/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkMaskGamma_DEFINED #define SkMaskGamma_DEFINED #include "SkTypes.h" #include "SkColor.h" #include "SkColorPriv.h" #include "SkRefCnt.h" /** * SkColorSpaceLuminance is used to convert luminances to and from linear and * perceptual color spaces. * * Luma is used to specify a linear luminance value [0.0, 1.0]. * Luminance is used to specify a luminance value in an arbitrary color space [0.0, 1.0]. */ class SkColorSpaceLuminance : SkNoncopyable { public: /** Converts a color component luminance in the color space to a linear luma. */ virtual SkScalar toLuma(SkScalar luminance) const = 0; /** Converts a linear luma to a color component luminance in the color space. */ virtual SkScalar fromLuma(SkScalar luma) const = 0; /** Converts a color to a luminance value. */ U8CPU computeLuminance(SkColor c) const { SkScalar r = toLuma(SkIntToScalar(SkColorGetR(c)) / 255); SkScalar g = toLuma(SkIntToScalar(SkColorGetG(c)) / 255); SkScalar b = toLuma(SkIntToScalar(SkColorGetB(c)) / 255); SkScalar luma = r * SkFloatToScalar(SK_LUM_COEFF_R) + g * SkFloatToScalar(SK_LUM_COEFF_G) + b * SkFloatToScalar(SK_LUM_COEFF_B); SkASSERT(luma <= SK_Scalar1); return SkScalarRoundToInt(fromLuma(luma) * 255); } }; class SkSRGBLuminance : public SkColorSpaceLuminance { public: SkScalar toLuma(SkScalar luminance) const SK_OVERRIDE; SkScalar fromLuma(SkScalar luma) const SK_OVERRIDE; }; class SkGammaLuminance : public SkColorSpaceLuminance { public: SkGammaLuminance(SkScalar gamma); SkScalar toLuma(SkScalar luminance) const SK_OVERRIDE; SkScalar fromLuma(SkScalar luma) const SK_OVERRIDE; private: SkScalar fGamma; SkScalar fGammaInverse; }; ///@{ /** * Scales base <= 2^N-1 to 2^8-1 * @param N [1, 8] the number of bits used by base. * @param base the number to be scaled to [0, 255]. */ template static inline U8CPU sk_t_scale255(U8CPU base) { base <<= (8 - N); U8CPU lum = base; for (unsigned int i = N; i < 8; i += N) { lum |= base >> i; } return lum; } template<> /*static*/ inline U8CPU sk_t_scale255<1>(U8CPU base) { return base * 0xFF; } template<> /*static*/ inline U8CPU sk_t_scale255<2>(U8CPU base) { return base * 0x55; } template<> /*static*/ inline U8CPU sk_t_scale255<4>(U8CPU base) { return base * 0x11; } template<> /*static*/ inline U8CPU sk_t_scale255<8>(U8CPU base) { return base; } ///@} template class SkTMaskPreBlend; void SkTMaskGamma_build_correcting_lut(uint8_t table[256], U8CPU srcI, SkScalar contrast, const SkColorSpaceLuminance& srcConvert, const SkColorSpaceLuminance& dstConvert); /** * A regular mask contains linear alpha values. A gamma correcting mask * contains non-linear alpha values in an attempt to create gamma correct blits * in the presence of a gamma incorrect (linear) blend in the blitter. * * SkMaskGamma creates and maintains tables which convert linear alpha values * to gamma correcting alpha values. * @param R The number of luminance bits to use [1, 8] from the red channel. * @param G The number of luminance bits to use [1, 8] from the green channel. * @param B The number of luminance bits to use [1, 8] from the blue channel. */ template class SkTMaskGamma : public SkRefCnt { public: /** * Creates tables to convert linear alpha values to gamma correcting alpha * values. * * @param contrast A value in the range [0.0, 1.0] which indicates the * amount of artificial contrast to add. * @param paint The color space in which the paint color was chosen. * @param device The color space of the target device. */ SkTMaskGamma(SkScalar contrast, const SkColorSpaceLuminance& paint, const SkColorSpaceLuminance& device) { for (U8CPU i = 0; i < (1 << kLuminanceBits_Max); ++i) { U8CPU lum = sk_t_scale255(i); SkTMaskGamma_build_correcting_lut(fGammaTables[i], lum, contrast, paint, device); } } /** Given a color, returns the closest cannonical color. */ SkColor cannonicalColor(SkColor color) { return SkColorSetRGB( sk_t_scale255(SkColorGetR(color) >> (8 - kLuminanceBits_R)), sk_t_scale255(SkColorGetG(color) >> (8 - kLuminanceBits_G)), sk_t_scale255(SkColorGetB(color) >> (8 - kLuminanceBits_B))); } /** The type of the mask pre-blend which will be returned from preBlend(SkColor). */ typedef SkTMaskPreBlend PreBlend; /** * Provides access to the tables appropriate for converting linear alpha * values into gamma correcting alpha values when drawing the given color * through the mask. The destination color will be approximated. */ PreBlend preBlend(SkColor color); private: enum LuminanceBits { kLuminanceBits_R = R_LUM_BITS, kLuminanceBits_G = G_LUM_BITS, kLuminanceBits_B = B_LUM_BITS, kLuminanceBits_Max = B_LUM_BITS > (R_LUM_BITS > G_LUM_BITS ? R_LUM_BITS : G_LUM_BITS) ? B_LUM_BITS : (R_LUM_BITS > G_LUM_BITS ? R_LUM_BITS : G_LUM_BITS) }; uint8_t fGammaTables[1 << kLuminanceBits_Max][256]; }; /** * SkTMaskPreBlend is a tear-off of SkTMaskGamma. It provides the tables to * convert a linear alpha value for a given channel to a gamma correcting alpha * value for that channel. This class is immutable. */ template class SkTMaskPreBlend { private: SkTMaskPreBlend(SkTMaskGamma* parent, const uint8_t* r, const uint8_t* g, const uint8_t* b) : fParent(parent), fR(r), fG(g), fB(b) { parent->ref(); } SkAutoTUnref > fParent; friend class SkTMaskGamma; public: /** * This copy contructor exists for correctness, but should never be called * when return value optimization is enabled. */ SkTMaskPreBlend(const SkTMaskPreBlend& that) : fParent(that.fParent.get()), fR(that.fR), fG(that.fG), fB(that.fB) { fParent.get()->ref(); } ~SkTMaskPreBlend() { } const uint8_t* fR; const uint8_t* fG; const uint8_t* fB; }; template SkTMaskPreBlend SkTMaskGamma::preBlend(SkColor color) { return SkTMaskPreBlend( this, fGammaTables[SkColorGetR(color) >> (8 - kLuminanceBits_Max)], fGammaTables[SkColorGetG(color) >> (8 - kLuminanceBits_Max)], fGammaTables[SkColorGetB(color) >> (8 - kLuminanceBits_Max)]); } ///@{ /** * If APPLY_LUT is false, returns component unchanged. * If APPLY_LUT is true, returns lut[component]. * @param APPLY_LUT whether or not the look-up table should be applied to component. * @component the initial component. * @lut a look-up table which transforms the component. */ template static inline U8CPU sk_apply_lut_if(U8CPU component, const uint8_t*) { return component; } template<> /*static*/ inline U8CPU sk_apply_lut_if(U8CPU component, const uint8_t* lut) { return lut[component]; } ///@} #endif