/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkDraw.h" #include "SkBlitter.h" #include "SkCanvas.h" #include "SkColorPriv.h" #include "SkDevice.h" #include "SkDeviceLooper.h" #include "SkFixed.h" #include "SkMaskFilter.h" #include "SkPaint.h" #include "SkPathEffect.h" #include "SkRasterClip.h" #include "SkRasterizer.h" #include "SkRRect.h" #include "SkScan.h" #include "SkShader.h" #include "SkSmallAllocator.h" #include "SkString.h" #include "SkStroke.h" #include "SkTextMapStateProc.h" #include "SkTLazy.h" #include "SkUtils.h" #include "SkVertState.h" #include "SkAutoKern.h" #include "SkBitmapProcShader.h" #include "SkDrawProcs.h" #include "SkMatrixUtils.h" //#define TRACE_BITMAP_DRAWS /** Helper for allocating small blitters on the stack. */ class SkAutoBlitterChoose : SkNoncopyable { public: SkAutoBlitterChoose() { fBlitter = NULL; } SkAutoBlitterChoose(const SkBitmap& device, const SkMatrix& matrix, const SkPaint& paint, bool drawCoverage = false) { fBlitter = SkBlitter::Choose(device, matrix, paint, &fAllocator, drawCoverage); } SkBlitter* operator->() { return fBlitter; } SkBlitter* get() const { return fBlitter; } void choose(const SkBitmap& device, const SkMatrix& matrix, const SkPaint& paint, bool drawCoverage = false) { SkASSERT(!fBlitter); fBlitter = SkBlitter::Choose(device, matrix, paint, &fAllocator, drawCoverage); } private: // Owned by fAllocator, which will handle the delete. SkBlitter* fBlitter; SkTBlitterAllocator fAllocator; }; #define SkAutoBlitterChoose(...) SK_REQUIRE_LOCAL_VAR(SkAutoBlitterChoose) /** * Since we are providing the storage for the shader (to avoid the perf cost * of calling new) we insist that in our destructor we can account for all * owners of the shader. */ class SkAutoBitmapShaderInstall : SkNoncopyable { public: SkAutoBitmapShaderInstall(const SkBitmap& src, const SkPaint& paint, const SkMatrix* localMatrix = NULL) : fPaint(paint) /* makes a copy of the paint */ { fPaint.setShader(SkCreateBitmapShader(src, SkShader::kClamp_TileMode, SkShader::kClamp_TileMode, localMatrix, &fAllocator)); // we deliberately left the shader with an owner-count of 2 SkASSERT(2 == fPaint.getShader()->getRefCnt()); } ~SkAutoBitmapShaderInstall() { // since fAllocator will destroy shader, we insist that owners == 2 SkASSERT(2 == fPaint.getShader()->getRefCnt()); fPaint.setShader(NULL); // unref the shader by 1 } // return the new paint that has the shader applied const SkPaint& paintWithShader() const { return fPaint; } private: // copy of caller's paint (which we then modify) SkPaint fPaint; // Stores the shader. SkTBlitterAllocator fAllocator; }; #define SkAutoBitmapShaderInstall(...) SK_REQUIRE_LOCAL_VAR(SkAutoBitmapShaderInstall) /////////////////////////////////////////////////////////////////////////////// SkDraw::SkDraw() { sk_bzero(this, sizeof(*this)); } SkDraw::SkDraw(const SkDraw& src) { memcpy(this, &src, sizeof(*this)); } bool SkDraw::computeConservativeLocalClipBounds(SkRect* localBounds) const { if (fRC->isEmpty()) { return false; } SkMatrix inverse; if (!fMatrix->invert(&inverse)) { return false; } SkIRect devBounds = fRC->getBounds(); // outset to have slop for antialasing and hairlines devBounds.outset(1, 1); inverse.mapRect(localBounds, SkRect::Make(devBounds)); return true; } /////////////////////////////////////////////////////////////////////////////// typedef void (*BitmapXferProc)(void* pixels, size_t bytes, uint32_t data); static void D_Clear_BitmapXferProc(void* pixels, size_t bytes, uint32_t) { sk_bzero(pixels, bytes); } static void D_Dst_BitmapXferProc(void*, size_t, uint32_t data) {} static void D32_Src_BitmapXferProc(void* pixels, size_t bytes, uint32_t data) { sk_memset32((uint32_t*)pixels, data, SkToInt(bytes >> 2)); } static void D16_Src_BitmapXferProc(void* pixels, size_t bytes, uint32_t data) { sk_memset16((uint16_t*)pixels, data, SkToInt(bytes >> 1)); } static void DA8_Src_BitmapXferProc(void* pixels, size_t bytes, uint32_t data) { memset(pixels, data, bytes); } static BitmapXferProc ChooseBitmapXferProc(const SkBitmap& bitmap, const SkPaint& paint, uint32_t* data) { // todo: we can apply colorfilter up front if no shader, so we wouldn't // need to abort this fastpath if (paint.getShader() || paint.getColorFilter()) { return NULL; } SkXfermode::Mode mode; if (!SkXfermode::AsMode(paint.getXfermode(), &mode)) { return NULL; } SkColor color = paint.getColor(); // collaps modes based on color... if (SkXfermode::kSrcOver_Mode == mode) { unsigned alpha = SkColorGetA(color); if (0 == alpha) { mode = SkXfermode::kDst_Mode; } else if (0xFF == alpha) { mode = SkXfermode::kSrc_Mode; } } switch (mode) { case SkXfermode::kClear_Mode: // SkDebugf("--- D_Clear_BitmapXferProc\n"); return D_Clear_BitmapXferProc; // ignore data case SkXfermode::kDst_Mode: // SkDebugf("--- D_Dst_BitmapXferProc\n"); return D_Dst_BitmapXferProc; // ignore data case SkXfermode::kSrc_Mode: { /* should I worry about dithering for the lower depths? */ SkPMColor pmc = SkPreMultiplyColor(color); switch (bitmap.colorType()) { case kN32_SkColorType: if (data) { *data = pmc; } // SkDebugf("--- D32_Src_BitmapXferProc\n"); return D32_Src_BitmapXferProc; case kRGB_565_SkColorType: if (data) { *data = SkPixel32ToPixel16(pmc); } // SkDebugf("--- D16_Src_BitmapXferProc\n"); return D16_Src_BitmapXferProc; case kAlpha_8_SkColorType: if (data) { *data = SkGetPackedA32(pmc); } // SkDebugf("--- DA8_Src_BitmapXferProc\n"); return DA8_Src_BitmapXferProc; default: break; } break; } default: break; } return NULL; } static void CallBitmapXferProc(const SkBitmap& bitmap, const SkIRect& rect, BitmapXferProc proc, uint32_t procData) { int shiftPerPixel; switch (bitmap.colorType()) { case kN32_SkColorType: shiftPerPixel = 2; break; case kRGB_565_SkColorType: shiftPerPixel = 1; break; case kAlpha_8_SkColorType: shiftPerPixel = 0; break; default: SkDEBUGFAIL("Can't use xferproc on this config"); return; } uint8_t* pixels = (uint8_t*)bitmap.getPixels(); SkASSERT(pixels); const size_t rowBytes = bitmap.rowBytes(); const int widthBytes = rect.width() << shiftPerPixel; // skip down to the first scanline and X position pixels += rect.fTop * rowBytes + (rect.fLeft << shiftPerPixel); for (int scans = rect.height() - 1; scans >= 0; --scans) { proc(pixels, widthBytes, procData); pixels += rowBytes; } } void SkDraw::drawPaint(const SkPaint& paint) const { SkDEBUGCODE(this->validate();) if (fRC->isEmpty()) { return; } SkIRect devRect; devRect.set(0, 0, fBitmap->width(), fBitmap->height()); if (fRC->isBW()) { /* If we don't have a shader (i.e. we're just a solid color) we may be faster to operate directly on the device bitmap, rather than invoking a blitter. Esp. true for xfermodes, which require a colorshader to be present, which is just redundant work. Since we're drawing everywhere in the clip, we don't have to worry about antialiasing. */ uint32_t procData = 0; // to avoid the warning BitmapXferProc proc = ChooseBitmapXferProc(*fBitmap, paint, &procData); if (proc) { if (D_Dst_BitmapXferProc == proc) { // nothing to do return; } SkRegion::Iterator iter(fRC->bwRgn()); while (!iter.done()) { CallBitmapXferProc(*fBitmap, iter.rect(), proc, procData); iter.next(); } return; } } // normal case: use a blitter SkAutoBlitterChoose blitter(*fBitmap, *fMatrix, paint); SkScan::FillIRect(devRect, *fRC, blitter.get()); } /////////////////////////////////////////////////////////////////////////////// struct PtProcRec { SkCanvas::PointMode fMode; const SkPaint* fPaint; const SkRegion* fClip; const SkRasterClip* fRC; // computed values SkFixed fRadius; typedef void (*Proc)(const PtProcRec&, const SkPoint devPts[], int count, SkBlitter*); bool init(SkCanvas::PointMode, const SkPaint&, const SkMatrix* matrix, const SkRasterClip*); Proc chooseProc(SkBlitter** blitter); private: SkAAClipBlitterWrapper fWrapper; }; static void bw_pt_rect_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { SkASSERT(rec.fClip->isRect()); const SkIRect& r = rec.fClip->getBounds(); for (int i = 0; i < count; i++) { int x = SkScalarFloorToInt(devPts[i].fX); int y = SkScalarFloorToInt(devPts[i].fY); if (r.contains(x, y)) { blitter->blitH(x, y, 1); } } } static void bw_pt_rect_16_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { SkASSERT(rec.fRC->isRect()); const SkIRect& r = rec.fRC->getBounds(); uint32_t value; const SkBitmap* bitmap = blitter->justAnOpaqueColor(&value); SkASSERT(bitmap); uint16_t* addr = bitmap->getAddr16(0, 0); size_t rb = bitmap->rowBytes(); for (int i = 0; i < count; i++) { int x = SkScalarFloorToInt(devPts[i].fX); int y = SkScalarFloorToInt(devPts[i].fY); if (r.contains(x, y)) { ((uint16_t*)((char*)addr + y * rb))[x] = SkToU16(value); } } } static void bw_pt_rect_32_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { SkASSERT(rec.fRC->isRect()); const SkIRect& r = rec.fRC->getBounds(); uint32_t value; const SkBitmap* bitmap = blitter->justAnOpaqueColor(&value); SkASSERT(bitmap); SkPMColor* addr = bitmap->getAddr32(0, 0); size_t rb = bitmap->rowBytes(); for (int i = 0; i < count; i++) { int x = SkScalarFloorToInt(devPts[i].fX); int y = SkScalarFloorToInt(devPts[i].fY); if (r.contains(x, y)) { ((SkPMColor*)((char*)addr + y * rb))[x] = value; } } } static void bw_pt_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { for (int i = 0; i < count; i++) { int x = SkScalarFloorToInt(devPts[i].fX); int y = SkScalarFloorToInt(devPts[i].fY); if (rec.fClip->contains(x, y)) { blitter->blitH(x, y, 1); } } } static void bw_line_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { for (int i = 0; i < count; i += 2) { SkScan::HairLine(devPts[i], devPts[i+1], *rec.fRC, blitter); } } static void bw_poly_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { for (int i = 0; i < count - 1; i++) { SkScan::HairLine(devPts[i], devPts[i+1], *rec.fRC, blitter); } } // aa versions static void aa_line_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { for (int i = 0; i < count; i += 2) { SkScan::AntiHairLine(devPts[i], devPts[i+1], *rec.fRC, blitter); } } static void aa_poly_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { for (int i = 0; i < count - 1; i++) { SkScan::AntiHairLine(devPts[i], devPts[i+1], *rec.fRC, blitter); } } // square procs (strokeWidth > 0 but matrix is square-scale (sx == sy) static void bw_square_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { const SkFixed radius = rec.fRadius; for (int i = 0; i < count; i++) { SkFixed x = SkScalarToFixed(devPts[i].fX); SkFixed y = SkScalarToFixed(devPts[i].fY); SkXRect r; r.fLeft = x - radius; r.fTop = y - radius; r.fRight = x + radius; r.fBottom = y + radius; SkScan::FillXRect(r, *rec.fRC, blitter); } } static void aa_square_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { const SkFixed radius = rec.fRadius; for (int i = 0; i < count; i++) { SkFixed x = SkScalarToFixed(devPts[i].fX); SkFixed y = SkScalarToFixed(devPts[i].fY); SkXRect r; r.fLeft = x - radius; r.fTop = y - radius; r.fRight = x + radius; r.fBottom = y + radius; SkScan::AntiFillXRect(r, *rec.fRC, blitter); } } // If this guy returns true, then chooseProc() must return a valid proc bool PtProcRec::init(SkCanvas::PointMode mode, const SkPaint& paint, const SkMatrix* matrix, const SkRasterClip* rc) { if (paint.getPathEffect()) { return false; } SkScalar width = paint.getStrokeWidth(); if (0 == width) { fMode = mode; fPaint = &paint; fClip = NULL; fRC = rc; fRadius = SK_FixedHalf; return true; } if (paint.getStrokeCap() != SkPaint::kRound_Cap && matrix->isScaleTranslate() && SkCanvas::kPoints_PointMode == mode) { SkScalar sx = matrix->get(SkMatrix::kMScaleX); SkScalar sy = matrix->get(SkMatrix::kMScaleY); if (SkScalarNearlyZero(sx - sy)) { if (sx < 0) { sx = -sx; } fMode = mode; fPaint = &paint; fClip = NULL; fRC = rc; fRadius = SkScalarToFixed(SkScalarMul(width, sx)) >> 1; return true; } } return false; } PtProcRec::Proc PtProcRec::chooseProc(SkBlitter** blitterPtr) { Proc proc = NULL; SkBlitter* blitter = *blitterPtr; if (fRC->isBW()) { fClip = &fRC->bwRgn(); } else { fWrapper.init(*fRC, blitter); fClip = &fWrapper.getRgn(); blitter = fWrapper.getBlitter(); *blitterPtr = blitter; } // for our arrays SkASSERT(0 == SkCanvas::kPoints_PointMode); SkASSERT(1 == SkCanvas::kLines_PointMode); SkASSERT(2 == SkCanvas::kPolygon_PointMode); SkASSERT((unsigned)fMode <= (unsigned)SkCanvas::kPolygon_PointMode); if (fPaint->isAntiAlias()) { if (0 == fPaint->getStrokeWidth()) { static const Proc gAAProcs[] = { aa_square_proc, aa_line_hair_proc, aa_poly_hair_proc }; proc = gAAProcs[fMode]; } else if (fPaint->getStrokeCap() != SkPaint::kRound_Cap) { SkASSERT(SkCanvas::kPoints_PointMode == fMode); proc = aa_square_proc; } } else { // BW if (fRadius <= SK_FixedHalf) { // small radii and hairline if (SkCanvas::kPoints_PointMode == fMode && fClip->isRect()) { uint32_t value; const SkBitmap* bm = blitter->justAnOpaqueColor(&value); if (bm && kRGB_565_SkColorType == bm->colorType()) { proc = bw_pt_rect_16_hair_proc; } else if (bm && kN32_SkColorType == bm->colorType()) { proc = bw_pt_rect_32_hair_proc; } else { proc = bw_pt_rect_hair_proc; } } else { static Proc gBWProcs[] = { bw_pt_hair_proc, bw_line_hair_proc, bw_poly_hair_proc }; proc = gBWProcs[fMode]; } } else { proc = bw_square_proc; } } return proc; } // each of these costs 8-bytes of stack space, so don't make it too large // must be even for lines/polygon to work #define MAX_DEV_PTS 32 void SkDraw::drawPoints(SkCanvas::PointMode mode, size_t count, const SkPoint pts[], const SkPaint& paint, bool forceUseDevice) const { // if we're in lines mode, force count to be even if (SkCanvas::kLines_PointMode == mode) { count &= ~(size_t)1; } if ((long)count <= 0) { return; } SkASSERT(pts != NULL); SkDEBUGCODE(this->validate();) // nothing to draw if (fRC->isEmpty()) { return; } PtProcRec rec; if (!forceUseDevice && rec.init(mode, paint, fMatrix, fRC)) { SkAutoBlitterChoose blitter(*fBitmap, *fMatrix, paint); SkPoint devPts[MAX_DEV_PTS]; const SkMatrix* matrix = fMatrix; SkBlitter* bltr = blitter.get(); PtProcRec::Proc proc = rec.chooseProc(&bltr); // we have to back up subsequent passes if we're in polygon mode const size_t backup = (SkCanvas::kPolygon_PointMode == mode); do { int n = SkToInt(count); if (n > MAX_DEV_PTS) { n = MAX_DEV_PTS; } matrix->mapPoints(devPts, pts, n); proc(rec, devPts, n, bltr); pts += n - backup; SkASSERT(SkToInt(count) >= n); count -= n; if (count > 0) { count += backup; } } while (count != 0); } else { switch (mode) { case SkCanvas::kPoints_PointMode: { // temporarily mark the paint as filling. SkPaint newPaint(paint); newPaint.setStyle(SkPaint::kFill_Style); SkScalar width = newPaint.getStrokeWidth(); SkScalar radius = SkScalarHalf(width); if (newPaint.getStrokeCap() == SkPaint::kRound_Cap) { SkPath path; SkMatrix preMatrix; path.addCircle(0, 0, radius); for (size_t i = 0; i < count; i++) { preMatrix.setTranslate(pts[i].fX, pts[i].fY); // pass true for the last point, since we can modify // then path then path.setIsVolatile((count-1) == i); if (fDevice) { fDevice->drawPath(*this, path, newPaint, &preMatrix, (count-1) == i); } else { this->drawPath(path, newPaint, &preMatrix, (count-1) == i); } } } else { SkRect r; for (size_t i = 0; i < count; i++) { r.fLeft = pts[i].fX - radius; r.fTop = pts[i].fY - radius; r.fRight = r.fLeft + width; r.fBottom = r.fTop + width; if (fDevice) { fDevice->drawRect(*this, r, newPaint); } else { this->drawRect(r, newPaint); } } } break; } case SkCanvas::kLines_PointMode: if (2 == count && paint.getPathEffect()) { // most likely a dashed line - see if it is one of the ones // we can accelerate SkStrokeRec rec(paint); SkPathEffect::PointData pointData; SkPath path; path.moveTo(pts[0]); path.lineTo(pts[1]); SkRect cullRect = SkRect::Make(fRC->getBounds()); if (paint.getPathEffect()->asPoints(&pointData, path, rec, *fMatrix, &cullRect)) { // 'asPoints' managed to find some fast path SkPaint newP(paint); newP.setPathEffect(NULL); newP.setStyle(SkPaint::kFill_Style); if (!pointData.fFirst.isEmpty()) { if (fDevice) { fDevice->drawPath(*this, pointData.fFirst, newP); } else { this->drawPath(pointData.fFirst, newP); } } if (!pointData.fLast.isEmpty()) { if (fDevice) { fDevice->drawPath(*this, pointData.fLast, newP); } else { this->drawPath(pointData.fLast, newP); } } if (pointData.fSize.fX == pointData.fSize.fY) { // The rest of the dashed line can just be drawn as points SkASSERT(pointData.fSize.fX == SkScalarHalf(newP.getStrokeWidth())); if (SkPathEffect::PointData::kCircles_PointFlag & pointData.fFlags) { newP.setStrokeCap(SkPaint::kRound_Cap); } else { newP.setStrokeCap(SkPaint::kButt_Cap); } if (fDevice) { fDevice->drawPoints(*this, SkCanvas::kPoints_PointMode, pointData.fNumPoints, pointData.fPoints, newP); } else { this->drawPoints(SkCanvas::kPoints_PointMode, pointData.fNumPoints, pointData.fPoints, newP, forceUseDevice); } break; } else { // The rest of the dashed line must be drawn as rects SkASSERT(!(SkPathEffect::PointData::kCircles_PointFlag & pointData.fFlags)); SkRect r; for (int i = 0; i < pointData.fNumPoints; ++i) { r.set(pointData.fPoints[i].fX - pointData.fSize.fX, pointData.fPoints[i].fY - pointData.fSize.fY, pointData.fPoints[i].fX + pointData.fSize.fX, pointData.fPoints[i].fY + pointData.fSize.fY); if (fDevice) { fDevice->drawRect(*this, r, newP); } else { this->drawRect(r, newP); } } } break; } } // couldn't take fast path so fall through! case SkCanvas::kPolygon_PointMode: { count -= 1; SkPath path; SkPaint p(paint); p.setStyle(SkPaint::kStroke_Style); size_t inc = (SkCanvas::kLines_PointMode == mode) ? 2 : 1; path.setIsVolatile(true); for (size_t i = 0; i < count; i += inc) { path.moveTo(pts[i]); path.lineTo(pts[i+1]); if (fDevice) { fDevice->drawPath(*this, path, p, NULL, true); } else { this->drawPath(path, p, NULL, true); } path.rewind(); } break; } } } } static bool easy_rect_join(const SkPaint& paint, const SkMatrix& matrix, SkPoint* strokeSize) { if (SkPaint::kMiter_Join != paint.getStrokeJoin() || paint.getStrokeMiter() < SK_ScalarSqrt2) { return false; } SkASSERT(matrix.rectStaysRect()); SkPoint pt = { paint.getStrokeWidth(), paint.getStrokeWidth() }; matrix.mapVectors(strokeSize, &pt, 1); strokeSize->fX = SkScalarAbs(strokeSize->fX); strokeSize->fY = SkScalarAbs(strokeSize->fY); return true; } SkDraw::RectType SkDraw::ComputeRectType(const SkPaint& paint, const SkMatrix& matrix, SkPoint* strokeSize) { RectType rtype; const SkScalar width = paint.getStrokeWidth(); const bool zeroWidth = (0 == width); SkPaint::Style style = paint.getStyle(); if ((SkPaint::kStrokeAndFill_Style == style) && zeroWidth) { style = SkPaint::kFill_Style; } if (paint.getPathEffect() || paint.getMaskFilter() || paint.getRasterizer() || !matrix.rectStaysRect() || SkPaint::kStrokeAndFill_Style == style) { rtype = kPath_RectType; } else if (SkPaint::kFill_Style == style) { rtype = kFill_RectType; } else if (zeroWidth) { rtype = kHair_RectType; } else if (easy_rect_join(paint, matrix, strokeSize)) { rtype = kStroke_RectType; } else { rtype = kPath_RectType; } return rtype; } static const SkPoint* rect_points(const SkRect& r) { return SkTCast(&r); } static SkPoint* rect_points(SkRect& r) { return SkTCast(&r); } void SkDraw::drawRect(const SkRect& prePaintRect, const SkPaint& paint, const SkMatrix* paintMatrix, const SkRect* postPaintRect) const { SkDEBUGCODE(this->validate();) // nothing to draw if (fRC->isEmpty()) { return; } const SkMatrix* matrix; SkMatrix combinedMatrixStorage; if (paintMatrix) { SkASSERT(postPaintRect); combinedMatrixStorage.setConcat(*fMatrix, *paintMatrix); matrix = &combinedMatrixStorage; } else { SkASSERT(!postPaintRect); matrix = fMatrix; } SkPoint strokeSize; RectType rtype = ComputeRectType(paint, *fMatrix, &strokeSize); if (kPath_RectType == rtype) { SkDraw draw(*this); if (paintMatrix) { draw.fMatrix = matrix; } SkPath tmp; tmp.addRect(prePaintRect); tmp.setFillType(SkPath::kWinding_FillType); draw.drawPath(tmp, paint, NULL, true); return; } SkRect devRect; if (paintMatrix) { // skip the paintMatrix when transforming the rect by the CTM fMatrix->mapPoints(rect_points(devRect), rect_points(*postPaintRect), 2); } else { fMatrix->mapPoints(rect_points(devRect), rect_points(prePaintRect), 2); } // transform rect into devRect devRect.sort(); // look for the quick exit, before we build a blitter SkIRect ir = devRect.roundOut(); if (paint.getStyle() != SkPaint::kFill_Style) { // extra space for hairlines if (paint.getStrokeWidth() == 0) { ir.outset(1, 1); } else { SkScalar radius = SkScalarHalf(paint.getStrokeWidth()); ir.outset(radius, radius); } } if (fRC->quickReject(ir)) { return; } SkDeviceLooper looper(*fBitmap, *fRC, ir, paint.isAntiAlias()); while (looper.next()) { SkRect localDevRect; looper.mapRect(&localDevRect, devRect); SkMatrix localMatrix; looper.mapMatrix(&localMatrix, *matrix); SkAutoBlitterChoose blitterStorage(looper.getBitmap(), localMatrix, paint); const SkRasterClip& clip = looper.getRC(); SkBlitter* blitter = blitterStorage.get(); // we want to "fill" if we are kFill or kStrokeAndFill, since in the latter // case we are also hairline (if we've gotten to here), which devolves to // effectively just kFill switch (rtype) { case kFill_RectType: if (paint.isAntiAlias()) { SkScan::AntiFillRect(localDevRect, clip, blitter); } else { SkScan::FillRect(localDevRect, clip, blitter); } break; case kStroke_RectType: if (paint.isAntiAlias()) { SkScan::AntiFrameRect(localDevRect, strokeSize, clip, blitter); } else { SkScan::FrameRect(localDevRect, strokeSize, clip, blitter); } break; case kHair_RectType: if (paint.isAntiAlias()) { SkScan::AntiHairRect(localDevRect, clip, blitter); } else { SkScan::HairRect(localDevRect, clip, blitter); } break; default: SkDEBUGFAIL("bad rtype"); } } } void SkDraw::drawDevMask(const SkMask& srcM, const SkPaint& paint) const { if (srcM.fBounds.isEmpty()) { return; } const SkMask* mask = &srcM; SkMask dstM; if (paint.getMaskFilter() && paint.getMaskFilter()->filterMask(&dstM, srcM, *fMatrix, NULL)) { mask = &dstM; } else { dstM.fImage = NULL; } SkAutoMaskFreeImage ami(dstM.fImage); SkAutoBlitterChoose blitterChooser(*fBitmap, *fMatrix, paint); SkBlitter* blitter = blitterChooser.get(); SkAAClipBlitterWrapper wrapper; const SkRegion* clipRgn; if (fRC->isBW()) { clipRgn = &fRC->bwRgn(); } else { wrapper.init(*fRC, blitter); clipRgn = &wrapper.getRgn(); blitter = wrapper.getBlitter(); } blitter->blitMaskRegion(*mask, *clipRgn); } static SkScalar fast_len(const SkVector& vec) { SkScalar x = SkScalarAbs(vec.fX); SkScalar y = SkScalarAbs(vec.fY); if (x < y) { SkTSwap(x, y); } return x + SkScalarHalf(y); } static bool xfermodeSupportsCoverageAsAlpha(SkXfermode* xfer) { SkXfermode::Coeff dc; if (!SkXfermode::AsCoeff(xfer, NULL, &dc)) { return false; } switch (dc) { case SkXfermode::kOne_Coeff: case SkXfermode::kISA_Coeff: case SkXfermode::kISC_Coeff: return true; default: return false; } } bool SkDrawTreatAAStrokeAsHairline(SkScalar strokeWidth, const SkMatrix& matrix, SkScalar* coverage) { SkASSERT(strokeWidth > 0); // We need to try to fake a thick-stroke with a modulated hairline. if (matrix.hasPerspective()) { return false; } SkVector src[2], dst[2]; src[0].set(strokeWidth, 0); src[1].set(0, strokeWidth); matrix.mapVectors(dst, src, 2); SkScalar len0 = fast_len(dst[0]); SkScalar len1 = fast_len(dst[1]); if (len0 <= SK_Scalar1 && len1 <= SK_Scalar1) { if (coverage) { *coverage = SkScalarAve(len0, len1); } return true; } return false; } void SkDraw::drawRRect(const SkRRect& rrect, const SkPaint& paint) const { SkDEBUGCODE(this->validate()); if (fRC->isEmpty()) { return; } { // TODO: Investigate optimizing these options. They are in the same // order as SkDraw::drawPath, which handles each case. It may be // that there is no way to optimize for these using the SkRRect path. SkScalar coverage; if (SkDrawTreatAsHairline(paint, *fMatrix, &coverage)) { goto DRAW_PATH; } if (paint.getPathEffect() || paint.getStyle() != SkPaint::kFill_Style) { goto DRAW_PATH; } if (paint.getRasterizer()) { goto DRAW_PATH; } } if (paint.getMaskFilter()) { // Transform the rrect into device space. SkRRect devRRect; if (rrect.transform(*fMatrix, &devRRect)) { SkAutoBlitterChoose blitter(*fBitmap, *fMatrix, paint); if (paint.getMaskFilter()->filterRRect(devRRect, *fMatrix, *fRC, blitter.get(), SkPaint::kFill_Style)) { return; // filterRRect() called the blitter, so we're done } } } DRAW_PATH: // Now fall back to the default case of using a path. SkPath path; path.addRRect(rrect); this->drawPath(path, paint, NULL, true); } void SkDraw::drawPath(const SkPath& origSrcPath, const SkPaint& origPaint, const SkMatrix* prePathMatrix, bool pathIsMutable, bool drawCoverage, SkBlitter* customBlitter) const { SkDEBUGCODE(this->validate();) // nothing to draw if (fRC->isEmpty()) { return; } SkPath* pathPtr = (SkPath*)&origSrcPath; bool doFill = true; SkPath tmpPath; SkMatrix tmpMatrix; const SkMatrix* matrix = fMatrix; tmpPath.setIsVolatile(true); if (prePathMatrix) { if (origPaint.getPathEffect() || origPaint.getStyle() != SkPaint::kFill_Style || origPaint.getRasterizer()) { SkPath* result = pathPtr; if (!pathIsMutable) { result = &tmpPath; pathIsMutable = true; } pathPtr->transform(*prePathMatrix, result); pathPtr = result; } else { tmpMatrix.setConcat(*matrix, *prePathMatrix); matrix = &tmpMatrix; } } // at this point we're done with prePathMatrix SkDEBUGCODE(prePathMatrix = (const SkMatrix*)0x50FF8001;) SkTCopyOnFirstWrite paint(origPaint); { SkScalar coverage; if (SkDrawTreatAsHairline(origPaint, *matrix, &coverage)) { if (SK_Scalar1 == coverage) { paint.writable()->setStrokeWidth(0); } else if (xfermodeSupportsCoverageAsAlpha(origPaint.getXfermode())) { U8CPU newAlpha; #if 0 newAlpha = SkToU8(SkScalarRoundToInt(coverage * origPaint.getAlpha())); #else // this is the old technique, which we preserve for now so // we don't change previous results (testing) // the new way seems fine, its just (a tiny bit) different int scale = (int)SkScalarMul(coverage, 256); newAlpha = origPaint.getAlpha() * scale >> 8; #endif SkPaint* writablePaint = paint.writable(); writablePaint->setStrokeWidth(0); writablePaint->setAlpha(newAlpha); } } } if (paint->getPathEffect() || paint->getStyle() != SkPaint::kFill_Style) { SkRect cullRect; const SkRect* cullRectPtr = NULL; if (this->computeConservativeLocalClipBounds(&cullRect)) { cullRectPtr = &cullRect; } doFill = paint->getFillPath(*pathPtr, &tmpPath, cullRectPtr); pathPtr = &tmpPath; } if (paint->getRasterizer()) { SkMask mask; if (paint->getRasterizer()->rasterize(*pathPtr, *matrix, &fRC->getBounds(), paint->getMaskFilter(), &mask, SkMask::kComputeBoundsAndRenderImage_CreateMode)) { this->drawDevMask(mask, *paint); SkMask::FreeImage(mask.fImage); } return; } // avoid possibly allocating a new path in transform if we can SkPath* devPathPtr = pathIsMutable ? pathPtr : &tmpPath; // transform the path into device space pathPtr->transform(*matrix, devPathPtr); SkBlitter* blitter = NULL; SkAutoBlitterChoose blitterStorage; if (NULL == customBlitter) { blitterStorage.choose(*fBitmap, *fMatrix, *paint, drawCoverage); blitter = blitterStorage.get(); } else { blitter = customBlitter; } if (paint->getMaskFilter()) { SkPaint::Style style = doFill ? SkPaint::kFill_Style : SkPaint::kStroke_Style; if (paint->getMaskFilter()->filterPath(*devPathPtr, *fMatrix, *fRC, blitter, style)) { return; // filterPath() called the blitter, so we're done } } void (*proc)(const SkPath&, const SkRasterClip&, SkBlitter*); if (doFill) { if (paint->isAntiAlias()) { proc = SkScan::AntiFillPath; } else { proc = SkScan::FillPath; } } else { // hairline if (paint->isAntiAlias()) { proc = SkScan::AntiHairPath; } else { proc = SkScan::HairPath; } } proc(*devPathPtr, *fRC, blitter); } /** For the purposes of drawing bitmaps, if a matrix is "almost" translate go ahead and treat it as if it were, so that subsequent code can go fast. */ static bool just_translate(const SkMatrix& matrix, const SkBitmap& bitmap) { unsigned bits = 0; // TODO: find a way to allow the caller to tell us to // respect filtering. return SkTreatAsSprite(matrix, bitmap.width(), bitmap.height(), bits); } void SkDraw::drawBitmapAsMask(const SkBitmap& bitmap, const SkPaint& paint) const { SkASSERT(bitmap.colorType() == kAlpha_8_SkColorType); if (just_translate(*fMatrix, bitmap)) { int ix = SkScalarRoundToInt(fMatrix->getTranslateX()); int iy = SkScalarRoundToInt(fMatrix->getTranslateY()); SkAutoLockPixels alp(bitmap); if (!bitmap.readyToDraw()) { return; } SkMask mask; mask.fBounds.set(ix, iy, ix + bitmap.width(), iy + bitmap.height()); mask.fFormat = SkMask::kA8_Format; mask.fRowBytes = SkToU32(bitmap.rowBytes()); mask.fImage = bitmap.getAddr8(0, 0); this->drawDevMask(mask, paint); } else { // need to xform the bitmap first SkRect r; SkMask mask; r.set(0, 0, SkIntToScalar(bitmap.width()), SkIntToScalar(bitmap.height())); fMatrix->mapRect(&r); r.round(&mask.fBounds); // set the mask's bounds to the transformed bitmap-bounds, // clipped to the actual device { SkIRect devBounds; devBounds.set(0, 0, fBitmap->width(), fBitmap->height()); // need intersect(l, t, r, b) on irect if (!mask.fBounds.intersect(devBounds)) { return; } } mask.fFormat = SkMask::kA8_Format; mask.fRowBytes = SkAlign4(mask.fBounds.width()); size_t size = mask.computeImageSize(); if (0 == size) { // the mask is too big to allocated, draw nothing return; } // allocate (and clear) our temp buffer to hold the transformed bitmap SkAutoMalloc storage(size); mask.fImage = (uint8_t*)storage.get(); memset(mask.fImage, 0, size); // now draw our bitmap(src) into mask(dst), transformed by the matrix { SkBitmap device; device.installPixels(SkImageInfo::MakeA8(mask.fBounds.width(), mask.fBounds.height()), mask.fImage, mask.fRowBytes); SkCanvas c(device); // need the unclipped top/left for the translate c.translate(-SkIntToScalar(mask.fBounds.fLeft), -SkIntToScalar(mask.fBounds.fTop)); c.concat(*fMatrix); // We can't call drawBitmap, or we'll infinitely recurse. Instead // we manually build a shader and draw that into our new mask SkPaint tmpPaint; tmpPaint.setFlags(paint.getFlags()); SkAutoBitmapShaderInstall install(bitmap, tmpPaint); SkRect rr; rr.set(0, 0, SkIntToScalar(bitmap.width()), SkIntToScalar(bitmap.height())); c.drawRect(rr, install.paintWithShader()); } this->drawDevMask(mask, paint); } } static bool clipped_out(const SkMatrix& m, const SkRasterClip& c, const SkRect& srcR) { SkRect dstR; m.mapRect(&dstR, srcR); return c.quickReject(dstR.roundOut()); } static bool clipped_out(const SkMatrix& matrix, const SkRasterClip& clip, int width, int height) { SkRect r; r.set(0, 0, SkIntToScalar(width), SkIntToScalar(height)); return clipped_out(matrix, clip, r); } static bool clipHandlesSprite(const SkRasterClip& clip, int x, int y, const SkBitmap& bitmap) { return clip.isBW() || clip.quickContains(x, y, x + bitmap.width(), y + bitmap.height()); } void SkDraw::drawBitmap(const SkBitmap& bitmap, const SkMatrix& prematrix, const SkRect* dstBounds, const SkPaint& origPaint) const { SkDEBUGCODE(this->validate();) // nothing to draw if (fRC->isEmpty() || bitmap.width() == 0 || bitmap.height() == 0 || bitmap.colorType() == kUnknown_SkColorType) { return; } SkPaint paint(origPaint); paint.setStyle(SkPaint::kFill_Style); SkMatrix matrix; matrix.setConcat(*fMatrix, prematrix); if (clipped_out(matrix, *fRC, bitmap.width(), bitmap.height())) { return; } if (bitmap.colorType() != kAlpha_8_SkColorType && just_translate(matrix, bitmap)) { // // It is safe to call lock pixels now, since we know the matrix is // (more or less) identity. // SkAutoLockPixels alp(bitmap); if (!bitmap.readyToDraw()) { return; } int ix = SkScalarRoundToInt(matrix.getTranslateX()); int iy = SkScalarRoundToInt(matrix.getTranslateY()); if (clipHandlesSprite(*fRC, ix, iy, bitmap)) { SkTBlitterAllocator allocator; // blitter will be owned by the allocator. SkBlitter* blitter = SkBlitter::ChooseSprite(*fBitmap, paint, bitmap, ix, iy, &allocator); if (blitter) { SkIRect ir; ir.set(ix, iy, ix + bitmap.width(), iy + bitmap.height()); SkScan::FillIRect(ir, *fRC, blitter); return; } } } // now make a temp draw on the stack, and use it // SkDraw draw(*this); draw.fMatrix = &matrix; if (bitmap.colorType() == kAlpha_8_SkColorType) { draw.drawBitmapAsMask(bitmap, paint); } else { SkAutoBitmapShaderInstall install(bitmap, paint); const SkPaint& paintWithShader = install.paintWithShader(); const SkRect srcBounds = SkRect::MakeIWH(bitmap.width(), bitmap.height()); if (dstBounds) { this->drawRect(srcBounds, paintWithShader, &prematrix, dstBounds); } else { draw.drawRect(srcBounds, paintWithShader); } } } void SkDraw::drawSprite(const SkBitmap& bitmap, int x, int y, const SkPaint& origPaint) const { SkDEBUGCODE(this->validate();) // nothing to draw if (fRC->isEmpty() || bitmap.width() == 0 || bitmap.height() == 0 || bitmap.colorType() == kUnknown_SkColorType) { return; } SkIRect bounds; bounds.set(x, y, x + bitmap.width(), y + bitmap.height()); if (fRC->quickReject(bounds)) { return; // nothing to draw } SkPaint paint(origPaint); paint.setStyle(SkPaint::kFill_Style); if (NULL == paint.getColorFilter() && clipHandlesSprite(*fRC, x, y, bitmap)) { SkTBlitterAllocator allocator; // blitter will be owned by the allocator. SkBlitter* blitter = SkBlitter::ChooseSprite(*fBitmap, paint, bitmap, x, y, &allocator); if (blitter) { SkScan::FillIRect(bounds, *fRC, blitter); return; } } SkMatrix matrix; SkRect r; // get a scalar version of our rect r.set(bounds); // create shader with offset matrix.setTranslate(r.fLeft, r.fTop); SkAutoBitmapShaderInstall install(bitmap, paint, &matrix); const SkPaint& shaderPaint = install.paintWithShader(); SkDraw draw(*this); matrix.reset(); draw.fMatrix = &matrix; // call ourself with a rect // is this OK if paint has a rasterizer? draw.drawRect(r, shaderPaint); } /////////////////////////////////////////////////////////////////////////////// #include "SkScalerContext.h" #include "SkGlyphCache.h" #include "SkTextToPathIter.h" #include "SkUtils.h" static void measure_text(SkGlyphCache* cache, SkDrawCacheProc glyphCacheProc, const char text[], size_t byteLength, SkVector* stopVector) { SkFixed x = 0, y = 0; const char* stop = text + byteLength; SkAutoKern autokern; while (text < stop) { // don't need x, y here, since all subpixel variants will have the // same advance const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0); x += autokern.adjust(glyph) + glyph.fAdvanceX; y += glyph.fAdvanceY; } stopVector->set(SkFixedToScalar(x), SkFixedToScalar(y)); SkASSERT(text == stop); } bool SkDraw::ShouldDrawTextAsPaths(const SkPaint& paint, const SkMatrix& ctm) { // hairline glyphs are fast enough so we don't need to cache them if (SkPaint::kStroke_Style == paint.getStyle() && 0 == paint.getStrokeWidth()) { return true; } // we don't cache perspective if (ctm.hasPerspective()) { return true; } SkMatrix textM; return SkPaint::TooBigToUseCache(ctm, *paint.setTextMatrix(&textM)); } void SkDraw::drawText_asPaths(const char text[], size_t byteLength, SkScalar x, SkScalar y, const SkPaint& paint) const { SkDEBUGCODE(this->validate();) SkTextToPathIter iter(text, byteLength, paint, true); SkMatrix matrix; matrix.setScale(iter.getPathScale(), iter.getPathScale()); matrix.postTranslate(x, y); const SkPath* iterPath; SkScalar xpos, prevXPos = 0; while (iter.next(&iterPath, &xpos)) { matrix.postTranslate(xpos - prevXPos, 0); if (iterPath) { const SkPaint& pnt = iter.getPaint(); if (fDevice) { fDevice->drawPath(*this, *iterPath, pnt, &matrix, false); } else { this->drawPath(*iterPath, pnt, &matrix, false); } } prevXPos = xpos; } } // disable warning : local variable used without having been initialized #if defined _WIN32 && _MSC_VER >= 1300 #pragma warning ( push ) #pragma warning ( disable : 4701 ) #endif ////////////////////////////////////////////////////////////////////////////// static void D1G_RectClip(const SkDraw1Glyph& state, SkFixed fx, SkFixed fy, const SkGlyph& glyph) { int left = SkFixedFloorToInt(fx); int top = SkFixedFloorToInt(fy); SkASSERT(glyph.fWidth > 0 && glyph.fHeight > 0); SkASSERT((NULL == state.fClip && state.fAAClip) || (state.fClip && NULL == state.fAAClip && state.fClip->isRect())); left += glyph.fLeft; top += glyph.fTop; int right = left + glyph.fWidth; int bottom = top + glyph.fHeight; SkMask mask; SkIRect storage; SkIRect* bounds = &mask.fBounds; mask.fBounds.set(left, top, right, bottom); // this extra test is worth it, assuming that most of the time it succeeds // since we can avoid writing to storage if (!state.fClipBounds.containsNoEmptyCheck(left, top, right, bottom)) { if (!storage.intersectNoEmptyCheck(mask.fBounds, state.fClipBounds)) return; bounds = &storage; } uint8_t* aa = (uint8_t*)glyph.fImage; if (NULL == aa) { aa = (uint8_t*)state.fCache->findImage(glyph); if (NULL == aa) { return; // can't rasterize glyph } } mask.fRowBytes = glyph.rowBytes(); mask.fFormat = static_cast(glyph.fMaskFormat); mask.fImage = aa; state.blitMask(mask, *bounds); } static void D1G_RgnClip(const SkDraw1Glyph& state, SkFixed fx, SkFixed fy, const SkGlyph& glyph) { int left = SkFixedFloorToInt(fx); int top = SkFixedFloorToInt(fy); SkASSERT(glyph.fWidth > 0 && glyph.fHeight > 0); SkASSERT(!state.fClip->isRect()); SkMask mask; left += glyph.fLeft; top += glyph.fTop; mask.fBounds.set(left, top, left + glyph.fWidth, top + glyph.fHeight); SkRegion::Cliperator clipper(*state.fClip, mask.fBounds); if (!clipper.done()) { const SkIRect& cr = clipper.rect(); const uint8_t* aa = (const uint8_t*)glyph.fImage; if (NULL == aa) { aa = (uint8_t*)state.fCache->findImage(glyph); if (NULL == aa) { return; } } mask.fRowBytes = glyph.rowBytes(); mask.fFormat = static_cast(glyph.fMaskFormat); mask.fImage = (uint8_t*)aa; do { state.blitMask(mask, cr); clipper.next(); } while (!clipper.done()); } } static bool hasCustomD1GProc(const SkDraw& draw) { return draw.fProcs && draw.fProcs->fD1GProc; } static bool needsRasterTextBlit(const SkDraw& draw) { return !hasCustomD1GProc(draw); } SkDraw1Glyph::Proc SkDraw1Glyph::init(const SkDraw* draw, SkBlitter* blitter, SkGlyphCache* cache, const SkPaint& pnt) { fDraw = draw; fBlitter = blitter; fCache = cache; fPaint = &pnt; if (cache->isSubpixel()) { fHalfSampleX = fHalfSampleY = (SK_FixedHalf >> SkGlyph::kSubBits); } else { fHalfSampleX = fHalfSampleY = SK_FixedHalf; } if (hasCustomD1GProc(*draw)) { // todo: fix this assumption about clips w/ custom fClip = draw->fClip; fClipBounds = fClip->getBounds(); return draw->fProcs->fD1GProc; } if (draw->fRC->isBW()) { fAAClip = NULL; fClip = &draw->fRC->bwRgn(); fClipBounds = fClip->getBounds(); if (fClip->isRect()) { return D1G_RectClip; } else { return D1G_RgnClip; } } else { // aaclip fAAClip = &draw->fRC->aaRgn(); fClip = NULL; fClipBounds = fAAClip->getBounds(); return D1G_RectClip; } } void SkDraw1Glyph::blitMaskAsSprite(const SkMask& mask) const { SkASSERT(SkMask::kARGB32_Format == mask.fFormat); SkBitmap bm; bm.installPixels(SkImageInfo::MakeN32Premul(mask.fBounds.width(), mask.fBounds.height()), (SkPMColor*)mask.fImage, mask.fRowBytes); fDraw->drawSprite(bm, mask.fBounds.x(), mask.fBounds.y(), *fPaint); } /////////////////////////////////////////////////////////////////////////////// void SkDraw::drawText(const char text[], size_t byteLength, SkScalar x, SkScalar y, const SkPaint& paint) const { SkASSERT(byteLength == 0 || text != NULL); SkDEBUGCODE(this->validate();) // nothing to draw if (text == NULL || byteLength == 0 || fRC->isEmpty()) { return; } // SkScalarRec doesn't currently have a way of representing hairline stroke and // will fill if its frame-width is 0. if (ShouldDrawTextAsPaths(paint, *fMatrix)) { this->drawText_asPaths(text, byteLength, x, y, paint); return; } SkDrawCacheProc glyphCacheProc = paint.getDrawCacheProc(); SkAutoGlyphCache autoCache(paint, &fDevice->getLeakyProperties(), fMatrix); SkGlyphCache* cache = autoCache.getCache(); // transform our starting point { SkPoint loc; fMatrix->mapXY(x, y, &loc); x = loc.fX; y = loc.fY; } // need to measure first if (paint.getTextAlign() != SkPaint::kLeft_Align) { SkVector stop; measure_text(cache, glyphCacheProc, text, byteLength, &stop); SkScalar stopX = stop.fX; SkScalar stopY = stop.fY; if (paint.getTextAlign() == SkPaint::kCenter_Align) { stopX = SkScalarHalf(stopX); stopY = SkScalarHalf(stopY); } x -= stopX; y -= stopY; } const char* stop = text + byteLength; SkAAClipBlitter aaBlitter; SkAutoBlitterChoose blitterChooser; SkBlitter* blitter = NULL; if (needsRasterTextBlit(*this)) { blitterChooser.choose(*fBitmap, *fMatrix, paint); blitter = blitterChooser.get(); if (fRC->isAA()) { aaBlitter.init(blitter, &fRC->aaRgn()); blitter = &aaBlitter; } } SkAutoKern autokern; SkDraw1Glyph d1g; SkDraw1Glyph::Proc proc = d1g.init(this, blitter, cache, paint); SkFixed fxMask = ~0; SkFixed fyMask = ~0; if (cache->isSubpixel()) { SkAxisAlignment baseline = SkComputeAxisAlignmentForHText(*fMatrix); if (kX_SkAxisAlignment == baseline) { fyMask = 0; d1g.fHalfSampleY = SK_FixedHalf; } else if (kY_SkAxisAlignment == baseline) { fxMask = 0; d1g.fHalfSampleX = SK_FixedHalf; } } SkFixed fx = SkScalarToFixed(x) + d1g.fHalfSampleX; SkFixed fy = SkScalarToFixed(y) + d1g.fHalfSampleY; while (text < stop) { const SkGlyph& glyph = glyphCacheProc(cache, &text, fx & fxMask, fy & fyMask); fx += autokern.adjust(glyph); if (glyph.fWidth) { proc(d1g, fx, fy, glyph); } fx += glyph.fAdvanceX; fy += glyph.fAdvanceY; } } ////////////////////////////////////////////////////////////////////////////// void SkDraw::drawPosText_asPaths(const char text[], size_t byteLength, const SkScalar pos[], int scalarsPerPosition, const SkPoint& offset, const SkPaint& origPaint) const { // setup our std paint, in hopes of getting hits in the cache SkPaint paint(origPaint); SkScalar matrixScale = paint.setupForAsPaths(); SkMatrix matrix; matrix.setScale(matrixScale, matrixScale); // Temporarily jam in kFill, so we only ever ask for the raw outline from the cache. paint.setStyle(SkPaint::kFill_Style); paint.setPathEffect(NULL); SkDrawCacheProc glyphCacheProc = paint.getDrawCacheProc(); SkAutoGlyphCache autoCache(paint, NULL, NULL); SkGlyphCache* cache = autoCache.getCache(); const char* stop = text + byteLength; SkTextAlignProcScalar alignProc(paint.getTextAlign()); SkTextMapStateProc tmsProc(SkMatrix::I(), offset, scalarsPerPosition); // Now restore the original settings, so we "draw" with whatever style/stroking. paint.setStyle(origPaint.getStyle()); paint.setPathEffect(origPaint.getPathEffect()); while (text < stop) { const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0); if (glyph.fWidth) { const SkPath* path = cache->findPath(glyph); if (path) { SkPoint tmsLoc; tmsProc(pos, &tmsLoc); SkPoint loc; alignProc(tmsLoc, glyph, &loc); matrix[SkMatrix::kMTransX] = loc.fX; matrix[SkMatrix::kMTransY] = loc.fY; if (fDevice) { fDevice->drawPath(*this, *path, paint, &matrix, false); } else { this->drawPath(*path, paint, &matrix, false); } } } pos += scalarsPerPosition; } } void SkDraw::drawPosText(const char text[], size_t byteLength, const SkScalar pos[], int scalarsPerPosition, const SkPoint& offset, const SkPaint& paint) const { SkASSERT(byteLength == 0 || text != NULL); SkASSERT(1 == scalarsPerPosition || 2 == scalarsPerPosition); SkDEBUGCODE(this->validate();) // nothing to draw if (text == NULL || byteLength == 0 || fRC->isEmpty()) { return; } if (ShouldDrawTextAsPaths(paint, *fMatrix)) { this->drawPosText_asPaths(text, byteLength, pos, scalarsPerPosition, offset, paint); return; } SkDrawCacheProc glyphCacheProc = paint.getDrawCacheProc(); SkAutoGlyphCache autoCache(paint, &fDevice->getLeakyProperties(), fMatrix); SkGlyphCache* cache = autoCache.getCache(); SkAAClipBlitterWrapper wrapper; SkAutoBlitterChoose blitterChooser; SkBlitter* blitter = NULL; if (needsRasterTextBlit(*this)) { blitterChooser.choose(*fBitmap, *fMatrix, paint); blitter = blitterChooser.get(); if (fRC->isAA()) { wrapper.init(*fRC, blitter); blitter = wrapper.getBlitter(); } } const char* stop = text + byteLength; SkTextAlignProc alignProc(paint.getTextAlign()); SkDraw1Glyph d1g; SkDraw1Glyph::Proc proc = d1g.init(this, blitter, cache, paint); SkTextMapStateProc tmsProc(*fMatrix, offset, scalarsPerPosition); if (cache->isSubpixel()) { // maybe we should skip the rounding if linearText is set SkAxisAlignment baseline = SkComputeAxisAlignmentForHText(*fMatrix); SkFixed fxMask = ~0; SkFixed fyMask = ~0; if (kX_SkAxisAlignment == baseline) { fyMask = 0; d1g.fHalfSampleY = SK_FixedHalf; } else if (kY_SkAxisAlignment == baseline) { fxMask = 0; d1g.fHalfSampleX = SK_FixedHalf; } if (SkPaint::kLeft_Align == paint.getTextAlign()) { while (text < stop) { SkPoint tmsLoc; tmsProc(pos, &tmsLoc); SkFixed fx = SkScalarToFixed(tmsLoc.fX) + d1g.fHalfSampleX; SkFixed fy = SkScalarToFixed(tmsLoc.fY) + d1g.fHalfSampleY; const SkGlyph& glyph = glyphCacheProc(cache, &text, fx & fxMask, fy & fyMask); if (glyph.fWidth) { proc(d1g, fx, fy, glyph); } pos += scalarsPerPosition; } } else { while (text < stop) { const char* currentText = text; const SkGlyph& metricGlyph = glyphCacheProc(cache, &text, 0, 0); if (metricGlyph.fWidth) { SkDEBUGCODE(SkFixed prevAdvX = metricGlyph.fAdvanceX;) SkDEBUGCODE(SkFixed prevAdvY = metricGlyph.fAdvanceY;) SkPoint tmsLoc; tmsProc(pos, &tmsLoc); SkIPoint fixedLoc; alignProc(tmsLoc, metricGlyph, &fixedLoc); SkFixed fx = fixedLoc.fX + d1g.fHalfSampleX; SkFixed fy = fixedLoc.fY + d1g.fHalfSampleY; // have to call again, now that we've been "aligned" const SkGlyph& glyph = glyphCacheProc(cache, ¤tText, fx & fxMask, fy & fyMask); // the assumption is that the metrics haven't changed SkASSERT(prevAdvX == glyph.fAdvanceX); SkASSERT(prevAdvY == glyph.fAdvanceY); SkASSERT(glyph.fWidth); proc(d1g, fx, fy, glyph); } pos += scalarsPerPosition; } } } else { // not subpixel if (SkPaint::kLeft_Align == paint.getTextAlign()) { while (text < stop) { // the last 2 parameters are ignored const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0); if (glyph.fWidth) { SkPoint tmsLoc; tmsProc(pos, &tmsLoc); proc(d1g, SkScalarToFixed(tmsLoc.fX) + SK_FixedHalf, //d1g.fHalfSampleX, SkScalarToFixed(tmsLoc.fY) + SK_FixedHalf, //d1g.fHalfSampleY, glyph); } pos += scalarsPerPosition; } } else { while (text < stop) { // the last 2 parameters are ignored const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0); if (glyph.fWidth) { SkPoint tmsLoc; tmsProc(pos, &tmsLoc); SkIPoint fixedLoc; alignProc(tmsLoc, glyph, &fixedLoc); proc(d1g, fixedLoc.fX + SK_FixedHalf, //d1g.fHalfSampleX, fixedLoc.fY + SK_FixedHalf, //d1g.fHalfSampleY, glyph); } pos += scalarsPerPosition; } } } } #if defined _WIN32 && _MSC_VER >= 1300 #pragma warning ( pop ) #endif /////////////////////////////////////////////////////////////////////////////// #include "SkPathMeasure.h" static void morphpoints(SkPoint dst[], const SkPoint src[], int count, SkPathMeasure& meas, const SkMatrix& matrix) { SkMatrix::MapXYProc proc = matrix.getMapXYProc(); for (int i = 0; i < count; i++) { SkPoint pos; SkVector tangent; proc(matrix, src[i].fX, src[i].fY, &pos); SkScalar sx = pos.fX; SkScalar sy = pos.fY; if (!meas.getPosTan(sx, &pos, &tangent)) { // set to 0 if the measure failed, so that we just set dst == pos tangent.set(0, 0); } /* This is the old way (that explains our approach but is way too slow SkMatrix matrix; SkPoint pt; pt.set(sx, sy); matrix.setSinCos(tangent.fY, tangent.fX); matrix.preTranslate(-sx, 0); matrix.postTranslate(pos.fX, pos.fY); matrix.mapPoints(&dst[i], &pt, 1); */ dst[i].set(pos.fX - SkScalarMul(tangent.fY, sy), pos.fY + SkScalarMul(tangent.fX, sy)); } } /* TODO Need differentially more subdivisions when the follow-path is curvy. Not sure how to determine that, but we need it. I guess a cheap answer is let the caller tell us, but that seems like a cop-out. Another answer is to get Rob Johnson to figure it out. */ static void morphpath(SkPath* dst, const SkPath& src, SkPathMeasure& meas, const SkMatrix& matrix) { SkPath::Iter iter(src, false); SkPoint srcP[4], dstP[3]; SkPath::Verb verb; while ((verb = iter.next(srcP)) != SkPath::kDone_Verb) { switch (verb) { case SkPath::kMove_Verb: morphpoints(dstP, srcP, 1, meas, matrix); dst->moveTo(dstP[0]); break; case SkPath::kLine_Verb: // turn lines into quads to look bendy srcP[0].fX = SkScalarAve(srcP[0].fX, srcP[1].fX); srcP[0].fY = SkScalarAve(srcP[0].fY, srcP[1].fY); morphpoints(dstP, srcP, 2, meas, matrix); dst->quadTo(dstP[0], dstP[1]); break; case SkPath::kQuad_Verb: morphpoints(dstP, &srcP[1], 2, meas, matrix); dst->quadTo(dstP[0], dstP[1]); break; case SkPath::kCubic_Verb: morphpoints(dstP, &srcP[1], 3, meas, matrix); dst->cubicTo(dstP[0], dstP[1], dstP[2]); break; case SkPath::kClose_Verb: dst->close(); break; default: SkDEBUGFAIL("unknown verb"); break; } } } void SkDraw::drawTextOnPath(const char text[], size_t byteLength, const SkPath& follow, const SkMatrix* matrix, const SkPaint& paint) const { SkASSERT(byteLength == 0 || text != NULL); // nothing to draw if (text == NULL || byteLength == 0 || fRC->isEmpty()) { return; } SkTextToPathIter iter(text, byteLength, paint, true); SkPathMeasure meas(follow, false); SkScalar hOffset = 0; // need to measure first if (paint.getTextAlign() != SkPaint::kLeft_Align) { SkScalar pathLen = meas.getLength(); if (paint.getTextAlign() == SkPaint::kCenter_Align) { pathLen = SkScalarHalf(pathLen); } hOffset += pathLen; } const SkPath* iterPath; SkScalar xpos; SkMatrix scaledMatrix; SkScalar scale = iter.getPathScale(); scaledMatrix.setScale(scale, scale); while (iter.next(&iterPath, &xpos)) { if (iterPath) { SkPath tmp; SkMatrix m(scaledMatrix); tmp.setIsVolatile(true); m.postTranslate(xpos + hOffset, 0); if (matrix) { m.postConcat(*matrix); } morphpath(&tmp, *iterPath, meas, m); if (fDevice) { fDevice->drawPath(*this, tmp, iter.getPaint(), NULL, true); } else { this->drawPath(tmp, iter.getPaint(), NULL, true); } } } } /////////////////////////////////////////////////////////////////////////////// typedef void (*HairProc)(const SkPoint&, const SkPoint&, const SkRasterClip&, SkBlitter*); static HairProc ChooseHairProc(bool doAntiAlias) { return doAntiAlias ? SkScan::AntiHairLine : SkScan::HairLine; } static bool texture_to_matrix(const VertState& state, const SkPoint verts[], const SkPoint texs[], SkMatrix* matrix) { SkPoint src[3], dst[3]; src[0] = texs[state.f0]; src[1] = texs[state.f1]; src[2] = texs[state.f2]; dst[0] = verts[state.f0]; dst[1] = verts[state.f1]; dst[2] = verts[state.f2]; return matrix->setPolyToPoly(src, dst, 3); } class SkTriColorShader : public SkShader { public: SkTriColorShader() {} size_t contextSize() const SK_OVERRIDE; class TriColorShaderContext : public SkShader::Context { public: TriColorShaderContext(const SkTriColorShader& shader, const ContextRec&); virtual ~TriColorShaderContext(); bool setup(const SkPoint pts[], const SkColor colors[], int, int, int); void shadeSpan(int x, int y, SkPMColor dstC[], int count) SK_OVERRIDE; private: SkMatrix fDstToUnit; SkPMColor fColors[3]; typedef SkShader::Context INHERITED; }; SK_TO_STRING_OVERRIDE() // For serialization. This will never be called. Factory getFactory() const SK_OVERRIDE { sk_throw(); return NULL; } protected: Context* onCreateContext(const ContextRec& rec, void* storage) const SK_OVERRIDE { return SkNEW_PLACEMENT_ARGS(storage, TriColorShaderContext, (*this, rec)); } private: typedef SkShader INHERITED; }; bool SkTriColorShader::TriColorShaderContext::setup(const SkPoint pts[], const SkColor colors[], int index0, int index1, int index2) { fColors[0] = SkPreMultiplyColor(colors[index0]); fColors[1] = SkPreMultiplyColor(colors[index1]); fColors[2] = SkPreMultiplyColor(colors[index2]); SkMatrix m, im; m.reset(); m.set(0, pts[index1].fX - pts[index0].fX); m.set(1, pts[index2].fX - pts[index0].fX); m.set(2, pts[index0].fX); m.set(3, pts[index1].fY - pts[index0].fY); m.set(4, pts[index2].fY - pts[index0].fY); m.set(5, pts[index0].fY); if (!m.invert(&im)) { return false; } // We can't call getTotalInverse(), because we explicitly don't want to look at the localmatrix // as our interators are intrinsically tied to the vertices, and nothing else. SkMatrix ctmInv; if (!this->getCTM().invert(&ctmInv)) { return false; } fDstToUnit.setConcat(im, ctmInv); return true; } #include "SkColorPriv.h" #include "SkComposeShader.h" static int ScalarTo256(SkScalar v) { int scale = SkScalarToFixed(v) >> 8; if (scale < 0) { scale = 0; } if (scale > 255) { scale = 255; } return SkAlpha255To256(scale); } SkTriColorShader::TriColorShaderContext::TriColorShaderContext(const SkTriColorShader& shader, const ContextRec& rec) : INHERITED(shader, rec) {} SkTriColorShader::TriColorShaderContext::~TriColorShaderContext() {} size_t SkTriColorShader::contextSize() const { return sizeof(TriColorShaderContext); } void SkTriColorShader::TriColorShaderContext::shadeSpan(int x, int y, SkPMColor dstC[], int count) { const int alphaScale = Sk255To256(this->getPaintAlpha()); SkPoint src; for (int i = 0; i < count; i++) { fDstToUnit.mapXY(SkIntToScalar(x), SkIntToScalar(y), &src); x += 1; int scale1 = ScalarTo256(src.fX); int scale2 = ScalarTo256(src.fY); int scale0 = 256 - scale1 - scale2; if (scale0 < 0) { if (scale1 > scale2) { scale2 = 256 - scale1; } else { scale1 = 256 - scale2; } scale0 = 0; } if (256 != alphaScale) { scale0 = SkAlphaMul(scale0, alphaScale); scale1 = SkAlphaMul(scale1, alphaScale); scale2 = SkAlphaMul(scale2, alphaScale); } dstC[i] = SkAlphaMulQ(fColors[0], scale0) + SkAlphaMulQ(fColors[1], scale1) + SkAlphaMulQ(fColors[2], scale2); } } #ifndef SK_IGNORE_TO_STRING void SkTriColorShader::toString(SkString* str) const { str->append("SkTriColorShader: ("); this->INHERITED::toString(str); str->append(")"); } #endif void SkDraw::drawVertices(SkCanvas::VertexMode vmode, int count, const SkPoint vertices[], const SkPoint textures[], const SkColor colors[], SkXfermode* xmode, const uint16_t indices[], int indexCount, const SkPaint& paint) const { SkASSERT(0 == count || vertices); // abort early if there is nothing to draw if (count < 3 || (indices && indexCount < 3) || fRC->isEmpty()) { return; } // transform out vertices into device coordinates SkAutoSTMalloc<16, SkPoint> storage(count); SkPoint* devVerts = storage.get(); fMatrix->mapPoints(devVerts, vertices, count); /* We can draw the vertices in 1 of 4 ways: - solid color (no shader/texture[], no colors[]) - just colors (no shader/texture[], has colors[]) - just texture (has shader/texture[], no colors[]) - colors * texture (has shader/texture[], has colors[]) Thus for texture drawing, we need both texture[] and a shader. */ SkTriColorShader triShader; // must be above declaration of p SkPaint p(paint); SkShader* shader = p.getShader(); if (NULL == shader) { // if we have no shader, we ignore the texture coordinates textures = NULL; } else if (NULL == textures) { // if we don't have texture coordinates, ignore the shader p.setShader(NULL); shader = NULL; } // setup the custom shader (if needed) SkAutoTUnref composeShader; if (colors) { if (NULL == textures) { // just colors (no texture) shader = p.setShader(&triShader); } else { // colors * texture SkASSERT(shader); bool releaseMode = false; if (NULL == xmode) { xmode = SkXfermode::Create(SkXfermode::kModulate_Mode); releaseMode = true; } composeShader.reset(SkNEW_ARGS(SkComposeShader, (&triShader, shader, xmode))); p.setShader(composeShader); if (releaseMode) { xmode->unref(); } } } SkAutoBlitterChoose blitter(*fBitmap, *fMatrix, p); // Abort early if we failed to create a shader context. if (blitter->isNullBlitter()) { return; } // setup our state and function pointer for iterating triangles VertState state(count, indices, indexCount); VertState::Proc vertProc = state.chooseProc(vmode); if (textures || colors) { while (vertProc(&state)) { if (textures) { SkMatrix tempM; if (texture_to_matrix(state, vertices, textures, &tempM)) { SkShader::ContextRec rec(*fBitmap, p, *fMatrix); rec.fLocalMatrix = &tempM; if (!blitter->resetShaderContext(rec)) { continue; } } } if (colors) { // Find the context for triShader. SkTriColorShader::TriColorShaderContext* triColorShaderContext; SkShader::Context* shaderContext = blitter->getShaderContext(); SkASSERT(shaderContext); if (p.getShader() == &triShader) { triColorShaderContext = static_cast(shaderContext); } else { // The shader is a compose shader and triShader is its first shader. SkASSERT(p.getShader() == composeShader); SkASSERT(composeShader->getShaderA() == &triShader); SkComposeShader::ComposeShaderContext* composeShaderContext = static_cast(shaderContext); SkShader::Context* shaderContextA = composeShaderContext->getShaderContextA(); triColorShaderContext = static_cast(shaderContextA); } if (!triColorShaderContext->setup(vertices, colors, state.f0, state.f1, state.f2)) { continue; } } SkPoint tmp[] = { devVerts[state.f0], devVerts[state.f1], devVerts[state.f2] }; SkScan::FillTriangle(tmp, *fRC, blitter.get()); } } else { // no colors[] and no texture, stroke hairlines with paint's color. HairProc hairProc = ChooseHairProc(paint.isAntiAlias()); const SkRasterClip& clip = *fRC; while (vertProc(&state)) { hairProc(devVerts[state.f0], devVerts[state.f1], clip, blitter.get()); hairProc(devVerts[state.f1], devVerts[state.f2], clip, blitter.get()); hairProc(devVerts[state.f2], devVerts[state.f0], clip, blitter.get()); } } } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// #ifdef SK_DEBUG void SkDraw::validate() const { SkASSERT(fBitmap != NULL); SkASSERT(fMatrix != NULL); SkASSERT(fClip != NULL); SkASSERT(fRC != NULL); const SkIRect& cr = fRC->getBounds(); SkIRect br; br.set(0, 0, fBitmap->width(), fBitmap->height()); SkASSERT(cr.isEmpty() || br.contains(cr)); } #endif //////////////////////////////////////////////////////////////////////////////////////////////// #include "SkPath.h" #include "SkDraw.h" #include "SkRegion.h" #include "SkBlitter.h" static bool compute_bounds(const SkPath& devPath, const SkIRect* clipBounds, const SkMaskFilter* filter, const SkMatrix* filterMatrix, SkIRect* bounds) { if (devPath.isEmpty()) { return false; } // init our bounds from the path { SkRect pathBounds = devPath.getBounds(); pathBounds.inset(-SK_ScalarHalf, -SK_ScalarHalf); pathBounds.roundOut(bounds); } SkIPoint margin = SkIPoint::Make(0, 0); if (filter) { SkASSERT(filterMatrix); SkMask srcM, dstM; srcM.fBounds = *bounds; srcM.fFormat = SkMask::kA8_Format; srcM.fImage = NULL; if (!filter->filterMask(&dstM, srcM, *filterMatrix, &margin)) { return false; } } // (possibly) trim the bounds to reflect the clip // (plus whatever slop the filter needs) if (clipBounds) { SkIRect tmp = *clipBounds; // Ugh. Guard against gigantic margins from wacky filters. Without this // check we can request arbitrary amounts of slop beyond our visible // clip, and bring down the renderer (at least on finite RAM machines // like handsets, etc.). Need to balance this invented value between // quality of large filters like blurs, and the corresponding memory // requests. static const int MAX_MARGIN = 128; tmp.inset(-SkMin32(margin.fX, MAX_MARGIN), -SkMin32(margin.fY, MAX_MARGIN)); if (!bounds->intersect(tmp)) { return false; } } return true; } static void draw_into_mask(const SkMask& mask, const SkPath& devPath, SkPaint::Style style) { SkBitmap bm; SkDraw draw; SkRasterClip clip; SkMatrix matrix; SkPaint paint; bm.installPixels(SkImageInfo::MakeA8(mask.fBounds.width(), mask.fBounds.height()), mask.fImage, mask.fRowBytes); clip.setRect(SkIRect::MakeWH(mask.fBounds.width(), mask.fBounds.height())); matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft), -SkIntToScalar(mask.fBounds.fTop)); draw.fBitmap = &bm; draw.fRC = &clip; draw.fClip = &clip.bwRgn(); draw.fMatrix = &matrix; paint.setAntiAlias(true); paint.setStyle(style); draw.drawPath(devPath, paint); } bool SkDraw::DrawToMask(const SkPath& devPath, const SkIRect* clipBounds, const SkMaskFilter* filter, const SkMatrix* filterMatrix, SkMask* mask, SkMask::CreateMode mode, SkPaint::Style style) { if (SkMask::kJustRenderImage_CreateMode != mode) { if (!compute_bounds(devPath, clipBounds, filter, filterMatrix, &mask->fBounds)) return false; } if (SkMask::kComputeBoundsAndRenderImage_CreateMode == mode) { mask->fFormat = SkMask::kA8_Format; mask->fRowBytes = mask->fBounds.width(); size_t size = mask->computeImageSize(); if (0 == size) { // we're too big to allocate the mask, abort return false; } mask->fImage = SkMask::AllocImage(size); memset(mask->fImage, 0, mask->computeImageSize()); } if (SkMask::kJustComputeBounds_CreateMode != mode) { draw_into_mask(*mask, devPath, style); } return true; }