#include "SkLineClipper.h" // return X coordinate of intersection with horizontal line at Y static SkScalar sect_with_horizontal(const SkPoint src[2], SkScalar Y) { SkScalar dy = src[1].fY - src[0].fY; if (SkScalarNearlyZero(dy)) { return SkScalarAve(src[0].fX, src[1].fX); } else { return src[0].fX + SkScalarMulDiv(Y - src[0].fY, src[1].fX - src[0].fX, dy); } } // return Y coordinate of intersection with vertical line at X static SkScalar sect_with_vertical(const SkPoint src[2], SkScalar X) { SkScalar dx = src[1].fX - src[0].fX; if (SkScalarNearlyZero(dx)) { return SkScalarAve(src[0].fY, src[1].fY); } else { return src[0].fY + SkScalarMulDiv(X - src[0].fX, src[1].fY - src[0].fY, dx); } } /////////////////////////////////////////////////////////////////////////////// bool SkLineClipper::IntersectLine(const SkPoint src[2], const SkRect& clip, SkPoint dst[2]) { SkRect bounds; bounds.set(src, 2); if (bounds.fLeft >= clip.fRight || clip.fLeft >= bounds.fRight || bounds.fTop >= clip.fBottom || clip.fTop >= bounds.fBottom) { return false; } if (clip.contains(bounds)) { if (src != dst) { memcpy(dst, src, 2 * sizeof(SkPoint)); } return true; } int index0, index1; if (src[0].fY < src[1].fY) { index0 = 0; index1 = 1; } else { index0 = 1; index1 = 0; } SkPoint tmp[2]; memcpy(tmp, src, sizeof(tmp)); // now compute Y intersections if (tmp[index0].fY < clip.fTop) { tmp[index0].set(sect_with_horizontal(src, clip.fTop), clip.fTop); } if (tmp[index1].fY > clip.fBottom) { tmp[index1].set(sect_with_horizontal(src, clip.fBottom), clip.fBottom); } if (tmp[0].fX < tmp[1].fX) { index0 = 0; index1 = 1; } else { index0 = 1; index1 = 0; } // check for quick-reject in X again, now that we may have been chopped if (tmp[index1].fX <= clip.fLeft || tmp[index0].fX >= clip.fRight) { return false; } if (tmp[index0].fX < clip.fLeft) { tmp[index0].set(clip.fLeft, sect_with_vertical(src, clip.fLeft)); } if (tmp[index1].fX > clip.fRight) { tmp[index1].set(clip.fRight, sect_with_vertical(src, clip.fRight)); } memcpy(dst, tmp, sizeof(tmp)); return true; } int SkLineClipper::ClipLine(const SkPoint pts[], const SkRect& clip, SkPoint lines[]) { int index0, index1; if (pts[0].fY < pts[1].fY) { index0 = 0; index1 = 1; } else { index0 = 1; index1 = 0; } // Check if we're completely clipped out in Y (above or below if (pts[index1].fY <= clip.fTop) { // we're above the clip return 0; } if (pts[index0].fY >= clip.fBottom) { // we're below the clip return 0; } // Chop in Y to produce a single segment, stored in tmp[0..1] SkPoint tmp[2]; memcpy(tmp, pts, sizeof(tmp)); // now compute intersections if (pts[index0].fY < clip.fTop) { tmp[index0].set(sect_with_horizontal(pts, clip.fTop), clip.fTop); } if (tmp[index1].fY > clip.fBottom) { tmp[index1].set(sect_with_horizontal(pts, clip.fBottom), clip.fBottom); } // Chop it into 1..3 segments that are wholly within the clip in X. // temp storage for up to 3 segments SkPoint resultStorage[kMaxPoints]; SkPoint* result; // points to our results, either tmp or resultStorage int lineCount = 1; bool reverse; if (pts[0].fX < pts[1].fX) { index0 = 0; index1 = 1; reverse = false; } else { index0 = 1; index1 = 0; reverse = true; } if (tmp[index1].fX <= clip.fLeft) { // wholly to the left tmp[0].fX = tmp[1].fX = clip.fLeft; result = tmp; reverse = false; } else if (tmp[index0].fX >= clip.fRight) { // wholly to the right tmp[0].fX = tmp[1].fX = clip.fRight; result = tmp; reverse = false; } else { result = resultStorage; SkPoint* r = result; if (tmp[index0].fX < clip.fLeft) { r->set(clip.fLeft, tmp[index0].fY); r += 1; r->set(clip.fLeft, sect_with_vertical(pts, clip.fLeft)); } else { *r = tmp[index0]; } r += 1; if (tmp[index1].fX > clip.fRight) { r->set(clip.fRight, sect_with_vertical(pts, clip.fRight)); r += 1; r->set(clip.fRight, tmp[index1].fY); } else { *r = tmp[index1]; } lineCount = r - result; } // Now copy the results into the caller's lines[] parameter if (reverse) { // copy the pts in reverse order to maintain winding order for (int i = 0; i <= lineCount; i++) { lines[lineCount - i] = result[i]; } } else { memcpy(lines, result, (lineCount + 1) * sizeof(SkPoint)); } return lineCount; }