/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkLatticeIter.h" #include "SkRect.h" /** * Divs must be in increasing order with no duplicates. */ static bool valid_divs(const int* divs, int count, int start, int end) { int prev = start - 1; for (int i = 0; i < count; i++) { if (prev >= divs[i] || divs[i] >= end) { return false; } prev = divs[i]; } return true; } bool SkLatticeIter::Valid(int width, int height, const SkCanvas::Lattice& lattice) { SkIRect totalBounds = SkIRect::MakeWH(width, height); SkASSERT(lattice.fBounds); const SkIRect latticeBounds = *lattice.fBounds; if (!totalBounds.contains(latticeBounds)) { return false; } bool zeroXDivs = lattice.fXCount <= 0 || (1 == lattice.fXCount && latticeBounds.fLeft == lattice.fXDivs[0]); bool zeroYDivs = lattice.fYCount <= 0 || (1 == lattice.fYCount && latticeBounds.fTop == lattice.fYDivs[0]); if (zeroXDivs && zeroYDivs) { return false; } return valid_divs(lattice.fXDivs, lattice.fXCount, latticeBounds.fLeft, latticeBounds.fRight) && valid_divs(lattice.fYDivs, lattice.fYCount, latticeBounds.fTop, latticeBounds.fBottom); } /** * Count the number of pixels that are in "scalable" patches. */ static int count_scalable_pixels(const int32_t* divs, int numDivs, bool firstIsScalable, int start, int end) { if (0 == numDivs) { return firstIsScalable ? end - start : 0; } int i; int count; if (firstIsScalable) { count = divs[0] - start; i = 1; } else { count = 0; i = 0; } for (; i < numDivs; i += 2) { // Alternatively, we could use |top| and |bottom| as variable names, instead of // |left| and |right|. int left = divs[i]; int right = (i + 1 < numDivs) ? divs[i + 1] : end; count += right - left; } return count; } /** * Set points for the src and dst rects on subsequent draw calls. */ static void set_points(float* dst, int* src, const int* divs, int divCount, int srcFixed, int srcScalable, int srcStart, int srcEnd, float dstStart, float dstEnd, bool isScalable) { float dstLen = dstEnd - dstStart; float scale; if (srcFixed <= dstLen) { // This is the "normal" case, where we scale the "scalable" patches and leave // the other patches fixed. scale = (dstLen - ((float) srcFixed)) / ((float) srcScalable); } else { // In this case, we eliminate the "scalable" patches and scale the "fixed" patches. scale = dstLen / ((float) srcFixed); } src[0] = srcStart; dst[0] = dstStart; for (int i = 0; i < divCount; i++) { src[i + 1] = divs[i]; int srcDelta = src[i + 1] - src[i]; float dstDelta; if (srcFixed <= dstLen) { dstDelta = isScalable ? scale * srcDelta : srcDelta; } else { dstDelta = isScalable ? 0.0f : scale * srcDelta; } dst[i + 1] = dst[i] + dstDelta; // Alternate between "scalable" and "fixed" patches. isScalable = !isScalable; } src[divCount + 1] = srcEnd; dst[divCount + 1] = dstEnd; } SkLatticeIter::SkLatticeIter(const SkCanvas::Lattice& lattice, const SkRect& dst) { const int* xDivs = lattice.fXDivs; const int origXCount = lattice.fXCount; const int* yDivs = lattice.fYDivs; const int origYCount = lattice.fYCount; SkASSERT(lattice.fBounds); const SkIRect src = *lattice.fBounds; // In the x-dimension, the first rectangle always starts at x = 0 and is "scalable". // If xDiv[0] is 0, it indicates that the first rectangle is degenerate, so the // first real rectangle "scalable" in the x-direction. // // The same interpretation applies to the y-dimension. // // As we move left to right across the image, alternating patches will be "fixed" or // "scalable" in the x-direction. Similarly, as move top to bottom, alternating // patches will be "fixed" or "scalable" in the y-direction. int xCount = origXCount; int yCount = origYCount; bool xIsScalable = (xCount > 0 && src.fLeft == xDivs[0]); if (xIsScalable) { // Once we've decided that the first patch is "scalable", we don't need the // xDiv. It is always implied that we start at the edge of the bounds. xDivs++; xCount--; } bool yIsScalable = (yCount > 0 && src.fTop == yDivs[0]); if (yIsScalable) { // Once we've decided that the first patch is "scalable", we don't need the // yDiv. It is always implied that we start at the edge of the bounds. yDivs++; yCount--; } // Count "scalable" and "fixed" pixels in each dimension. int xCountScalable = count_scalable_pixels(xDivs, xCount, xIsScalable, src.fLeft, src.fRight); int xCountFixed = src.width() - xCountScalable; int yCountScalable = count_scalable_pixels(yDivs, yCount, yIsScalable, src.fTop, src.fBottom); int yCountFixed = src.height() - yCountScalable; fSrcX.reset(xCount + 2); fDstX.reset(xCount + 2); set_points(fDstX.begin(), fSrcX.begin(), xDivs, xCount, xCountFixed, xCountScalable, src.fLeft, src.fRight, dst.fLeft, dst.fRight, xIsScalable); fSrcY.reset(yCount + 2); fDstY.reset(yCount + 2); set_points(fDstY.begin(), fSrcY.begin(), yDivs, yCount, yCountFixed, yCountScalable, src.fTop, src.fBottom, dst.fTop, dst.fBottom, yIsScalable); fCurrX = fCurrY = 0; fNumRectsInLattice = (xCount + 1) * (yCount + 1); fNumRectsToDraw = fNumRectsInLattice; if (lattice.fRectTypes) { fRectTypes.push_back_n(fNumRectsInLattice); fColors.push_back_n(fNumRectsInLattice); const SkCanvas::Lattice::RectType* flags = lattice.fRectTypes; const SkColor* colors = lattice.fColors; bool hasPadRow = (yCount != origYCount); bool hasPadCol = (xCount != origXCount); if (hasPadRow) { // The first row of rects are all empty, skip the first row of flags. flags += origXCount + 1; colors += origXCount + 1; } int i = 0; for (int y = 0; y < yCount + 1; y++) { for (int x = 0; x < origXCount + 1; x++) { if (0 == x && hasPadCol) { // The first column of rects are all empty. Skip a rect. flags++; colors++; continue; } fRectTypes[i] = *flags; fColors[i] = SkCanvas::Lattice::kFixedColor == *flags ? *colors : 0; flags++; colors++; i++; } } for (int j = 0; j < fRectTypes.count(); j++) { if (SkCanvas::Lattice::kTransparent == fRectTypes[j]) { fNumRectsToDraw--; } } } } bool SkLatticeIter::Valid(int width, int height, const SkIRect& center) { return !center.isEmpty() && SkIRect::MakeWH(width, height).contains(center); } SkLatticeIter::SkLatticeIter(int w, int h, const SkIRect& c, const SkRect& dst) { SkASSERT(SkIRect::MakeWH(w, h).contains(c)); fSrcX.reset(4); fSrcY.reset(4); fDstX.reset(4); fDstY.reset(4); fSrcX[0] = 0; fSrcX[1] = SkIntToScalar(c.fLeft); fSrcX[2] = SkIntToScalar(c.fRight); fSrcX[3] = SkIntToScalar(w); fSrcY[0] = 0; fSrcY[1] = SkIntToScalar(c.fTop); fSrcY[2] = SkIntToScalar(c.fBottom); fSrcY[3] = SkIntToScalar(h); fDstX[0] = dst.fLeft; fDstX[1] = dst.fLeft + SkIntToScalar(c.fLeft); fDstX[2] = dst.fRight - SkIntToScalar(w - c.fRight); fDstX[3] = dst.fRight; fDstY[0] = dst.fTop; fDstY[1] = dst.fTop + SkIntToScalar(c.fTop); fDstY[2] = dst.fBottom - SkIntToScalar(h - c.fBottom); fDstY[3] = dst.fBottom; if (fDstX[1] > fDstX[2]) { fDstX[1] = fDstX[0] + (fDstX[3] - fDstX[0]) * c.fLeft / (w - c.width()); fDstX[2] = fDstX[1]; } if (fDstY[1] > fDstY[2]) { fDstY[1] = fDstY[0] + (fDstY[3] - fDstY[0]) * c.fTop / (h - c.height()); fDstY[2] = fDstY[1]; } fCurrX = fCurrY = 0; fNumRectsInLattice = 9; fNumRectsToDraw = 9; } bool SkLatticeIter::next(SkIRect* src, SkRect* dst, bool* isFixedColor, SkColor* fixedColor) { int currRect = fCurrX + fCurrY * (fSrcX.count() - 1); if (currRect == fNumRectsInLattice) { return false; } const int x = fCurrX; const int y = fCurrY; SkASSERT(x >= 0 && x < fSrcX.count() - 1); SkASSERT(y >= 0 && y < fSrcY.count() - 1); if (fSrcX.count() - 1 == ++fCurrX) { fCurrX = 0; fCurrY += 1; } if (fRectTypes.count() > 0 && SkToBool(SkCanvas::Lattice::kTransparent == fRectTypes[currRect])) { return this->next(src, dst, isFixedColor, fixedColor); } src->set(fSrcX[x], fSrcY[y], fSrcX[x + 1], fSrcY[y + 1]); dst->set(fDstX[x], fDstY[y], fDstX[x + 1], fDstY[y + 1]); if (isFixedColor && fixedColor) { *isFixedColor = fRectTypes.count() > 0 && SkToBool(SkCanvas::Lattice::kFixedColor == fRectTypes[currRect]); if (*isFixedColor) { *fixedColor = fColors[currRect]; } } return true; } void SkLatticeIter::mapDstScaleTranslate(const SkMatrix& matrix) { SkASSERT(matrix.isScaleTranslate()); SkScalar tx = matrix.getTranslateX(); SkScalar sx = matrix.getScaleX(); for (int i = 0; i < fDstX.count(); i++) { fDstX[i] = fDstX[i] * sx + tx; } SkScalar ty = matrix.getTranslateY(); SkScalar sy = matrix.getScaleY(); for (int i = 0; i < fDstY.count(); i++) { fDstY[i] = fDstY[i] * sy + ty; } }