/* * Copyright 2009 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkEdgeClipper.h" #include "SkGeometry.h" static bool quick_reject(const SkRect& bounds, const SkRect& clip) { return bounds.fTop >= clip.fBottom || bounds.fBottom <= clip.fTop; } static inline void clamp_le(SkScalar& value, SkScalar max) { if (value > max) { value = max; } } static inline void clamp_ge(SkScalar& value, SkScalar min) { if (value < min) { value = min; } } /* src[] must be monotonic in Y. This routine copies src into dst, and sorts it to be increasing in Y. If it had to reverse the order of the points, it returns true, otherwise it returns false */ static bool sort_increasing_Y(SkPoint dst[], const SkPoint src[], int count) { // we need the data to be monotonically increasing in Y if (src[0].fY > src[count - 1].fY) { for (int i = 0; i < count; i++) { dst[i] = src[count - i - 1]; } return true; } else { memcpy(dst, src, count * sizeof(SkPoint)); return false; } } /////////////////////////////////////////////////////////////////////////////// static bool chopMonoQuadAt(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar target, SkScalar* t) { /* Solve F(t) = y where F(t) := [0](1-t)^2 + 2[1]t(1-t) + [2]t^2 * We solve for t, using quadratic equation, hence we have to rearrange * our cooefficents to look like At^2 + Bt + C */ SkScalar A = c0 - c1 - c1 + c2; SkScalar B = 2*(c1 - c0); SkScalar C = c0 - target; SkScalar roots[2]; // we only expect one, but make room for 2 for safety int count = SkFindUnitQuadRoots(A, B, C, roots); if (count) { *t = roots[0]; return true; } return false; } static bool chopMonoQuadAtY(SkPoint pts[3], SkScalar y, SkScalar* t) { return chopMonoQuadAt(pts[0].fY, pts[1].fY, pts[2].fY, y, t); } static bool chopMonoQuadAtX(SkPoint pts[3], SkScalar x, SkScalar* t) { return chopMonoQuadAt(pts[0].fX, pts[1].fX, pts[2].fX, x, t); } // Modify pts[] in place so that it is clipped in Y to the clip rect static void chop_quad_in_Y(SkPoint pts[3], const SkRect& clip) { SkScalar t; SkPoint tmp[5]; // for SkChopQuadAt // are we partially above if (pts[0].fY < clip.fTop) { if (chopMonoQuadAtY(pts, clip.fTop, &t)) { // take the 2nd chopped quad SkChopQuadAt(pts, tmp, t); // clamp to clean up imprecise numerics in the chop tmp[2].fY = clip.fTop; clamp_ge(tmp[3].fY, clip.fTop); pts[0] = tmp[2]; pts[1] = tmp[3]; } else { // if chopMonoQuadAtY failed, then we may have hit inexact numerics // so we just clamp against the top for (int i = 0; i < 3; i++) { if (pts[i].fY < clip.fTop) { pts[i].fY = clip.fTop; } } } } // are we partially below if (pts[2].fY > clip.fBottom) { if (chopMonoQuadAtY(pts, clip.fBottom, &t)) { SkChopQuadAt(pts, tmp, t); // clamp to clean up imprecise numerics in the chop clamp_le(tmp[1].fY, clip.fBottom); tmp[2].fY = clip.fBottom; pts[1] = tmp[1]; pts[2] = tmp[2]; } else { // if chopMonoQuadAtY failed, then we may have hit inexact numerics // so we just clamp against the bottom for (int i = 0; i < 3; i++) { if (pts[i].fY > clip.fBottom) { pts[i].fY = clip.fBottom; } } } } } // srcPts[] must be monotonic in X and Y void SkEdgeClipper::clipMonoQuad(const SkPoint srcPts[3], const SkRect& clip) { SkPoint pts[3]; bool reverse = sort_increasing_Y(pts, srcPts, 3); // are we completely above or below if (pts[2].fY <= clip.fTop || pts[0].fY >= clip.fBottom) { return; } // Now chop so that pts is contained within clip in Y chop_quad_in_Y(pts, clip); if (pts[0].fX > pts[2].fX) { SkTSwap(pts[0], pts[2]); reverse = !reverse; } SkASSERT(pts[0].fX <= pts[1].fX); SkASSERT(pts[1].fX <= pts[2].fX); // Now chop in X has needed, and record the segments if (pts[2].fX <= clip.fLeft) { // wholly to the left this->appendVLine(clip.fLeft, pts[0].fY, pts[2].fY, reverse); return; } if (pts[0].fX >= clip.fRight) { // wholly to the right this->appendVLine(clip.fRight, pts[0].fY, pts[2].fY, reverse); return; } SkScalar t; SkPoint tmp[5]; // for SkChopQuadAt // are we partially to the left if (pts[0].fX < clip.fLeft) { if (chopMonoQuadAtX(pts, clip.fLeft, &t)) { SkChopQuadAt(pts, tmp, t); this->appendVLine(clip.fLeft, tmp[0].fY, tmp[2].fY, reverse); // clamp to clean up imprecise numerics in the chop tmp[2].fX = clip.fLeft; clamp_ge(tmp[3].fX, clip.fLeft); pts[0] = tmp[2]; pts[1] = tmp[3]; } else { // if chopMonoQuadAtY failed, then we may have hit inexact numerics // so we just clamp against the left this->appendVLine(clip.fLeft, pts[0].fY, pts[2].fY, reverse); return; } } // are we partially to the right if (pts[2].fX > clip.fRight) { if (chopMonoQuadAtX(pts, clip.fRight, &t)) { SkChopQuadAt(pts, tmp, t); // clamp to clean up imprecise numerics in the chop clamp_le(tmp[1].fX, clip.fRight); tmp[2].fX = clip.fRight; this->appendQuad(tmp, reverse); this->appendVLine(clip.fRight, tmp[2].fY, tmp[4].fY, reverse); } else { // if chopMonoQuadAtY failed, then we may have hit inexact numerics // so we just clamp against the right this->appendVLine(clip.fRight, pts[0].fY, pts[2].fY, reverse); } } else { // wholly inside the clip this->appendQuad(pts, reverse); } } bool SkEdgeClipper::clipQuad(const SkPoint srcPts[3], const SkRect& clip) { fCurrPoint = fPoints; fCurrVerb = fVerbs; SkRect bounds; bounds.set(srcPts, 3); if (!quick_reject(bounds, clip)) { SkPoint monoY[5]; int countY = SkChopQuadAtYExtrema(srcPts, monoY); for (int y = 0; y <= countY; y++) { SkPoint monoX[5]; int countX = SkChopQuadAtXExtrema(&monoY[y * 2], monoX); for (int x = 0; x <= countX; x++) { this->clipMonoQuad(&monoX[x * 2], clip); SkASSERT(fCurrVerb - fVerbs < kMaxVerbs); SkASSERT(fCurrPoint - fPoints <= kMaxPoints); } } } *fCurrVerb = SkPath::kDone_Verb; fCurrPoint = fPoints; fCurrVerb = fVerbs; return SkPath::kDone_Verb != fVerbs[0]; } /////////////////////////////////////////////////////////////////////////////// static SkScalar eval_cubic_coeff(SkScalar A, SkScalar B, SkScalar C, SkScalar D, SkScalar t) { return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D); } /* Given 4 cubic points (either Xs or Ys), and a target X or Y, compute the t value such that cubic(t) = target */ static bool chopMonoCubicAt(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c3, SkScalar target, SkScalar* t) { // SkASSERT(c0 <= c1 && c1 <= c2 && c2 <= c3); SkASSERT(c0 < target && target < c3); SkScalar D = c0 - target; SkScalar A = c3 + 3*(c1 - c2) - c0; SkScalar B = 3*(c2 - c1 - c1 + c0); SkScalar C = 3*(c1 - c0); const SkScalar TOLERANCE = SK_Scalar1 / 4096; SkScalar minT = 0; SkScalar maxT = SK_Scalar1; SkScalar mid; // This is a lot of iterations. Is there a faster way? for (int i = 0; i < 24; i++) { mid = SkScalarAve(minT, maxT); SkScalar delta = eval_cubic_coeff(A, B, C, D, mid); if (delta < 0) { minT = mid; delta = -delta; } else { maxT = mid; } if (delta < TOLERANCE) { break; } } *t = mid; // SkDebugf("-- evalCubicAt %d delta %g\n", i, eval_cubic_coeff(A, B, C, D, *t)); return true; } static bool chopMonoCubicAtY(SkPoint pts[4], SkScalar y, SkScalar* t) { return chopMonoCubicAt(pts[0].fY, pts[1].fY, pts[2].fY, pts[3].fY, y, t); } static bool chopMonoCubicAtX(SkPoint pts[4], SkScalar x, SkScalar* t) { return chopMonoCubicAt(pts[0].fX, pts[1].fX, pts[2].fX, pts[3].fX, x, t); } // Modify pts[] in place so that it is clipped in Y to the clip rect static void chop_cubic_in_Y(SkPoint pts[4], const SkRect& clip) { // are we partially above if (pts[0].fY < clip.fTop) { SkScalar t; if (chopMonoCubicAtY(pts, clip.fTop, &t)) { SkPoint tmp[7]; SkChopCubicAt(pts, tmp, t); // tmp[3, 4].fY should all be to the below clip.fTop, and // still be monotonic in Y. Since we can't trust the numerics of // the chopper, we force those conditions now tmp[3].fY = clip.fTop; clamp_ge(tmp[4].fY, clip.fTop); pts[0] = tmp[3]; pts[1] = tmp[4]; pts[2] = tmp[5]; } else { // if chopMonoCubicAtY failed, then we may have hit inexact numerics // so we just clamp against the top for (int i = 0; i < 4; i++) { clamp_ge(pts[i].fY, clip.fTop); } } } // are we partially below if (pts[3].fY > clip.fBottom) { SkScalar t; if (chopMonoCubicAtY(pts, clip.fBottom, &t)) { SkPoint tmp[7]; SkChopCubicAt(pts, tmp, t); tmp[3].fY = clip.fBottom; clamp_le(tmp[2].fY, clip.fBottom); pts[1] = tmp[1]; pts[2] = tmp[2]; pts[3] = tmp[3]; } else { // if chopMonoCubicAtY failed, then we may have hit inexact numerics // so we just clamp against the bottom for (int i = 0; i < 4; i++) { clamp_le(pts[i].fY, clip.fBottom); } } } } // srcPts[] must be monotonic in X and Y void SkEdgeClipper::clipMonoCubic(const SkPoint src[4], const SkRect& clip) { SkPoint pts[4]; bool reverse = sort_increasing_Y(pts, src, 4); // are we completely above or below if (pts[3].fY <= clip.fTop || pts[0].fY >= clip.fBottom) { return; } // Now chop so that pts is contained within clip in Y chop_cubic_in_Y(pts, clip); if (pts[0].fX > pts[3].fX) { SkTSwap(pts[0], pts[3]); SkTSwap(pts[1], pts[2]); reverse = !reverse; } // Now chop in X has needed, and record the segments if (pts[3].fX <= clip.fLeft) { // wholly to the left this->appendVLine(clip.fLeft, pts[0].fY, pts[3].fY, reverse); return; } if (pts[0].fX >= clip.fRight) { // wholly to the right this->appendVLine(clip.fRight, pts[0].fY, pts[3].fY, reverse); return; } // are we partially to the left if (pts[0].fX < clip.fLeft) { SkScalar t; if (chopMonoCubicAtX(pts, clip.fLeft, &t)) { SkPoint tmp[7]; SkChopCubicAt(pts, tmp, t); this->appendVLine(clip.fLeft, tmp[0].fY, tmp[3].fY, reverse); // tmp[3, 4, 5].fX should all be to the right of clip.fLeft, and // still be monotonic in X. Since we can't trust the numerics of // the chopper, we force those conditions now tmp[3].fX = clip.fLeft; clamp_ge(tmp[4].fX, clip.fLeft); clamp_ge(tmp[5].fX, tmp[4].fX); pts[0] = tmp[3]; pts[1] = tmp[4]; pts[2] = tmp[5]; } else { // if chopMonocubicAtY failed, then we may have hit inexact numerics // so we just clamp against the left this->appendVLine(clip.fLeft, pts[0].fY, pts[3].fY, reverse); return; } } // are we partially to the right if (pts[3].fX > clip.fRight) { SkScalar t; if (chopMonoCubicAtX(pts, clip.fRight, &t)) { SkPoint tmp[7]; SkChopCubicAt(pts, tmp, t); tmp[3].fX = clip.fRight; clamp_le(tmp[2].fX, clip.fRight); clamp_le(tmp[1].fX, tmp[2].fX); this->appendCubic(tmp, reverse); this->appendVLine(clip.fRight, tmp[3].fY, tmp[6].fY, reverse); } else { // if chopMonoCubicAtX failed, then we may have hit inexact numerics // so we just clamp against the right this->appendVLine(clip.fRight, pts[0].fY, pts[3].fY, reverse); } } else { // wholly inside the clip this->appendCubic(pts, reverse); } } bool SkEdgeClipper::clipCubic(const SkPoint srcPts[4], const SkRect& clip) { fCurrPoint = fPoints; fCurrVerb = fVerbs; SkRect bounds; bounds.set(srcPts, 4); if (!quick_reject(bounds, clip)) { SkPoint monoY[10]; int countY = SkChopCubicAtYExtrema(srcPts, monoY); for (int y = 0; y <= countY; y++) { // sk_assert_monotonic_y(&monoY[y * 3], 4); SkPoint monoX[10]; int countX = SkChopCubicAtXExtrema(&monoY[y * 3], monoX); for (int x = 0; x <= countX; x++) { // sk_assert_monotonic_y(&monoX[x * 3], 4); // sk_assert_monotonic_x(&monoX[x * 3], 4); this->clipMonoCubic(&monoX[x * 3], clip); SkASSERT(fCurrVerb - fVerbs < kMaxVerbs); SkASSERT(fCurrPoint - fPoints <= kMaxPoints); } } } *fCurrVerb = SkPath::kDone_Verb; fCurrPoint = fPoints; fCurrVerb = fVerbs; return SkPath::kDone_Verb != fVerbs[0]; } /////////////////////////////////////////////////////////////////////////////// void SkEdgeClipper::appendVLine(SkScalar x, SkScalar y0, SkScalar y1, bool reverse) { *fCurrVerb++ = SkPath::kLine_Verb; if (reverse) { SkTSwap(y0, y1); } fCurrPoint[0].set(x, y0); fCurrPoint[1].set(x, y1); fCurrPoint += 2; } void SkEdgeClipper::appendQuad(const SkPoint pts[3], bool reverse) { *fCurrVerb++ = SkPath::kQuad_Verb; if (reverse) { fCurrPoint[0] = pts[2]; fCurrPoint[2] = pts[0]; } else { fCurrPoint[0] = pts[0]; fCurrPoint[2] = pts[2]; } fCurrPoint[1] = pts[1]; fCurrPoint += 3; } void SkEdgeClipper::appendCubic(const SkPoint pts[4], bool reverse) { *fCurrVerb++ = SkPath::kCubic_Verb; if (reverse) { for (int i = 0; i < 4; i++) { fCurrPoint[i] = pts[3 - i]; } } else { memcpy(fCurrPoint, pts, 4 * sizeof(SkPoint)); } fCurrPoint += 4; } SkPath::Verb SkEdgeClipper::next(SkPoint pts[]) { SkPath::Verb verb = *fCurrVerb; switch (verb) { case SkPath::kLine_Verb: memcpy(pts, fCurrPoint, 2 * sizeof(SkPoint)); fCurrPoint += 2; fCurrVerb += 1; break; case SkPath::kQuad_Verb: memcpy(pts, fCurrPoint, 3 * sizeof(SkPoint)); fCurrPoint += 3; fCurrVerb += 1; break; case SkPath::kCubic_Verb: memcpy(pts, fCurrPoint, 4 * sizeof(SkPoint)); fCurrPoint += 4; fCurrVerb += 1; break; case SkPath::kDone_Verb: break; default: SkDEBUGFAIL("unexpected verb in quadclippper2 iter"); break; } return verb; } /////////////////////////////////////////////////////////////////////////////// #ifdef SK_DEBUG static void assert_monotonic(const SkScalar coord[], int count) { if (coord[0] > coord[(count - 1) * 2]) { for (int i = 1; i < count; i++) { SkASSERT(coord[2 * (i - 1)] >= coord[i * 2]); } } else if (coord[0] < coord[(count - 1) * 2]) { for (int i = 1; i < count; i++) { SkASSERT(coord[2 * (i - 1)] <= coord[i * 2]); } } else { for (int i = 1; i < count; i++) { SkASSERT(coord[2 * (i - 1)] == coord[i * 2]); } } } void sk_assert_monotonic_y(const SkPoint pts[], int count) { if (count > 1) { assert_monotonic(&pts[0].fY, count); } } void sk_assert_monotonic_x(const SkPoint pts[], int count) { if (count > 1) { assert_monotonic(&pts[0].fX, count); } } #endif