/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkLatticeIter.h" #include "SkRect.h" /** * Divs must be in increasing order with no duplicates. */ static bool valid_divs(const int* divs, int count, int len) { if (count <= 0) { return false; } int prev = -1; for (int i = 0; i < count; i++) { if (prev >= divs[i] || divs[i] > len) { return false; } } return true; } bool SkLatticeIter::Valid(int width, int height, const SkCanvas::Lattice& lattice) { return valid_divs(lattice.fXDivs, lattice.fXCount, width) && valid_divs(lattice.fYDivs, lattice.fYCount, height); } /** * Count the number of pixels that are in "scalable" patches. */ static int count_scalable_pixels(const int32_t* divs, int numDivs, bool firstIsScalable, int length) { if (0 == numDivs) { return firstIsScalable ? length : 0; } int i; int count; if (firstIsScalable) { count = divs[0]; i = 1; } else { count = 0; i = 0; } for (; i < numDivs; i += 2) { // Alternatively, we could use |top| and |bottom| as variable names, instead of // |left| and |right|. int left = divs[i]; int right = (i + 1 < numDivs) ? divs[i + 1] : length; count += right - left; } return count; } /** * Set points for the src and dst rects on subsequent draw calls. */ static void set_points(float* dst, float* src, const int* divs, int divCount, int srcFixed, int srcScalable, float dstStart, float dstStop, bool isScalable) { float dstLen = dstStop - dstStart; int srcLen = srcFixed + srcScalable; float scale; if (srcFixed <= dstLen) { // This is the "normal" case, where we scale the "scalable" patches and leave // the other patches fixed. scale = (dstLen - ((float) srcFixed)) / ((float) srcScalable); } else { // In this case, we eliminate the "scalable" patches and scale the "fixed" patches. scale = dstLen / ((float) srcFixed); } src[0] = 0.0f; dst[0] = dstStart; for (int i = 0; i < divCount; i++) { src[i + 1] = (float) (divs[i]); float srcDelta = src[i + 1] - src[i]; float dstDelta; if (srcFixed <= dstLen) { dstDelta = isScalable ? scale * srcDelta : srcDelta; } else { dstDelta = isScalable ? 0.0f : scale * srcDelta; } dst[i + 1] = dst[i] + dstDelta; // Alternate between "scalable" and "fixed" patches. isScalable = !isScalable; } src[divCount + 1] = (float) srcLen; dst[divCount + 1] = dstStop; } SkLatticeIter::SkLatticeIter(int srcWidth, int srcHeight, const SkCanvas::Lattice& lattice, const SkRect& dst) { const int* xDivs = lattice.fXDivs; int xCount = lattice.fXCount; const int* yDivs = lattice.fYDivs; int yCount = lattice.fYCount; // In the x-dimension, the first rectangle always starts at x = 0 and is "scalable". // If xDiv[0] is 0, it indicates that the first rectangle is degenerate, so the // first real rectangle "scalable" in the x-direction. // // The same interpretation applies to the y-dimension. // // As we move left to right across the image, alternating patches will be "fixed" or // "scalable" in the x-direction. Similarly, as move top to bottom, alternating // patches will be "fixed" or "scalable" in the y-direction. SkASSERT(xCount > 0 && yCount > 0); bool xIsScalable = (0 == xDivs[0]); if (xIsScalable) { // Once we've decided that the first patch is "scalable", we don't need the // xDiv. It is always implied that we start at zero. xDivs++; xCount--; } bool yIsScalable = (0 == yDivs[0]); if (yIsScalable) { // Once we've decided that the first patch is "scalable", we don't need the // yDiv. It is always implied that we start at zero. yDivs++; yCount--; } // We never need the final xDiv/yDiv if it is equal to the width/height. This is implied. if (xCount > 0 && srcWidth == xDivs[xCount - 1]) { xCount--; } if (yCount > 0 && srcHeight == yDivs[yCount - 1]) { yCount--; } // Count "scalable" and "fixed" pixels in each dimension. int xCountScalable = count_scalable_pixels(xDivs, xCount, xIsScalable, srcWidth); int xCountFixed = srcWidth - xCountScalable; int yCountScalable = count_scalable_pixels(yDivs, yCount, yIsScalable, srcHeight); int yCountFixed = srcHeight - yCountScalable; fSrcX.reset(xCount + 2); fDstX.reset(xCount + 2); set_points(fDstX.begin(), fSrcX.begin(), xDivs, xCount, xCountFixed, xCountScalable, dst.fLeft, dst.fRight, xIsScalable); fSrcY.reset(yCount + 2); fDstY.reset(yCount + 2); set_points(fDstY.begin(), fSrcY.begin(), yDivs, yCount, yCountFixed, yCountScalable, dst.fTop, dst.fBottom, yIsScalable); fCurrX = fCurrY = 0; fDone = false; } bool SkLatticeIter::Valid(int width, int height, const SkIRect& center) { return !center.isEmpty() && SkIRect::MakeWH(width, height).contains(center); } SkLatticeIter::SkLatticeIter(int w, int h, const SkIRect& c, const SkRect& dst) { SkASSERT(SkIRect::MakeWH(w, h).contains(c)); fSrcX.reset(4); fSrcY.reset(4); fDstX.reset(4); fDstY.reset(4); fSrcX[0] = 0; fSrcX[1] = SkIntToScalar(c.fLeft); fSrcX[2] = SkIntToScalar(c.fRight); fSrcX[3] = SkIntToScalar(w); fSrcY[0] = 0; fSrcY[1] = SkIntToScalar(c.fTop); fSrcY[2] = SkIntToScalar(c.fBottom); fSrcY[3] = SkIntToScalar(h); fDstX[0] = dst.fLeft; fDstX[1] = dst.fLeft + SkIntToScalar(c.fLeft); fDstX[2] = dst.fRight - SkIntToScalar(w - c.fRight); fDstX[3] = dst.fRight; fDstY[0] = dst.fTop; fDstY[1] = dst.fTop + SkIntToScalar(c.fTop); fDstY[2] = dst.fBottom - SkIntToScalar(h - c.fBottom); fDstY[3] = dst.fBottom; if (fDstX[1] > fDstX[2]) { fDstX[1] = fDstX[0] + (fDstX[3] - fDstX[0]) * c.fLeft / (w - c.width()); fDstX[2] = fDstX[1]; } if (fDstY[1] > fDstY[2]) { fDstY[1] = fDstY[0] + (fDstY[3] - fDstY[0]) * c.fTop / (h - c.height()); fDstY[2] = fDstY[1]; } fCurrX = fCurrY = 0; fDone = false; } bool SkLatticeIter::next(SkRect* src, SkRect* dst) { if (fDone) { return false; } const int x = fCurrX; const int y = fCurrY; SkASSERT(x >= 0 && x < fSrcX.count() - 1); SkASSERT(y >= 0 && y < fSrcY.count() - 1); src->set(fSrcX[x], fSrcY[y], fSrcX[x + 1], fSrcY[y + 1]); dst->set(fDstX[x], fDstY[y], fDstX[x + 1], fDstY[y + 1]); if (fSrcX.count() - 1 == ++fCurrX) { fCurrX = 0; fCurrY += 1; if (fCurrY >= fSrcY.count() - 1) { fDone = true; } } return true; }