP #define OP(op) SkNx op() const { return {fLo.op(), fHi.op()}; } OP(abs) OP(floor) OP(sqrt) OP(rsqrt0) OP(rsqrt1) OP(rsqrt2) OP(invert) OP(approxInvert) #undef OP SkNx operator << (int bits) const { return SkNx(fLo << bits, fHi << bits); } SkNx operator >> (int bits) const { return SkNx(fLo >> bits, fHi >> bits); } SkNx saturatedAdd(const SkNx& o) const { return {fLo.saturatedAdd(o.fLo), fHi.saturatedAdd(o.fHi)}; } static SkNx Min(const SkNx& a, const SkNx& b) { return {Half::Min(a.fLo, b.fLo), Half::Min(a.fHi, b.fHi)}; } static SkNx Max(const SkNx& a, const SkNx& b) { return {Half::Max(a.fLo, b.fLo), Half::Max(a.fHi, b.fHi)}; } T operator[](int k) const { SkASSERT(0 <= k && k < N); return k < N/2 ? fLo[k] : fHi[k-N/2]; } template T kth() const { return (*this)[k]; } bool allTrue() const { return fLo.allTrue() && fHi.allTrue(); } bool anyTrue() const { return fLo.anyTrue() || fHi.anyTrue(); } SkNx thenElse(const SkNx& t, const SkNx& e) const { return SkNx(fLo.thenElse(t.fLo, e.fLo), fHi.thenElse(t.fHi, e.fHi)); } protected: static_assert(0 == (N & (N-1)), "N must be a power of 2."); Half fLo, fHi; }; // Bottom out the default implementations with scalars when nothing's been specialized. template class SkNx<1, T> { public: SkNx() {} SkNx(T val) : fVal(val) {} static SkNx Load(const void* ptr) { auto vals = (const T*)ptr; return SkNx(vals[0]); } void store(void* ptr) const { auto vals = (T*) ptr; vals[0] = fVal; } #define OP(op) SkNx operator op(const SkNx& o) const { return fVal op o.fVal; } OP(+) OP(-) OP(*) OP(/) OP(&) OP(|) OP(^) OP(==) OP(!=) OP(<) OP(>) OP(<=) OP(>=) #undef OP SkNx operator << (int bits) const { return fVal << bits; } SkNx operator >> (int bits) const { return fVal >> bits; } SkNx saturatedAdd(const SkNx& o) const { SkASSERT((T)(~0) > 0); // TODO: support signed T? T sum = fVal + o.fVal; return sum < fVal ? (T)(~0) : sum; } static SkNx Min(const SkNx& a, const SkNx& b) { return SkTMin(a.fVal, b.fVal); } static SkNx Max(const SkNx& a, const SkNx& b) { return SkTMax(a.fVal, b.fVal); } SkNx abs() const { return SkTAbs(fVal); } SkNx floor() const { return Floor(fVal); } SkNx sqrt () const { return Sqrt(fVal); } SkNx rsqrt0() const { return this->sqrt().invert(); } SkNx rsqrt1() const { return this->rsqrt0(); } SkNx rsqrt2() const { return this->rsqrt1(); } SkNx invert() const { return 1 / fVal; } SkNx approxInvert() const { return this->invert(); } T operator[](int k) const { SkASSERT(0 == k); return fVal; } template T kth() const { return (*this)[k]; } bool allTrue() const { return fVal != 0; } bool anyTrue() const { return fVal != 0; } SkNx thenElse(const SkNx& t, const SkNx& e) const { return fVal != 0 ? t : e; } protected: static double Floor(double val) { return ::floor (val); } static float Floor(float val) { return ::floorf(val); } static double Sqrt(double val) { return ::sqrt (val); } static float Sqrt(float val) { return ::sqrtf(val); } T fVal; }; // This generic shuffle can be called to create any valid SkNx. // Sk4f f(a,b,c,d); // Sk2f t = SkNx_shuffle<2,1>(f); // ~~~> Sk2f(c,b) // f = SkNx_shuffle<0,1,1,0>(t); // ~~~> Sk4f(c,b,b,c) template static inline SkNx SkNx_shuffle(const SkNx& src) { return { src[Ix]... }; } // This is a generic cast between two SkNx with the same number of elements N. E.g. // Sk4b bs = ...; // Load 4 bytes. // Sk4f fs = SkNx_cast(bs); // Cast each byte to a float. // Sk4h hs = SkNx_cast(fs); // Cast each float to uint16_t. template static inline SkNx<2,D> SkNx_cast(const SkNx<2,S>& src) { return { (D)src[0], (D)src[1] }; } template static inline SkNx<4,D> SkNx_cast(const SkNx<4,S>& src) { return { (D)src[0], (D)src[1], (D)src[2], (D)src[3] }; } template static inline SkNx<8,D> SkNx_cast(const SkNx<8,S>& src) { return { (D)src[0], (D)src[1], (D)src[2], (D)src[3], (D)src[4], (D)src[5], (D)src[6], (D)src[7] }; } template static inline SkNx<16,D> SkNx_cast(const SkNx<16,S>& src) { return { (D)src[ 0], (D)src[ 1], (D)src[ 2], (D)src[ 3], (D)src[ 4], (D)src[ 5], (D)src[ 6], (D)src[ 7], (D)src[ 8], (D)src[ 9], (D)src[10], (D)src[11], (D)src[12], (D)src[13], (D)src[14], (D)src[15] }; } typedef SkNx<2, float> Sk2f; typedef SkNx<4, float> Sk4f; typedef SkNx<2, SkScalar> Sk2s; typedef SkNx<4, SkScalar> Sk4s; typedef SkNx<4, uint8_t> Sk4b; typedef SkNx<16, uint8_t> Sk16b; typedef SkNx<4, uint16_t> Sk4h; typedef SkNx<16, uint16_t> Sk16h; typedef SkNx<4, int> Sk4i; typedef SkNx<4, int> Sk4i; // Include platform specific specializations if available. #if !defined(SKNX_NO_SIMD) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 #include "../opts/SkNx_sse.h" #elif !defined(SKNX_NO_SIMD) && defined(SK_ARM_HAS_NEON) #include "../opts/SkNx_neon.h" #else static inline void Sk4f_ToBytes(uint8_t p[16], const Sk4f& a, const Sk4f& b, const Sk4f& c, const Sk4f& d) { SkNx_cast(a).store(p+ 0); SkNx_cast(b).store(p+ 4); SkNx_cast(c).store(p+ 8); SkNx_cast(d).store(p+12); } #endif #endif//SkNx_DEFINED