/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkGlyphCache.h" #include "SkGraphics.h" #include "SkMutex.h" #include "SkOnce.h" #include "SkPath.h" #include "SkTemplates.h" #include "SkTypeface.h" #include namespace { size_t compute_path_size(const SkPath& path) { return sizeof(SkPath) + path.countPoints() * sizeof(SkPoint); } } // namespace SkGlyphCache::SkGlyphCache( const SkDescriptor& desc, std::unique_ptr scaler, const SkPaint::FontMetrics& fontMetrics) : fDesc{desc} , fScalerContext{std::move(scaler)} , fFontMetrics(fontMetrics) { SkASSERT(fScalerContext != nullptr); fMemoryUsed = sizeof(*this); } SkGlyphCache::~SkGlyphCache() { fGlyphMap.foreach([](SkGlyph* g) { if (g->fPathData) { delete g->fPathData->fPath; } }); } const SkDescriptor& SkGlyphCache::getDescriptor() const { return *fDesc.getDesc(); } SkGlyphCache::CharGlyphRec* SkGlyphCache::getCharGlyphRec(SkPackedUnicharID packedUnicharID) { if (!fPackedUnicharIDToPackedGlyphID) { fPackedUnicharIDToPackedGlyphID.reset(new CharGlyphRec[kHashCount]); } return &fPackedUnicharIDToPackedGlyphID[packedUnicharID.hash() & kHashMask]; } #ifdef SK_DEBUG #define VALIDATE() AutoValidate av(this) #else #define VALIDATE() #endif SkGlyphID SkGlyphCache::unicharToGlyph(SkUnichar charCode) { VALIDATE(); SkPackedUnicharID packedUnicharID(charCode); CharGlyphRec* rec = this->getCharGlyphRec(packedUnicharID); if (rec->fPackedUnicharID == packedUnicharID) { // The glyph exists in the unichar to glyph mapping cache. Return it. return rec->fPackedGlyphID.code(); } else { // The glyph is not in the unichar to glyph mapping cache. Insert it. rec->fPackedUnicharID = packedUnicharID; SkGlyphID glyphID = fScalerContext->charToGlyphID(charCode); rec->fPackedGlyphID = SkPackedGlyphID(glyphID); return glyphID; } } SkUnichar SkGlyphCache::glyphToUnichar(SkGlyphID glyphID) { return fScalerContext->glyphIDToChar(glyphID); } unsigned SkGlyphCache::getGlyphCount() const { return fScalerContext->getGlyphCount(); } int SkGlyphCache::countCachedGlyphs() const { return fGlyphMap.count(); } bool SkGlyphCache::isGlyphCached(SkGlyphID glyphID, SkFixed x, SkFixed y) const { SkPackedGlyphID packedGlyphID{glyphID, x, y}; return fGlyphMap.find(packedGlyphID) != nullptr; } SkGlyph* SkGlyphCache::getRawGlyphByID(SkPackedGlyphID id) { return lookupByPackedGlyphID(id, kNothing_MetricsType); } const SkGlyph& SkGlyphCache::getUnicharAdvance(SkUnichar charCode) { VALIDATE(); return *this->lookupByChar(charCode, kJustAdvance_MetricsType); } const SkGlyph& SkGlyphCache::getGlyphIDAdvance(uint16_t glyphID) { VALIDATE(); SkPackedGlyphID packedGlyphID(glyphID); return *this->lookupByPackedGlyphID(packedGlyphID, kJustAdvance_MetricsType); } const SkGlyph& SkGlyphCache::getUnicharMetrics(SkUnichar charCode) { VALIDATE(); return *this->lookupByChar(charCode, kFull_MetricsType); } const SkGlyph& SkGlyphCache::getUnicharMetrics(SkUnichar charCode, SkFixed x, SkFixed y) { VALIDATE(); return *this->lookupByChar(charCode, kFull_MetricsType, x, y); } const SkGlyph& SkGlyphCache::getGlyphIDMetrics(uint16_t glyphID) { VALIDATE(); SkPackedGlyphID packedGlyphID(glyphID); return *this->lookupByPackedGlyphID(packedGlyphID, kFull_MetricsType); } const SkGlyph& SkGlyphCache::getGlyphIDMetrics(uint16_t glyphID, SkFixed x, SkFixed y) { VALIDATE(); SkPackedGlyphID packedGlyphID(glyphID, x, y); return *this->lookupByPackedGlyphID(packedGlyphID, kFull_MetricsType); } void SkGlyphCache::getAdvances(SkSpan glyphIDs, SkPoint advances[]) { for (auto glyphID : glyphIDs) { auto glyph = this->getGlyphIDAdvance(glyphID); *advances++ = SkPoint::Make(glyph.fAdvanceX, glyph.fAdvanceY); } } SkGlyph* SkGlyphCache::lookupByChar(SkUnichar charCode, MetricsType type, SkFixed x, SkFixed y) { SkPackedUnicharID id(charCode, x, y); CharGlyphRec* rec = this->getCharGlyphRec(id); if (rec->fPackedUnicharID != id) { rec->fPackedUnicharID = id; rec->fPackedGlyphID = SkPackedGlyphID(fScalerContext->charToGlyphID(charCode), x, y); } return this->lookupByPackedGlyphID(rec->fPackedGlyphID, type); } SkGlyph* SkGlyphCache::lookupByPackedGlyphID(SkPackedGlyphID packedGlyphID, MetricsType type) { SkGlyph* glyph = fGlyphMap.find(packedGlyphID); if (nullptr == glyph) { glyph = this->allocateNewGlyph(packedGlyphID, type); } else { if (type == kFull_MetricsType && glyph->isJustAdvance()) { fScalerContext->getMetrics(glyph); } } return glyph; } SkGlyph* SkGlyphCache::allocateNewGlyph(SkPackedGlyphID packedGlyphID, MetricsType mtype) { fMemoryUsed += sizeof(SkGlyph); SkGlyph* glyphPtr; { SkGlyph glyph; glyph.initWithGlyphID(packedGlyphID); glyphPtr = fGlyphMap.set(glyph); } if (kNothing_MetricsType == mtype) { return glyphPtr; } else if (kJustAdvance_MetricsType == mtype) { fScalerContext->getAdvance(glyphPtr); } else { SkASSERT(kFull_MetricsType == mtype); fScalerContext->getMetrics(glyphPtr); } SkASSERT(glyphPtr->fID != SkPackedGlyphID()); return glyphPtr; } const void* SkGlyphCache::findImage(const SkGlyph& glyph) { if (glyph.fWidth > 0 && glyph.fWidth < kMaxGlyphWidth) { if (nullptr == glyph.fImage) { size_t size = const_cast(glyph).allocImage(&fAlloc); // check that alloc() actually succeeded if (glyph.fImage) { fScalerContext->getImage(glyph); // TODO: the scaler may have changed the maskformat during // getImage (e.g. from AA or LCD to BW) which means we may have // overallocated the buffer. Check if the new computedImageSize // is smaller, and if so, strink the alloc size in fImageAlloc. fMemoryUsed += size; } } } return glyph.fImage; } void SkGlyphCache::initializeImage(const volatile void* data, size_t size, SkGlyph* glyph) { // Don't overwrite the image if we already have one. We could have used a fallback if the // glyph was missing earlier. if (glyph->fImage) return; if (glyph->fWidth > 0 && glyph->fWidth < kMaxGlyphWidth) { size_t allocSize = glyph->allocImage(&fAlloc); // check that alloc() actually succeeded if (glyph->fImage) { SkAssertResult(size == allocSize); memcpy(glyph->fImage, const_cast(data), allocSize); fMemoryUsed += size; } } } const SkPath* SkGlyphCache::findPath(const SkGlyph& glyph) { if (glyph.fWidth) { if (glyph.fPathData == nullptr) { SkGlyph::PathData* pathData = fAlloc.make(); const_cast(glyph).fPathData = pathData; pathData->fIntercept = nullptr; SkPath* path = new SkPath; if (fScalerContext->getPath(glyph.getPackedID(), path)) { path->updateBoundsCache(); path->getGenerationID(); pathData->fPath = path; fMemoryUsed += compute_path_size(*path); } else { pathData->fPath = nullptr; delete path; } } } return glyph.fPathData ? glyph.fPathData->fPath : nullptr; } bool SkGlyphCache::initializePath(SkGlyph* glyph, const volatile void* data, size_t size) { // Don't overwrite the path if we already have one. We could have used a fallback if the // glyph was missing earlier. if (glyph->fPathData) return true; if (glyph->fWidth) { SkGlyph::PathData* pathData = fAlloc.make(); glyph->fPathData = pathData; pathData->fIntercept = nullptr; SkPath* path = new SkPath; if (!path->readFromMemory(const_cast(data), size)) { delete path; return false; } pathData->fPath = path; fMemoryUsed += compute_path_size(*path); } return true; } bool SkGlyphCache::belongsToCache(const SkGlyph* glyph) const { return glyph && fGlyphMap.find(glyph->getPackedID()) == glyph; } const SkGlyph* SkGlyphCache::getCachedGlyphAnySubPix(SkGlyphID glyphID, SkPackedGlyphID vetoID) const { for (SkFixed subY = 0; subY < SK_Fixed1; subY += SK_FixedQuarter) { for (SkFixed subX = 0; subX < SK_Fixed1; subX += SK_FixedQuarter) { SkPackedGlyphID packedGlyphID{glyphID, subX, subY}; if (packedGlyphID == vetoID) continue; if (const auto* glyph = fGlyphMap.find(packedGlyphID)) { return glyph; } } } return nullptr; } void SkGlyphCache::initializeGlyphFromFallback(SkGlyph* glyph, const SkGlyph& fallback) { fMemoryUsed += glyph->copyImageData(fallback, &fAlloc); } #include "../pathops/SkPathOpsCubic.h" #include "../pathops/SkPathOpsQuad.h" static bool quad_in_bounds(const SkScalar* pts, const SkScalar bounds[2]) { SkScalar min = SkTMin(SkTMin(pts[0], pts[2]), pts[4]); if (bounds[1] < min) { return false; } SkScalar max = SkTMax(SkTMax(pts[0], pts[2]), pts[4]); return bounds[0] < max; } static bool cubic_in_bounds(const SkScalar* pts, const SkScalar bounds[2]) { SkScalar min = SkTMin(SkTMin(SkTMin(pts[0], pts[2]), pts[4]), pts[6]); if (bounds[1] < min) { return false; } SkScalar max = SkTMax(SkTMax(SkTMax(pts[0], pts[2]), pts[4]), pts[6]); return bounds[0] < max; } void SkGlyphCache::OffsetResults(const SkGlyph::Intercept* intercept, SkScalar scale, SkScalar xPos, SkScalar* array, int* count) { if (array) { array += *count; for (int index = 0; index < 2; index++) { *array++ = intercept->fInterval[index] * scale + xPos; } } *count += 2; } void SkGlyphCache::AddInterval(SkScalar val, SkGlyph::Intercept* intercept) { intercept->fInterval[0] = SkTMin(intercept->fInterval[0], val); intercept->fInterval[1] = SkTMax(intercept->fInterval[1], val); } void SkGlyphCache::AddPoints(const SkPoint* pts, int ptCount, const SkScalar bounds[2], bool yAxis, SkGlyph::Intercept* intercept) { for (int i = 0; i < ptCount; ++i) { SkScalar val = *(&pts[i].fY - yAxis); if (bounds[0] < val && val < bounds[1]) { AddInterval(*(&pts[i].fX + yAxis), intercept); } } } void SkGlyphCache::AddLine(const SkPoint pts[2], SkScalar axis, bool yAxis, SkGlyph::Intercept* intercept) { SkScalar t = yAxis ? (axis - pts[0].fX) / (pts[1].fX - pts[0].fX) : (axis - pts[0].fY) / (pts[1].fY - pts[0].fY); if (0 <= t && t < 1) { // this handles divide by zero above AddInterval(yAxis ? pts[0].fY + t * (pts[1].fY - pts[0].fY) : pts[0].fX + t * (pts[1].fX - pts[0].fX), intercept); } } void SkGlyphCache::AddQuad(const SkPoint pts[3], SkScalar axis, bool yAxis, SkGlyph::Intercept* intercept) { SkDQuad quad; quad.set(pts); double roots[2]; int count = yAxis ? quad.verticalIntersect(axis, roots) : quad.horizontalIntersect(axis, roots); while (--count >= 0) { SkPoint pt = quad.ptAtT(roots[count]).asSkPoint(); AddInterval(*(&pt.fX + yAxis), intercept); } } void SkGlyphCache::AddCubic(const SkPoint pts[4], SkScalar axis, bool yAxis, SkGlyph::Intercept* intercept) { SkDCubic cubic; cubic.set(pts); double roots[3]; int count = yAxis ? cubic.verticalIntersect(axis, roots) : cubic.horizontalIntersect(axis, roots); while (--count >= 0) { SkPoint pt = cubic.ptAtT(roots[count]).asSkPoint(); AddInterval(*(&pt.fX + yAxis), intercept); } } const SkGlyph::Intercept* SkGlyphCache::MatchBounds(const SkGlyph* glyph, const SkScalar bounds[2]) { if (!glyph->fPathData) { return nullptr; } const SkGlyph::Intercept* intercept = glyph->fPathData->fIntercept; while (intercept) { if (bounds[0] == intercept->fBounds[0] && bounds[1] == intercept->fBounds[1]) { return intercept; } intercept = intercept->fNext; } return nullptr; } void SkGlyphCache::findIntercepts(const SkScalar bounds[2], SkScalar scale, SkScalar xPos, bool yAxis, SkGlyph* glyph, SkScalar* array, int* count) { const SkGlyph::Intercept* match = MatchBounds(glyph, bounds); if (match) { if (match->fInterval[0] < match->fInterval[1]) { OffsetResults(match, scale, xPos, array, count); } return; } SkGlyph::Intercept* intercept = fAlloc.make(); intercept->fNext = glyph->fPathData->fIntercept; intercept->fBounds[0] = bounds[0]; intercept->fBounds[1] = bounds[1]; intercept->fInterval[0] = SK_ScalarMax; intercept->fInterval[1] = SK_ScalarMin; glyph->fPathData->fIntercept = intercept; const SkPath* path = glyph->fPathData->fPath; const SkRect& pathBounds = path->getBounds(); if (*(&pathBounds.fBottom - yAxis) < bounds[0] || bounds[1] < *(&pathBounds.fTop - yAxis)) { return; } SkPath::Iter iter(*path, false); SkPoint pts[4]; SkPath::Verb verb; while (SkPath::kDone_Verb != (verb = iter.next(pts))) { switch (verb) { case SkPath::kMove_Verb: break; case SkPath::kLine_Verb: AddLine(pts, bounds[0], yAxis, intercept); AddLine(pts, bounds[1], yAxis, intercept); AddPoints(pts, 2, bounds, yAxis, intercept); break; case SkPath::kQuad_Verb: if (!quad_in_bounds(&pts[0].fY - yAxis, bounds)) { break; } AddQuad(pts, bounds[0], yAxis, intercept); AddQuad(pts, bounds[1], yAxis, intercept); AddPoints(pts, 3, bounds, yAxis, intercept); break; case SkPath::kConic_Verb: SkASSERT(0); // no support for text composed of conics break; case SkPath::kCubic_Verb: if (!cubic_in_bounds(&pts[0].fY - yAxis, bounds)) { break; } AddCubic(pts, bounds[0], yAxis, intercept); AddCubic(pts, bounds[1], yAxis, intercept); AddPoints(pts, 4, bounds, yAxis, intercept); break; case SkPath::kClose_Verb: break; default: SkASSERT(0); break; } } if (intercept->fInterval[0] >= intercept->fInterval[1]) { intercept->fInterval[0] = SK_ScalarMax; intercept->fInterval[1] = SK_ScalarMin; return; } OffsetResults(intercept, scale, xPos, array, count); } void SkGlyphCache::dump() const { const SkTypeface* face = fScalerContext->getTypeface(); const SkScalerContextRec& rec = fScalerContext->getRec(); SkMatrix matrix; rec.getSingleMatrix(&matrix); matrix.preScale(SkScalarInvert(rec.fTextSize), SkScalarInvert(rec.fTextSize)); SkString name; face->getFamilyName(&name); SkString msg; SkFontStyle style = face->fontStyle(); msg.printf("cache typeface:%x %25s:(%d,%d,%d)\n %s glyphs:%3d", face->uniqueID(), name.c_str(), style.weight(), style.width(), style.slant(), rec.dump().c_str(), fGlyphMap.count()); SkDebugf("%s\n", msg.c_str()); } #ifdef SK_DEBUG void SkGlyphCache::forceValidate() const { size_t memoryUsed = sizeof(*this); fGlyphMap.foreach ([&memoryUsed](const SkGlyph& glyph) { memoryUsed += sizeof(SkGlyph); if (glyph.fImage) { memoryUsed += glyph.computeImageSize(); } if (glyph.fPathData && glyph.fPathData->fPath) { memoryUsed += compute_path_size(*glyph.fPathData->fPath); } }); SkASSERT(fMemoryUsed == memoryUsed); } void SkGlyphCache::validate() const { #ifdef SK_DEBUG_GLYPH_CACHE forceValidate(); #endif } #endif