/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #define __STDC_LIMIT_MACROS #include "SkDraw.h" #include "SkBlitter.h" #include "SkCanvas.h" #include "SkColorPriv.h" #include "SkDevice.h" #include "SkDeviceLooper.h" #include "SkFindAndPlaceGlyph.h" #include "SkFixed.h" #include "SkMaskFilter.h" #include "SkMatrix.h" #include "SkPaint.h" #include "SkPathEffect.h" #include "SkRasterClip.h" #include "SkRasterizer.h" #include "SkRRect.h" #include "SkScan.h" #include "SkShader.h" #include "SkSmallAllocator.h" #include "SkString.h" #include "SkStroke.h" #include "SkStrokeRec.h" #include "SkTemplates.h" #include "SkTextMapStateProc.h" #include "SkTLazy.h" #include "SkUtils.h" #include "SkVertState.h" #include "SkXfermode.h" #include "SkBitmapProcShader.h" #include "SkDrawProcs.h" #include "SkMatrixUtils.h" //#define TRACE_BITMAP_DRAWS // Helper function to fix code gen bug on ARM64. // See SkFindAndPlaceGlyph.h for more details. void FixGCC49Arm64Bug(int v) { } /** Helper for allocating small blitters on the stack. */ class SkAutoBlitterChoose : SkNoncopyable { public: SkAutoBlitterChoose() { fBlitter = nullptr; } SkAutoBlitterChoose(const SkPixmap& dst, const SkMatrix& matrix, const SkPaint& paint, bool drawCoverage = false) { fBlitter = SkBlitter::Choose(dst, matrix, paint, &fAllocator, drawCoverage); } SkBlitter* operator->() { return fBlitter; } SkBlitter* get() const { return fBlitter; } void choose(const SkPixmap& dst, const SkMatrix& matrix, const SkPaint& paint, bool drawCoverage = false) { SkASSERT(!fBlitter); fBlitter = SkBlitter::Choose(dst, matrix, paint, &fAllocator, drawCoverage); } private: // Owned by fAllocator, which will handle the delete. SkBlitter* fBlitter; SkTBlitterAllocator fAllocator; }; #define SkAutoBlitterChoose(...) SK_REQUIRE_LOCAL_VAR(SkAutoBlitterChoose) /** * Since we are providing the storage for the shader (to avoid the perf cost * of calling new) we insist that in our destructor we can account for all * owners of the shader. */ class SkAutoBitmapShaderInstall : SkNoncopyable { public: SkAutoBitmapShaderInstall(const SkBitmap& src, const SkPaint& paint, const SkMatrix* localMatrix = nullptr) : fPaint(paint) /* makes a copy of the paint */ { fPaint.setShader(SkMakeBitmapShader(src, SkShader::kClamp_TileMode, SkShader::kClamp_TileMode, localMatrix, &fAllocator)); // we deliberately left the shader with an owner-count of 2 fPaint.getShader()->ref(); SkASSERT(2 == fPaint.getShader()->getRefCnt()); } ~SkAutoBitmapShaderInstall() { // since fAllocator will destroy shader, we insist that owners == 2 SkASSERT(2 == fPaint.getShader()->getRefCnt()); fPaint.setShader(nullptr); // unref the shader by 1 } // return the new paint that has the shader applied const SkPaint& paintWithShader() const { return fPaint; } private: // copy of caller's paint (which we then modify) SkPaint fPaint; // Stores the shader. SkTBlitterAllocator fAllocator; }; #define SkAutoBitmapShaderInstall(...) SK_REQUIRE_LOCAL_VAR(SkAutoBitmapShaderInstall) /////////////////////////////////////////////////////////////////////////////// SkDraw::SkDraw() { sk_bzero(this, sizeof(*this)); } SkDraw::SkDraw(const SkDraw& src) { memcpy(this, &src, sizeof(*this)); } bool SkDraw::computeConservativeLocalClipBounds(SkRect* localBounds) const { if (fRC->isEmpty()) { return false; } SkMatrix inverse; if (!fMatrix->invert(&inverse)) { return false; } SkIRect devBounds = fRC->getBounds(); // outset to have slop for antialasing and hairlines devBounds.outset(1, 1); inverse.mapRect(localBounds, SkRect::Make(devBounds)); return true; } /////////////////////////////////////////////////////////////////////////////// typedef void (*BitmapXferProc)(void* pixels, size_t bytes, uint32_t data); static void D_Clear_BitmapXferProc(void* pixels, size_t bytes, uint32_t) { sk_bzero(pixels, bytes); } static void D_Dst_BitmapXferProc(void*, size_t, uint32_t data) {} static void D32_Src_BitmapXferProc(void* pixels, size_t bytes, uint32_t data) { sk_memset32((uint32_t*)pixels, data, SkToInt(bytes >> 2)); } static void D16_Src_BitmapXferProc(void* pixels, size_t bytes, uint32_t data) { sk_memset16((uint16_t*)pixels, data, SkToInt(bytes >> 1)); } static void DA8_Src_BitmapXferProc(void* pixels, size_t bytes, uint32_t data) { memset(pixels, data, bytes); } static BitmapXferProc ChooseBitmapXferProc(const SkPixmap& dst, const SkPaint& paint, uint32_t* data) { // todo: we can apply colorfilter up front if no shader, so we wouldn't // need to abort this fastpath if (paint.getShader() || paint.getColorFilter()) { return nullptr; } SkXfermode::Mode mode; if (!SkXfermode::AsMode(paint.getXfermode(), &mode)) { return nullptr; } SkColor color = paint.getColor(); // collaps modes based on color... if (SkXfermode::kSrcOver_Mode == mode) { unsigned alpha = SkColorGetA(color); if (0 == alpha) { mode = SkXfermode::kDst_Mode; } else if (0xFF == alpha) { mode = SkXfermode::kSrc_Mode; } } switch (mode) { case SkXfermode::kClear_Mode: // SkDebugf("--- D_Clear_BitmapXferProc\n"); return D_Clear_BitmapXferProc; // ignore data case SkXfermode::kDst_Mode: // SkDebugf("--- D_Dst_BitmapXferProc\n"); return D_Dst_BitmapXferProc; // ignore data case SkXfermode::kSrc_Mode: { /* should I worry about dithering for the lower depths? */ SkPMColor pmc = SkPreMultiplyColor(color); switch (dst.colorType()) { case kN32_SkColorType: if (data) { *data = pmc; } // SkDebugf("--- D32_Src_BitmapXferProc\n"); return D32_Src_BitmapXferProc; case kRGB_565_SkColorType: if (data) { *data = SkPixel32ToPixel16(pmc); } // SkDebugf("--- D16_Src_BitmapXferProc\n"); return D16_Src_BitmapXferProc; case kAlpha_8_SkColorType: if (data) { *data = SkGetPackedA32(pmc); } // SkDebugf("--- DA8_Src_BitmapXferProc\n"); return DA8_Src_BitmapXferProc; default: break; } break; } default: break; } return nullptr; } static void CallBitmapXferProc(const SkPixmap& dst, const SkIRect& rect, BitmapXferProc proc, uint32_t procData) { int shiftPerPixel; switch (dst.colorType()) { case kN32_SkColorType: shiftPerPixel = 2; break; case kRGB_565_SkColorType: shiftPerPixel = 1; break; case kAlpha_8_SkColorType: shiftPerPixel = 0; break; default: SkDEBUGFAIL("Can't use xferproc on this config"); return; } uint8_t* pixels = (uint8_t*)dst.writable_addr(); SkASSERT(pixels); const size_t rowBytes = dst.rowBytes(); const int widthBytes = rect.width() << shiftPerPixel; // skip down to the first scanline and X position pixels += rect.fTop * rowBytes + (rect.fLeft << shiftPerPixel); for (int scans = rect.height() - 1; scans >= 0; --scans) { proc(pixels, widthBytes, procData); pixels += rowBytes; } } void SkDraw::drawPaint(const SkPaint& paint) const { SkDEBUGCODE(this->validate();) if (fRC->isEmpty()) { return; } SkIRect devRect; devRect.set(0, 0, fDst.width(), fDst.height()); if (fRC->isBW()) { /* If we don't have a shader (i.e. we're just a solid color) we may be faster to operate directly on the device bitmap, rather than invoking a blitter. Esp. true for xfermodes, which require a colorshader to be present, which is just redundant work. Since we're drawing everywhere in the clip, we don't have to worry about antialiasing. */ uint32_t procData = 0; // to avoid the warning BitmapXferProc proc = ChooseBitmapXferProc(fDst, paint, &procData); if (proc) { if (D_Dst_BitmapXferProc == proc) { // nothing to do return; } SkRegion::Iterator iter(fRC->bwRgn()); while (!iter.done()) { CallBitmapXferProc(fDst, iter.rect(), proc, procData); iter.next(); } return; } } // normal case: use a blitter SkAutoBlitterChoose blitter(fDst, *fMatrix, paint); SkScan::FillIRect(devRect, *fRC, blitter.get()); } /////////////////////////////////////////////////////////////////////////////// struct PtProcRec { SkCanvas::PointMode fMode; const SkPaint* fPaint; const SkRegion* fClip; const SkRasterClip* fRC; // computed values SkFixed fRadius; typedef void (*Proc)(const PtProcRec&, const SkPoint devPts[], int count, SkBlitter*); bool init(SkCanvas::PointMode, const SkPaint&, const SkMatrix* matrix, const SkRasterClip*); Proc chooseProc(SkBlitter** blitter); private: SkAAClipBlitterWrapper fWrapper; }; static void bw_pt_rect_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { SkASSERT(rec.fClip->isRect()); const SkIRect& r = rec.fClip->getBounds(); for (int i = 0; i < count; i++) { int x = SkScalarFloorToInt(devPts[i].fX); int y = SkScalarFloorToInt(devPts[i].fY); if (r.contains(x, y)) { blitter->blitH(x, y, 1); } } } static void bw_pt_rect_16_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { SkASSERT(rec.fRC->isRect()); const SkIRect& r = rec.fRC->getBounds(); uint32_t value; const SkPixmap* dst = blitter->justAnOpaqueColor(&value); SkASSERT(dst); uint16_t* addr = dst->writable_addr16(0, 0); size_t rb = dst->rowBytes(); for (int i = 0; i < count; i++) { int x = SkScalarFloorToInt(devPts[i].fX); int y = SkScalarFloorToInt(devPts[i].fY); if (r.contains(x, y)) { ((uint16_t*)((char*)addr + y * rb))[x] = SkToU16(value); } } } static void bw_pt_rect_32_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { SkASSERT(rec.fRC->isRect()); const SkIRect& r = rec.fRC->getBounds(); uint32_t value; const SkPixmap* dst = blitter->justAnOpaqueColor(&value); SkASSERT(dst); SkPMColor* addr = dst->writable_addr32(0, 0); size_t rb = dst->rowBytes(); for (int i = 0; i < count; i++) { int x = SkScalarFloorToInt(devPts[i].fX); int y = SkScalarFloorToInt(devPts[i].fY); if (r.contains(x, y)) { ((SkPMColor*)((char*)addr + y * rb))[x] = value; } } } static void bw_pt_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { for (int i = 0; i < count; i++) { int x = SkScalarFloorToInt(devPts[i].fX); int y = SkScalarFloorToInt(devPts[i].fY); if (rec.fClip->contains(x, y)) { blitter->blitH(x, y, 1); } } } static void bw_line_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { for (int i = 0; i < count; i += 2) { SkScan::HairLine(&devPts[i], 2, *rec.fRC, blitter); } } static void bw_poly_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { SkScan::HairLine(devPts, count, *rec.fRC, blitter); } // aa versions static void aa_line_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { for (int i = 0; i < count; i += 2) { SkScan::AntiHairLine(&devPts[i], 2, *rec.fRC, blitter); } } static void aa_poly_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { SkScan::AntiHairLine(devPts, count, *rec.fRC, blitter); } // square procs (strokeWidth > 0 but matrix is square-scale (sx == sy) static void bw_square_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { const SkFixed radius = rec.fRadius; for (int i = 0; i < count; i++) { SkFixed x = SkScalarToFixed(devPts[i].fX); SkFixed y = SkScalarToFixed(devPts[i].fY); SkXRect r; r.fLeft = x - radius; r.fTop = y - radius; r.fRight = x + radius; r.fBottom = y + radius; SkScan::FillXRect(r, *rec.fRC, blitter); } } static void aa_square_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { const SkFixed radius = rec.fRadius; for (int i = 0; i < count; i++) { SkFixed x = SkScalarToFixed(devPts[i].fX); SkFixed y = SkScalarToFixed(devPts[i].fY); SkXRect r; r.fLeft = x - radius; r.fTop = y - radius; r.fRight = x + radius; r.fBottom = y + radius; SkScan::AntiFillXRect(r, *rec.fRC, blitter); } } // If this guy returns true, then chooseProc() must return a valid proc bool PtProcRec::init(SkCanvas::PointMode mode, const SkPaint& paint, const SkMatrix* matrix, const SkRasterClip* rc) { if ((unsigned)mode > (unsigned)SkCanvas::kPolygon_PointMode) { return false; } if (paint.getPathEffect()) { return false; } SkScalar width = paint.getStrokeWidth(); if (0 == width) { fMode = mode; fPaint = &paint; fClip = nullptr; fRC = rc; fRadius = SK_FixedHalf; return true; } if (paint.getStrokeCap() != SkPaint::kRound_Cap && matrix->isScaleTranslate() && SkCanvas::kPoints_PointMode == mode) { SkScalar sx = matrix->get(SkMatrix::kMScaleX); SkScalar sy = matrix->get(SkMatrix::kMScaleY); if (SkScalarNearlyZero(sx - sy)) { if (sx < 0) { sx = -sx; } fMode = mode; fPaint = &paint; fClip = nullptr; fRC = rc; fRadius = SkScalarToFixed(SkScalarMul(width, sx)) >> 1; return true; } } return false; } PtProcRec::Proc PtProcRec::chooseProc(SkBlitter** blitterPtr) { Proc proc = nullptr; SkBlitter* blitter = *blitterPtr; if (fRC->isBW()) { fClip = &fRC->bwRgn(); } else { fWrapper.init(*fRC, blitter); fClip = &fWrapper.getRgn(); blitter = fWrapper.getBlitter(); *blitterPtr = blitter; } // for our arrays SkASSERT(0 == SkCanvas::kPoints_PointMode); SkASSERT(1 == SkCanvas::kLines_PointMode); SkASSERT(2 == SkCanvas::kPolygon_PointMode); SkASSERT((unsigned)fMode <= (unsigned)SkCanvas::kPolygon_PointMode); if (fPaint->isAntiAlias()) { if (0 == fPaint->getStrokeWidth()) { static const Proc gAAProcs[] = { aa_square_proc, aa_line_hair_proc, aa_poly_hair_proc }; proc = gAAProcs[fMode]; } else if (fPaint->getStrokeCap() != SkPaint::kRound_Cap) { SkASSERT(SkCanvas::kPoints_PointMode == fMode); proc = aa_square_proc; } } else { // BW if (fRadius <= SK_FixedHalf) { // small radii and hairline if (SkCanvas::kPoints_PointMode == fMode && fClip->isRect()) { uint32_t value; const SkPixmap* bm = blitter->justAnOpaqueColor(&value); if (bm && kRGB_565_SkColorType == bm->colorType()) { proc = bw_pt_rect_16_hair_proc; } else if (bm && kN32_SkColorType == bm->colorType()) { proc = bw_pt_rect_32_hair_proc; } else { proc = bw_pt_rect_hair_proc; } } else { static Proc gBWProcs[] = { bw_pt_hair_proc, bw_line_hair_proc, bw_poly_hair_proc }; proc = gBWProcs[fMode]; } } else { proc = bw_square_proc; } } return proc; } // each of these costs 8-bytes of stack space, so don't make it too large // must be even for lines/polygon to work #define MAX_DEV_PTS 32 void SkDraw::drawPoints(SkCanvas::PointMode mode, size_t count, const SkPoint pts[], const SkPaint& paint, bool forceUseDevice) const { // if we're in lines mode, force count to be even if (SkCanvas::kLines_PointMode == mode) { count &= ~(size_t)1; } if ((long)count <= 0) { return; } SkASSERT(pts != nullptr); SkDEBUGCODE(this->validate();) // nothing to draw if (fRC->isEmpty()) { return; } PtProcRec rec; if (!forceUseDevice && rec.init(mode, paint, fMatrix, fRC)) { SkAutoBlitterChoose blitter(fDst, *fMatrix, paint); SkPoint devPts[MAX_DEV_PTS]; const SkMatrix* matrix = fMatrix; SkBlitter* bltr = blitter.get(); PtProcRec::Proc proc = rec.chooseProc(&bltr); // we have to back up subsequent passes if we're in polygon mode const size_t backup = (SkCanvas::kPolygon_PointMode == mode); do { int n = SkToInt(count); if (n > MAX_DEV_PTS) { n = MAX_DEV_PTS; } matrix->mapPoints(devPts, pts, n); proc(rec, devPts, n, bltr); pts += n - backup; SkASSERT(SkToInt(count) >= n); count -= n; if (count > 0) { count += backup; } } while (count != 0); } else { switch (mode) { case SkCanvas::kPoints_PointMode: { // temporarily mark the paint as filling. SkPaint newPaint(paint); newPaint.setStyle(SkPaint::kFill_Style); SkScalar width = newPaint.getStrokeWidth(); SkScalar radius = SkScalarHalf(width); if (newPaint.getStrokeCap() == SkPaint::kRound_Cap) { SkPath path; SkMatrix preMatrix; path.addCircle(0, 0, radius); for (size_t i = 0; i < count; i++) { preMatrix.setTranslate(pts[i].fX, pts[i].fY); // pass true for the last point, since we can modify // then path then path.setIsVolatile((count-1) == i); if (fDevice) { fDevice->drawPath(*this, path, newPaint, &preMatrix, (count-1) == i); } else { this->drawPath(path, newPaint, &preMatrix, (count-1) == i); } } } else { SkRect r; for (size_t i = 0; i < count; i++) { r.fLeft = pts[i].fX - radius; r.fTop = pts[i].fY - radius; r.fRight = r.fLeft + width; r.fBottom = r.fTop + width; if (fDevice) { fDevice->drawRect(*this, r, newPaint); } else { this->drawRect(r, newPaint); } } } break; } case SkCanvas::kLines_PointMode: if (2 == count && paint.getPathEffect()) { // most likely a dashed line - see if it is one of the ones // we can accelerate SkStrokeRec rec(paint); SkPathEffect::PointData pointData; SkPath path; path.moveTo(pts[0]); path.lineTo(pts[1]); SkRect cullRect = SkRect::Make(fRC->getBounds()); if (paint.getPathEffect()->asPoints(&pointData, path, rec, *fMatrix, &cullRect)) { // 'asPoints' managed to find some fast path SkPaint newP(paint); newP.setPathEffect(nullptr); newP.setStyle(SkPaint::kFill_Style); if (!pointData.fFirst.isEmpty()) { if (fDevice) { fDevice->drawPath(*this, pointData.fFirst, newP); } else { this->drawPath(pointData.fFirst, newP); } } if (!pointData.fLast.isEmpty()) { if (fDevice) { fDevice->drawPath(*this, pointData.fLast, newP); } else { this->drawPath(pointData.fLast, newP); } } if (pointData.fSize.fX == pointData.fSize.fY) { // The rest of the dashed line can just be drawn as points SkASSERT(pointData.fSize.fX == SkScalarHalf(newP.getStrokeWidth())); if (SkPathEffect::PointData::kCircles_PointFlag & pointData.fFlags) { newP.setStrokeCap(SkPaint::kRound_Cap); } else { newP.setStrokeCap(SkPaint::kButt_Cap); } if (fDevice) { fDevice->drawPoints(*this, SkCanvas::kPoints_PointMode, pointData.fNumPoints, pointData.fPoints, newP); } else { this->drawPoints(SkCanvas::kPoints_PointMode, pointData.fNumPoints, pointData.fPoints, newP, forceUseDevice); } break; } else { // The rest of the dashed line must be drawn as rects SkASSERT(!(SkPathEffect::PointData::kCircles_PointFlag & pointData.fFlags)); SkRect r; for (int i = 0; i < pointData.fNumPoints; ++i) { r.set(pointData.fPoints[i].fX - pointData.fSize.fX, pointData.fPoints[i].fY - pointData.fSize.fY, pointData.fPoints[i].fX + pointData.fSize.fX, pointData.fPoints[i].fY + pointData.fSize.fY); if (fDevice) { fDevice->drawRect(*this, r, newP); } else { this->drawRect(r, newP); } } } break; } } // couldn't take fast path so fall through! case SkCanvas::kPolygon_PointMode: { count -= 1; SkPath path; SkPaint p(paint); p.setStyle(SkPaint::kStroke_Style); size_t inc = (SkCanvas::kLines_PointMode == mode) ? 2 : 1; path.setIsVolatile(true); for (size_t i = 0; i < count; i += inc) { path.moveTo(pts[i]); path.lineTo(pts[i+1]); if (fDevice) { fDevice->drawPath(*this, path, p, nullptr, true); } else { this->drawPath(path, p, nullptr, true); } path.rewind(); } break; } } } } static inline SkPoint compute_stroke_size(const SkPaint& paint, const SkMatrix& matrix) { SkASSERT(matrix.rectStaysRect()); SkASSERT(SkPaint::kFill_Style != paint.getStyle()); SkVector size; SkPoint pt = { paint.getStrokeWidth(), paint.getStrokeWidth() }; matrix.mapVectors(&size, &pt, 1); return SkPoint::Make(SkScalarAbs(size.fX), SkScalarAbs(size.fY)); } static bool easy_rect_join(const SkPaint& paint, const SkMatrix& matrix, SkPoint* strokeSize) { if (SkPaint::kMiter_Join != paint.getStrokeJoin() || paint.getStrokeMiter() < SK_ScalarSqrt2) { return false; } *strokeSize = compute_stroke_size(paint, matrix); return true; } SkDraw::RectType SkDraw::ComputeRectType(const SkPaint& paint, const SkMatrix& matrix, SkPoint* strokeSize) { RectType rtype; const SkScalar width = paint.getStrokeWidth(); const bool zeroWidth = (0 == width); SkPaint::Style style = paint.getStyle(); if ((SkPaint::kStrokeAndFill_Style == style) && zeroWidth) { style = SkPaint::kFill_Style; } if (paint.getPathEffect() || paint.getMaskFilter() || paint.getRasterizer() || !matrix.rectStaysRect() || SkPaint::kStrokeAndFill_Style == style) { rtype = kPath_RectType; } else if (SkPaint::kFill_Style == style) { rtype = kFill_RectType; } else if (zeroWidth) { rtype = kHair_RectType; } else if (easy_rect_join(paint, matrix, strokeSize)) { rtype = kStroke_RectType; } else { rtype = kPath_RectType; } return rtype; } static const SkPoint* rect_points(const SkRect& r) { return SkTCast(&r); } static SkPoint* rect_points(SkRect& r) { return SkTCast(&r); } void SkDraw::drawRect(const SkRect& prePaintRect, const SkPaint& paint, const SkMatrix* paintMatrix, const SkRect* postPaintRect) const { SkDEBUGCODE(this->validate();) // nothing to draw if (fRC->isEmpty()) { return; } const SkMatrix* matrix; SkMatrix combinedMatrixStorage; if (paintMatrix) { SkASSERT(postPaintRect); combinedMatrixStorage.setConcat(*fMatrix, *paintMatrix); matrix = &combinedMatrixStorage; } else { SkASSERT(!postPaintRect); matrix = fMatrix; } SkPoint strokeSize; RectType rtype = ComputeRectType(paint, *fMatrix, &strokeSize); if (kPath_RectType == rtype) { SkDraw draw(*this); if (paintMatrix) { draw.fMatrix = matrix; } SkPath tmp; tmp.addRect(prePaintRect); tmp.setFillType(SkPath::kWinding_FillType); draw.drawPath(tmp, paint, nullptr, true); return; } SkRect devRect; const SkRect& paintRect = paintMatrix ? *postPaintRect : prePaintRect; // skip the paintMatrix when transforming the rect by the CTM fMatrix->mapPoints(rect_points(devRect), rect_points(paintRect), 2); devRect.sort(); // look for the quick exit, before we build a blitter SkRect bbox = devRect; if (paint.getStyle() != SkPaint::kFill_Style) { // extra space for hairlines if (paint.getStrokeWidth() == 0) { bbox.outset(1, 1); } else { // For kStroke_RectType, strokeSize is already computed. const SkPoint& ssize = (kStroke_RectType == rtype) ? strokeSize : compute_stroke_size(paint, *fMatrix); bbox.outset(SkScalarHalf(ssize.x()), SkScalarHalf(ssize.y())); } } SkIRect ir = bbox.roundOut(); if (fRC->quickReject(ir)) { return; } SkDeviceLooper looper(fDst, *fRC, ir, paint.isAntiAlias()); while (looper.next()) { SkRect localDevRect; looper.mapRect(&localDevRect, devRect); SkMatrix localMatrix; looper.mapMatrix(&localMatrix, *matrix); SkAutoBlitterChoose blitterStorage(looper.getPixmap(), localMatrix, paint); const SkRasterClip& clip = looper.getRC(); SkBlitter* blitter = blitterStorage.get(); // we want to "fill" if we are kFill or kStrokeAndFill, since in the latter // case we are also hairline (if we've gotten to here), which devolves to // effectively just kFill switch (rtype) { case kFill_RectType: if (paint.isAntiAlias()) { SkScan::AntiFillRect(localDevRect, clip, blitter); } else { SkScan::FillRect(localDevRect, clip, blitter); } break; case kStroke_RectType: if (paint.isAntiAlias()) { SkScan::AntiFrameRect(localDevRect, strokeSize, clip, blitter); } else { SkScan::FrameRect(localDevRect, strokeSize, clip, blitter); } break; case kHair_RectType: if (paint.isAntiAlias()) { SkScan::AntiHairRect(localDevRect, clip, blitter); } else { SkScan::HairRect(localDevRect, clip, blitter); } break; default: SkDEBUGFAIL("bad rtype"); } } } void SkDraw::drawDevMask(const SkMask& srcM, const SkPaint& paint) const { if (srcM.fBounds.isEmpty()) { return; } const SkMask* mask = &srcM; SkMask dstM; if (paint.getMaskFilter() && paint.getMaskFilter()->filterMask(&dstM, srcM, *fMatrix, nullptr)) { mask = &dstM; } SkAutoMaskFreeImage ami(dstM.fImage); SkAutoBlitterChoose blitterChooser(fDst, *fMatrix, paint); SkBlitter* blitter = blitterChooser.get(); SkAAClipBlitterWrapper wrapper; const SkRegion* clipRgn; if (fRC->isBW()) { clipRgn = &fRC->bwRgn(); } else { wrapper.init(*fRC, blitter); clipRgn = &wrapper.getRgn(); blitter = wrapper.getBlitter(); } blitter->blitMaskRegion(*mask, *clipRgn); } static SkScalar fast_len(const SkVector& vec) { SkScalar x = SkScalarAbs(vec.fX); SkScalar y = SkScalarAbs(vec.fY); if (x < y) { SkTSwap(x, y); } return x + SkScalarHalf(y); } bool SkDrawTreatAAStrokeAsHairline(SkScalar strokeWidth, const SkMatrix& matrix, SkScalar* coverage) { SkASSERT(strokeWidth > 0); // We need to try to fake a thick-stroke with a modulated hairline. if (matrix.hasPerspective()) { return false; } SkVector src[2], dst[2]; src[0].set(strokeWidth, 0); src[1].set(0, strokeWidth); matrix.mapVectors(dst, src, 2); SkScalar len0 = fast_len(dst[0]); SkScalar len1 = fast_len(dst[1]); if (len0 <= SK_Scalar1 && len1 <= SK_Scalar1) { if (coverage) { *coverage = SkScalarAve(len0, len1); } return true; } return false; } void SkDraw::drawRRect(const SkRRect& rrect, const SkPaint& paint) const { SkDEBUGCODE(this->validate()); if (fRC->isEmpty()) { return; } { // TODO: Investigate optimizing these options. They are in the same // order as SkDraw::drawPath, which handles each case. It may be // that there is no way to optimize for these using the SkRRect path. SkScalar coverage; if (SkDrawTreatAsHairline(paint, *fMatrix, &coverage)) { goto DRAW_PATH; } if (paint.getPathEffect() || paint.getStyle() != SkPaint::kFill_Style) { goto DRAW_PATH; } if (paint.getRasterizer()) { goto DRAW_PATH; } } if (paint.getMaskFilter()) { // Transform the rrect into device space. SkRRect devRRect; if (rrect.transform(*fMatrix, &devRRect)) { SkAutoBlitterChoose blitter(fDst, *fMatrix, paint); if (paint.getMaskFilter()->filterRRect(devRRect, *fMatrix, *fRC, blitter.get(), SkPaint::kFill_Style)) { return; // filterRRect() called the blitter, so we're done } } } DRAW_PATH: // Now fall back to the default case of using a path. SkPath path; path.addRRect(rrect); this->drawPath(path, paint, nullptr, true); } SkScalar SkDraw::ComputeResScaleForStroking(const SkMatrix& matrix) { if (!matrix.hasPerspective()) { SkScalar sx = SkPoint::Length(matrix[SkMatrix::kMScaleX], matrix[SkMatrix::kMSkewY]); SkScalar sy = SkPoint::Length(matrix[SkMatrix::kMSkewX], matrix[SkMatrix::kMScaleY]); if (SkScalarsAreFinite(sx, sy)) { return SkTMax(sx, sy); } } return 1; } void SkDraw::drawPath(const SkPath& origSrcPath, const SkPaint& origPaint, const SkMatrix* prePathMatrix, bool pathIsMutable, bool drawCoverage, SkBlitter* customBlitter) const { SkDEBUGCODE(this->validate();) // nothing to draw if (fRC->isEmpty()) { return; } SkPath* pathPtr = (SkPath*)&origSrcPath; bool doFill = true; SkPath tmpPath; SkMatrix tmpMatrix; const SkMatrix* matrix = fMatrix; tmpPath.setIsVolatile(true); if (prePathMatrix) { if (origPaint.getPathEffect() || origPaint.getStyle() != SkPaint::kFill_Style || origPaint.getRasterizer()) { SkPath* result = pathPtr; if (!pathIsMutable) { result = &tmpPath; pathIsMutable = true; } pathPtr->transform(*prePathMatrix, result); pathPtr = result; } else { tmpMatrix.setConcat(*matrix, *prePathMatrix); matrix = &tmpMatrix; } } // at this point we're done with prePathMatrix SkDEBUGCODE(prePathMatrix = (const SkMatrix*)0x50FF8001;) SkTCopyOnFirstWrite paint(origPaint); { SkScalar coverage; if (SkDrawTreatAsHairline(origPaint, *matrix, &coverage)) { if (SK_Scalar1 == coverage) { paint.writable()->setStrokeWidth(0); } else if (SkXfermode::SupportsCoverageAsAlpha(origPaint.getXfermode())) { U8CPU newAlpha; #if 0 newAlpha = SkToU8(SkScalarRoundToInt(coverage * origPaint.getAlpha())); #else // this is the old technique, which we preserve for now so // we don't change previous results (testing) // the new way seems fine, its just (a tiny bit) different int scale = (int)SkScalarMul(coverage, 256); newAlpha = origPaint.getAlpha() * scale >> 8; #endif SkPaint* writablePaint = paint.writable(); writablePaint->setStrokeWidth(0); writablePaint->setAlpha(newAlpha); } } } if (paint->getPathEffect() || paint->getStyle() != SkPaint::kFill_Style) { SkRect cullRect; const SkRect* cullRectPtr = nullptr; if (this->computeConservativeLocalClipBounds(&cullRect)) { cullRectPtr = &cullRect; } doFill = paint->getFillPath(*pathPtr, &tmpPath, cullRectPtr, ComputeResScaleForStroking(*fMatrix)); pathPtr = &tmpPath; } if (paint->getRasterizer()) { SkMask mask; if (paint->getRasterizer()->rasterize(*pathPtr, *matrix, &fRC->getBounds(), paint->getMaskFilter(), &mask, SkMask::kComputeBoundsAndRenderImage_CreateMode)) { this->drawDevMask(mask, *paint); SkMask::FreeImage(mask.fImage); } return; } // avoid possibly allocating a new path in transform if we can SkPath* devPathPtr = pathIsMutable ? pathPtr : &tmpPath; // transform the path into device space pathPtr->transform(*matrix, devPathPtr); SkBlitter* blitter = nullptr; SkAutoBlitterChoose blitterStorage; if (nullptr == customBlitter) { blitterStorage.choose(fDst, *fMatrix, *paint, drawCoverage); blitter = blitterStorage.get(); } else { blitter = customBlitter; } if (paint->getMaskFilter()) { SkPaint::Style style = doFill ? SkPaint::kFill_Style : SkPaint::kStroke_Style; if (paint->getMaskFilter()->filterPath(*devPathPtr, *fMatrix, *fRC, blitter, style)) { return; // filterPath() called the blitter, so we're done } } void (*proc)(const SkPath&, const SkRasterClip&, SkBlitter*); if (doFill) { if (paint->isAntiAlias()) { proc = SkScan::AntiFillPath; } else { proc = SkScan::FillPath; } } else { // hairline if (paint->isAntiAlias()) { switch (paint->getStrokeCap()) { case SkPaint::kButt_Cap: proc = SkScan::AntiHairPath; break; case SkPaint::kSquare_Cap: proc = SkScan::AntiHairSquarePath; break; case SkPaint::kRound_Cap: proc = SkScan::AntiHairRoundPath; break; default: proc SK_INIT_TO_AVOID_WARNING; SkDEBUGFAIL("unknown paint cap type"); } } else { switch (paint->getStrokeCap()) { case SkPaint::kButt_Cap: proc = SkScan::HairPath; break; case SkPaint::kSquare_Cap: proc = SkScan::HairSquarePath; break; case SkPaint::kRound_Cap: proc = SkScan::HairRoundPath; break; default: proc SK_INIT_TO_AVOID_WARNING; SkDEBUGFAIL("unknown paint cap type"); } } } proc(*devPathPtr, *fRC, blitter); } void SkDraw::drawBitmapAsMask(const SkBitmap& bitmap, const SkPaint& paint) const { SkASSERT(bitmap.colorType() == kAlpha_8_SkColorType); if (SkTreatAsSprite(*fMatrix, bitmap.dimensions(), paint)) { int ix = SkScalarRoundToInt(fMatrix->getTranslateX()); int iy = SkScalarRoundToInt(fMatrix->getTranslateY()); SkAutoPixmapUnlock result; if (!bitmap.requestLock(&result)) { return; } const SkPixmap& pmap = result.pixmap(); SkMask mask; mask.fBounds.set(ix, iy, ix + pmap.width(), iy + pmap.height()); mask.fFormat = SkMask::kA8_Format; mask.fRowBytes = SkToU32(pmap.rowBytes()); // fImage is typed as writable, but in this case it is used read-only mask.fImage = (uint8_t*)pmap.addr8(0, 0); this->drawDevMask(mask, paint); } else { // need to xform the bitmap first SkRect r; SkMask mask; r.set(0, 0, SkIntToScalar(bitmap.width()), SkIntToScalar(bitmap.height())); fMatrix->mapRect(&r); r.round(&mask.fBounds); // set the mask's bounds to the transformed bitmap-bounds, // clipped to the actual device { SkIRect devBounds; devBounds.set(0, 0, fDst.width(), fDst.height()); // need intersect(l, t, r, b) on irect if (!mask.fBounds.intersect(devBounds)) { return; } } mask.fFormat = SkMask::kA8_Format; mask.fRowBytes = SkAlign4(mask.fBounds.width()); size_t size = mask.computeImageSize(); if (0 == size) { // the mask is too big to allocated, draw nothing return; } // allocate (and clear) our temp buffer to hold the transformed bitmap SkAutoTMalloc storage(size); mask.fImage = storage.get(); memset(mask.fImage, 0, size); // now draw our bitmap(src) into mask(dst), transformed by the matrix { SkBitmap device; device.installPixels(SkImageInfo::MakeA8(mask.fBounds.width(), mask.fBounds.height()), mask.fImage, mask.fRowBytes); SkCanvas c(device); // need the unclipped top/left for the translate c.translate(-SkIntToScalar(mask.fBounds.fLeft), -SkIntToScalar(mask.fBounds.fTop)); c.concat(*fMatrix); // We can't call drawBitmap, or we'll infinitely recurse. Instead // we manually build a shader and draw that into our new mask SkPaint tmpPaint; tmpPaint.setFlags(paint.getFlags()); SkAutoBitmapShaderInstall install(bitmap, tmpPaint); SkRect rr; rr.set(0, 0, SkIntToScalar(bitmap.width()), SkIntToScalar(bitmap.height())); c.drawRect(rr, install.paintWithShader()); } this->drawDevMask(mask, paint); } } static bool clipped_out(const SkMatrix& m, const SkRasterClip& c, const SkRect& srcR) { SkRect dstR; m.mapRect(&dstR, srcR); return c.quickReject(dstR.roundOut()); } static bool clipped_out(const SkMatrix& matrix, const SkRasterClip& clip, int width, int height) { SkRect r; r.set(0, 0, SkIntToScalar(width), SkIntToScalar(height)); return clipped_out(matrix, clip, r); } static bool clipHandlesSprite(const SkRasterClip& clip, int x, int y, const SkPixmap& pmap) { return clip.isBW() || clip.quickContains(x, y, x + pmap.width(), y + pmap.height()); } void SkDraw::drawBitmap(const SkBitmap& bitmap, const SkMatrix& prematrix, const SkRect* dstBounds, const SkPaint& origPaint) const { SkDEBUGCODE(this->validate();) // nothing to draw if (fRC->isEmpty() || bitmap.width() == 0 || bitmap.height() == 0 || bitmap.colorType() == kUnknown_SkColorType) { return; } SkPaint paint(origPaint); paint.setStyle(SkPaint::kFill_Style); SkMatrix matrix; matrix.setConcat(*fMatrix, prematrix); if (clipped_out(matrix, *fRC, bitmap.width(), bitmap.height())) { return; } if (bitmap.colorType() != kAlpha_8_SkColorType && SkTreatAsSprite(matrix, bitmap.dimensions(), paint)) { // // It is safe to call lock pixels now, since we know the matrix is // (more or less) identity. // SkAutoPixmapUnlock unlocker; if (!bitmap.requestLock(&unlocker)) { return; } const SkPixmap& pmap = unlocker.pixmap(); int ix = SkScalarRoundToInt(matrix.getTranslateX()); int iy = SkScalarRoundToInt(matrix.getTranslateY()); if (clipHandlesSprite(*fRC, ix, iy, pmap)) { SkTBlitterAllocator allocator; // blitter will be owned by the allocator. SkBlitter* blitter = SkBlitter::ChooseSprite(fDst, paint, pmap, ix, iy, &allocator); if (blitter) { SkScan::FillIRect(SkIRect::MakeXYWH(ix, iy, pmap.width(), pmap.height()), *fRC, blitter); return; } // if !blitter, then we fall-through to the slower case } } // now make a temp draw on the stack, and use it // SkDraw draw(*this); draw.fMatrix = &matrix; if (bitmap.colorType() == kAlpha_8_SkColorType) { draw.drawBitmapAsMask(bitmap, paint); } else { SkAutoBitmapShaderInstall install(bitmap, paint); const SkPaint& paintWithShader = install.paintWithShader(); const SkRect srcBounds = SkRect::MakeIWH(bitmap.width(), bitmap.height()); if (dstBounds) { this->drawRect(srcBounds, paintWithShader, &prematrix, dstBounds); } else { draw.drawRect(srcBounds, paintWithShader); } } } void SkDraw::drawSprite(const SkBitmap& bitmap, int x, int y, const SkPaint& origPaint) const { SkDEBUGCODE(this->validate();) // nothing to draw if (fRC->isEmpty() || bitmap.width() == 0 || bitmap.height() == 0 || bitmap.colorType() == kUnknown_SkColorType) { return; } const SkIRect bounds = SkIRect::MakeXYWH(x, y, bitmap.width(), bitmap.height()); if (fRC->quickReject(bounds)) { return; // nothing to draw } SkPaint paint(origPaint); paint.setStyle(SkPaint::kFill_Style); SkAutoPixmapUnlock unlocker; if (!bitmap.requestLock(&unlocker)) { return; } const SkPixmap& pmap = unlocker.pixmap(); if (nullptr == paint.getColorFilter() && clipHandlesSprite(*fRC, x, y, pmap)) { SkTBlitterAllocator allocator; // blitter will be owned by the allocator. SkBlitter* blitter = SkBlitter::ChooseSprite(fDst, paint, pmap, x, y, &allocator); if (blitter) { SkScan::FillIRect(bounds, *fRC, blitter); return; } } SkMatrix matrix; SkRect r; // get a scalar version of our rect r.set(bounds); // create shader with offset matrix.setTranslate(r.fLeft, r.fTop); SkAutoBitmapShaderInstall install(bitmap, paint, &matrix); const SkPaint& shaderPaint = install.paintWithShader(); SkDraw draw(*this); matrix.reset(); draw.fMatrix = &matrix; // call ourself with a rect // is this OK if paint has a rasterizer? draw.drawRect(r, shaderPaint); } /////////////////////////////////////////////////////////////////////////////// #include "SkScalerContext.h" #include "SkGlyphCache.h" #include "SkTextToPathIter.h" #include "SkUtils.h" bool SkDraw::ShouldDrawTextAsPaths(const SkPaint& paint, const SkMatrix& ctm) { // hairline glyphs are fast enough so we don't need to cache them if (SkPaint::kStroke_Style == paint.getStyle() && 0 == paint.getStrokeWidth()) { return true; } // we don't cache perspective if (ctm.hasPerspective()) { return true; } SkMatrix textM; return SkPaint::TooBigToUseCache(ctm, *paint.setTextMatrix(&textM)); } void SkDraw::drawText_asPaths(const char text[], size_t byteLength, SkScalar x, SkScalar y, const SkPaint& paint) const { SkDEBUGCODE(this->validate();) SkTextToPathIter iter(text, byteLength, paint, true); SkMatrix matrix; matrix.setScale(iter.getPathScale(), iter.getPathScale()); matrix.postTranslate(x, y); const SkPath* iterPath; SkScalar xpos, prevXPos = 0; while (iter.next(&iterPath, &xpos)) { matrix.postTranslate(xpos - prevXPos, 0); if (iterPath) { const SkPaint& pnt = iter.getPaint(); if (fDevice) { fDevice->drawPath(*this, *iterPath, pnt, &matrix, false); } else { this->drawPath(*iterPath, pnt, &matrix, false); } } prevXPos = xpos; } } // disable warning : local variable used without having been initialized #if defined _WIN32 #pragma warning ( push ) #pragma warning ( disable : 4701 ) #endif //////////////////////////////////////////////////////////////////////////////////////////////////// class DrawOneGlyph { public: DrawOneGlyph(const SkDraw& draw, const SkPaint& paint, SkGlyphCache* cache, SkBlitter* blitter) : fUseRegionToDraw(UsingRegionToDraw(draw.fRC)) , fGlyphCache(cache) , fBlitter(blitter) , fClip(fUseRegionToDraw ? &draw.fRC->bwRgn() : nullptr) , fDraw(draw) , fPaint(paint) , fClipBounds(PickClipBounds(draw)) { } void operator()(const SkGlyph& glyph, SkPoint position, SkPoint rounding) { position += rounding; // Prevent glyphs from being drawn outside of or straddling the edge of device space. if (position.fX > INT_MAX - (INT16_MAX + UINT16_MAX) || position.fX < INT_MIN - (INT16_MIN + 0 /*UINT16_MIN*/) || position.fY > INT_MAX - (INT16_MAX + UINT16_MAX) || position.fY < INT_MIN - (INT16_MIN + 0 /*UINT16_MIN*/)) { return; } int left = SkScalarFloorToInt(position.fX); int top = SkScalarFloorToInt(position.fY); SkASSERT(glyph.fWidth > 0 && glyph.fHeight > 0); left += glyph.fLeft; top += glyph.fTop; int right = left + glyph.fWidth; int bottom = top + glyph.fHeight; SkMask mask; mask.fBounds.set(left, top, right, bottom); if (fUseRegionToDraw) { SkRegion::Cliperator clipper(*fClip, mask.fBounds); if (!clipper.done() && this->getImageData(glyph, &mask)) { const SkIRect& cr = clipper.rect(); do { this->blitMask(mask, cr); clipper.next(); } while (!clipper.done()); } } else { SkIRect storage; SkIRect* bounds = &mask.fBounds; // this extra test is worth it, assuming that most of the time it succeeds // since we can avoid writing to storage if (!fClipBounds.containsNoEmptyCheck(mask.fBounds)) { if (!storage.intersectNoEmptyCheck(mask.fBounds, fClipBounds)) return; bounds = &storage; } if (this->getImageData(glyph, &mask)) { this->blitMask(mask, *bounds); } } } private: static bool UsingRegionToDraw(const SkRasterClip* rClip) { return rClip->isBW() && !rClip->isRect(); } static SkIRect PickClipBounds(const SkDraw& draw) { const SkRasterClip& rasterClip = *draw.fRC; if (rasterClip.isBW()) { return rasterClip.bwRgn().getBounds(); } else { return rasterClip.aaRgn().getBounds(); } } bool getImageData(const SkGlyph& glyph, SkMask* mask) { uint8_t* bits = (uint8_t*)(fGlyphCache->findImage(glyph)); if (nullptr == bits) { return false; // can't rasterize glyph } mask->fImage = bits; mask->fRowBytes = glyph.rowBytes(); mask->fFormat = static_cast(glyph.fMaskFormat); return true; } void blitMask(const SkMask& mask, const SkIRect& clip) const { if (SkMask::kARGB32_Format == mask.fFormat) { SkBitmap bm; bm.installPixels( SkImageInfo::MakeN32Premul(mask.fBounds.width(), mask.fBounds.height()), (SkPMColor*)mask.fImage, mask.fRowBytes); fDraw.drawSprite(bm, mask.fBounds.x(), mask.fBounds.y(), fPaint); } else { fBlitter->blitMask(mask, clip); } } const bool fUseRegionToDraw; SkGlyphCache * const fGlyphCache; SkBlitter * const fBlitter; const SkRegion* const fClip; const SkDraw& fDraw; const SkPaint& fPaint; const SkIRect fClipBounds; }; //////////////////////////////////////////////////////////////////////////////////////////////////// SkPaint::FakeGamma SkDraw::fakeGamma() const { return fDevice->imageInfo().isLinear() ? SkPaint::FakeGamma::On : SkPaint::FakeGamma::Off; } void SkDraw::drawText(const char text[], size_t byteLength, SkScalar x, SkScalar y, const SkPaint& paint) const { SkASSERT(byteLength == 0 || text != nullptr); SkDEBUGCODE(this->validate();) // nothing to draw if (text == nullptr || byteLength == 0 || fRC->isEmpty()) { return; } // SkScalarRec doesn't currently have a way of representing hairline stroke and // will fill if its frame-width is 0. if (ShouldDrawTextAsPaths(paint, *fMatrix)) { this->drawText_asPaths(text, byteLength, x, y, paint); return; } SkAutoGlyphCache cache(paint, &fDevice->surfaceProps(), this->fakeGamma(), fMatrix); // The Blitter Choose needs to be live while using the blitter below. SkAutoBlitterChoose blitterChooser(fDst, *fMatrix, paint); SkAAClipBlitterWrapper wrapper(*fRC, blitterChooser.get()); DrawOneGlyph drawOneGlyph(*this, paint, cache.get(), wrapper.getBlitter()); SkFindAndPlaceGlyph::ProcessText( paint.getTextEncoding(), text, byteLength, {x, y}, *fMatrix, paint.getTextAlign(), cache.get(), drawOneGlyph); } ////////////////////////////////////////////////////////////////////////////// void SkDraw::drawPosText_asPaths(const char text[], size_t byteLength, const SkScalar pos[], int scalarsPerPosition, const SkPoint& offset, const SkPaint& origPaint) const { // setup our std paint, in hopes of getting hits in the cache SkPaint paint(origPaint); SkScalar matrixScale = paint.setupForAsPaths(); SkMatrix matrix; matrix.setScale(matrixScale, matrixScale); // Temporarily jam in kFill, so we only ever ask for the raw outline from the cache. paint.setStyle(SkPaint::kFill_Style); paint.setPathEffect(nullptr); SkPaint::GlyphCacheProc glyphCacheProc = paint.getGlyphCacheProc(true); SkAutoGlyphCache cache(paint, &fDevice->surfaceProps(), this->fakeGamma(), nullptr); const char* stop = text + byteLength; SkTextAlignProc alignProc(paint.getTextAlign()); SkTextMapStateProc tmsProc(SkMatrix::I(), offset, scalarsPerPosition); // Now restore the original settings, so we "draw" with whatever style/stroking. paint.setStyle(origPaint.getStyle()); paint.setPathEffect(sk_ref_sp(origPaint.getPathEffect())); while (text < stop) { const SkGlyph& glyph = glyphCacheProc(cache.get(), &text); if (glyph.fWidth) { const SkPath* path = cache->findPath(glyph); if (path) { SkPoint tmsLoc; tmsProc(pos, &tmsLoc); SkPoint loc; alignProc(tmsLoc, glyph, &loc); matrix[SkMatrix::kMTransX] = loc.fX; matrix[SkMatrix::kMTransY] = loc.fY; if (fDevice) { fDevice->drawPath(*this, *path, paint, &matrix, false); } else { this->drawPath(*path, paint, &matrix, false); } } } pos += scalarsPerPosition; } } void SkDraw::drawPosText(const char text[], size_t byteLength, const SkScalar pos[], int scalarsPerPosition, const SkPoint& offset, const SkPaint& paint) const { SkASSERT(byteLength == 0 || text != nullptr); SkASSERT(1 == scalarsPerPosition || 2 == scalarsPerPosition); SkDEBUGCODE(this->validate();) // nothing to draw if (text == nullptr || byteLength == 0 || fRC->isEmpty()) { return; } if (ShouldDrawTextAsPaths(paint, *fMatrix)) { this->drawPosText_asPaths(text, byteLength, pos, scalarsPerPosition, offset, paint); return; } SkAutoGlyphCache cache(paint, &fDevice->surfaceProps(), this->fakeGamma(), fMatrix); // The Blitter Choose needs to be live while using the blitter below. SkAutoBlitterChoose blitterChooser(fDst, *fMatrix, paint); SkAAClipBlitterWrapper wrapper(*fRC, blitterChooser.get()); DrawOneGlyph drawOneGlyph(*this, paint, cache.get(), wrapper.getBlitter()); SkPaint::Align textAlignment = paint.getTextAlign(); SkFindAndPlaceGlyph::ProcessPosText( paint.getTextEncoding(), text, byteLength, offset, *fMatrix, pos, scalarsPerPosition, textAlignment, cache.get(), drawOneGlyph); } #if defined _WIN32 #pragma warning ( pop ) #endif /////////////////////////////////////////////////////////////////////////////// static SkScan::HairRCProc ChooseHairProc(bool doAntiAlias) { return doAntiAlias ? SkScan::AntiHairLine : SkScan::HairLine; } static bool texture_to_matrix(const VertState& state, const SkPoint verts[], const SkPoint texs[], SkMatrix* matrix) { SkPoint src[3], dst[3]; src[0] = texs[state.f0]; src[1] = texs[state.f1]; src[2] = texs[state.f2]; dst[0] = verts[state.f0]; dst[1] = verts[state.f1]; dst[2] = verts[state.f2]; return matrix->setPolyToPoly(src, dst, 3); } class SkTriColorShader : public SkShader { public: SkTriColorShader(); class TriColorShaderContext : public SkShader::Context { public: TriColorShaderContext(const SkTriColorShader& shader, const ContextRec&); virtual ~TriColorShaderContext(); void shadeSpan(int x, int y, SkPMColor dstC[], int count) override; private: bool setup(const SkPoint pts[], const SkColor colors[], int, int, int); SkMatrix fDstToUnit; SkPMColor fColors[3]; bool fSetup; typedef SkShader::Context INHERITED; }; struct TriColorShaderData { const SkPoint* pts; const SkColor* colors; const VertState *state; }; SK_TO_STRING_OVERRIDE() // For serialization. This will never be called. Factory getFactory() const override { sk_throw(); return nullptr; } // Supply setup data to context from drawing setup void bindSetupData(TriColorShaderData* setupData) { fSetupData = setupData; } // Take the setup data from context when needed. TriColorShaderData* takeSetupData() { TriColorShaderData *data = fSetupData; fSetupData = NULL; return data; } protected: size_t onContextSize(const ContextRec&) const override; Context* onCreateContext(const ContextRec& rec, void* storage) const override { return new (storage) TriColorShaderContext(*this, rec); } private: TriColorShaderData *fSetupData; typedef SkShader INHERITED; }; bool SkTriColorShader::TriColorShaderContext::setup(const SkPoint pts[], const SkColor colors[], int index0, int index1, int index2) { fColors[0] = SkPreMultiplyColor(colors[index0]); fColors[1] = SkPreMultiplyColor(colors[index1]); fColors[2] = SkPreMultiplyColor(colors[index2]); SkMatrix m, im; m.reset(); m.set(0, pts[index1].fX - pts[index0].fX); m.set(1, pts[index2].fX - pts[index0].fX); m.set(2, pts[index0].fX); m.set(3, pts[index1].fY - pts[index0].fY); m.set(4, pts[index2].fY - pts[index0].fY); m.set(5, pts[index0].fY); if (!m.invert(&im)) { return false; } // We can't call getTotalInverse(), because we explicitly don't want to look at the localmatrix // as our interators are intrinsically tied to the vertices, and nothing else. SkMatrix ctmInv; if (!this->getCTM().invert(&ctmInv)) { return false; } // TODO replace INV(m) * INV(ctm) with INV(ctm * m) fDstToUnit.setConcat(im, ctmInv); return true; } #include "SkColorPriv.h" #include "SkComposeShader.h" static int ScalarTo256(SkScalar v) { return static_cast(SkScalarPin(v, 0, 1) * 256 + 0.5); } SkTriColorShader::SkTriColorShader() : INHERITED(NULL) , fSetupData(NULL) {} SkTriColorShader::TriColorShaderContext::TriColorShaderContext(const SkTriColorShader& shader, const ContextRec& rec) : INHERITED(shader, rec) , fSetup(false) {} SkTriColorShader::TriColorShaderContext::~TriColorShaderContext() {} size_t SkTriColorShader::onContextSize(const ContextRec&) const { return sizeof(TriColorShaderContext); } void SkTriColorShader::TriColorShaderContext::shadeSpan(int x, int y, SkPMColor dstC[], int count) { SkTriColorShader* parent = static_cast(const_cast(&fShader)); TriColorShaderData* set = parent->takeSetupData(); if (set) { fSetup = setup(set->pts, set->colors, set->state->f0, set->state->f1, set->state->f2); } if (!fSetup) { // Invalid matrices. Not checked before so no need to assert. return; } const int alphaScale = Sk255To256(this->getPaintAlpha()); SkPoint src; for (int i = 0; i < count; i++) { fDstToUnit.mapXY(SkIntToScalar(x), SkIntToScalar(y), &src); x += 1; int scale1 = ScalarTo256(src.fX); int scale2 = ScalarTo256(src.fY); int scale0 = 256 - scale1 - scale2; if (scale0 < 0) { if (scale1 > scale2) { scale2 = 256 - scale1; } else { scale1 = 256 - scale2; } scale0 = 0; } if (256 != alphaScale) { scale0 = SkAlphaMul(scale0, alphaScale); scale1 = SkAlphaMul(scale1, alphaScale); scale2 = SkAlphaMul(scale2, alphaScale); } dstC[i] = SkAlphaMulQ(fColors[0], scale0) + SkAlphaMulQ(fColors[1], scale1) + SkAlphaMulQ(fColors[2], scale2); } } #ifndef SK_IGNORE_TO_STRING void SkTriColorShader::toString(SkString* str) const { str->append("SkTriColorShader: ("); this->INHERITED::toString(str); str->append(")"); } #endif void SkDraw::drawVertices(SkCanvas::VertexMode vmode, int count, const SkPoint vertices[], const SkPoint textures[], const SkColor colors[], SkXfermode* xmode, const uint16_t indices[], int indexCount, const SkPaint& paint) const { SkASSERT(0 == count || vertices); // abort early if there is nothing to draw if (count < 3 || (indices && indexCount < 3) || fRC->isEmpty()) { return; } // transform out vertices into device coordinates SkAutoSTMalloc<16, SkPoint> storage(count); SkPoint* devVerts = storage.get(); fMatrix->mapPoints(devVerts, vertices, count); /* We can draw the vertices in 1 of 4 ways: - solid color (no shader/texture[], no colors[]) - just colors (no shader/texture[], has colors[]) - just texture (has shader/texture[], no colors[]) - colors * texture (has shader/texture[], has colors[]) Thus for texture drawing, we need both texture[] and a shader. */ auto triShader = sk_make_sp(); SkPaint p(paint); SkShader* shader = p.getShader(); if (nullptr == shader) { // if we have no shader, we ignore the texture coordinates textures = nullptr; } else if (nullptr == textures) { // if we don't have texture coordinates, ignore the shader p.setShader(nullptr); shader = nullptr; } // setup the custom shader (if needed) if (colors) { if (nullptr == textures) { // just colors (no texture) p.setShader(triShader); shader = p.getShader(); } else { // colors * texture SkASSERT(shader); sk_sp xfer = xmode ? sk_ref_sp(xmode) : SkXfermode::Make(SkXfermode::kModulate_Mode); p.setShader(SkShader::MakeComposeShader(triShader, sk_ref_sp(shader), std::move(xfer))); } } SkAutoBlitterChoose blitter(fDst, *fMatrix, p); // Abort early if we failed to create a shader context. if (blitter->isNullBlitter()) { return; } // setup our state and function pointer for iterating triangles VertState state(count, indices, indexCount); VertState::Proc vertProc = state.chooseProc(vmode); if (textures || colors) { SkTriColorShader::TriColorShaderData verticesSetup = { vertices, colors, &state }; while (vertProc(&state)) { if (textures) { SkMatrix tempM; if (texture_to_matrix(state, vertices, textures, &tempM)) { SkShader::ContextRec rec(p, *fMatrix, &tempM, SkBlitter::PreferredShaderDest(fDst.info())); if (!blitter->resetShaderContext(rec)) { continue; } } } if (colors) { triShader->bindSetupData(&verticesSetup); } SkPoint tmp[] = { devVerts[state.f0], devVerts[state.f1], devVerts[state.f2] }; SkScan::FillTriangle(tmp, *fRC, blitter.get()); triShader->bindSetupData(NULL); } } else { // no colors[] and no texture, stroke hairlines with paint's color. SkScan::HairRCProc hairProc = ChooseHairProc(paint.isAntiAlias()); const SkRasterClip& clip = *fRC; while (vertProc(&state)) { SkPoint array[] = { devVerts[state.f0], devVerts[state.f1], devVerts[state.f2], devVerts[state.f0] }; hairProc(array, 4, clip, blitter.get()); } } } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// #ifdef SK_DEBUG void SkDraw::validate() const { SkASSERT(fMatrix != nullptr); SkASSERT(fClip != nullptr); SkASSERT(fRC != nullptr); const SkIRect& cr = fRC->getBounds(); SkIRect br; br.set(0, 0, fDst.width(), fDst.height()); SkASSERT(cr.isEmpty() || br.contains(cr)); } #endif //////////////////////////////////////////////////////////////////////////////////////////////// #include "SkPath.h" #include "SkDraw.h" #include "SkRegion.h" #include "SkBlitter.h" static bool compute_bounds(const SkPath& devPath, const SkIRect* clipBounds, const SkMaskFilter* filter, const SkMatrix* filterMatrix, SkIRect* bounds) { if (devPath.isEmpty()) { return false; } // init our bounds from the path *bounds = devPath.getBounds().makeOutset(SK_ScalarHalf, SK_ScalarHalf).roundOut(); SkIPoint margin = SkIPoint::Make(0, 0); if (filter) { SkASSERT(filterMatrix); SkMask srcM, dstM; srcM.fBounds = *bounds; srcM.fFormat = SkMask::kA8_Format; if (!filter->filterMask(&dstM, srcM, *filterMatrix, &margin)) { return false; } } // (possibly) trim the bounds to reflect the clip // (plus whatever slop the filter needs) if (clipBounds) { // Ugh. Guard against gigantic margins from wacky filters. Without this // check we can request arbitrary amounts of slop beyond our visible // clip, and bring down the renderer (at least on finite RAM machines // like handsets, etc.). Need to balance this invented value between // quality of large filters like blurs, and the corresponding memory // requests. static const int MAX_MARGIN = 128; if (!bounds->intersect(clipBounds->makeOutset(SkMin32(margin.fX, MAX_MARGIN), SkMin32(margin.fY, MAX_MARGIN)))) { return false; } } return true; } static void draw_into_mask(const SkMask& mask, const SkPath& devPath, SkPaint::Style style) { SkDraw draw; if (!draw.fDst.reset(mask)) { return; } SkRasterClip clip; SkMatrix matrix; SkPaint paint; clip.setRect(SkIRect::MakeWH(mask.fBounds.width(), mask.fBounds.height())); matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft), -SkIntToScalar(mask.fBounds.fTop)); draw.fRC = &clip; draw.fClip = &clip.bwRgn(); draw.fMatrix = &matrix; paint.setAntiAlias(true); paint.setStyle(style); draw.drawPath(devPath, paint); } bool SkDraw::DrawToMask(const SkPath& devPath, const SkIRect* clipBounds, const SkMaskFilter* filter, const SkMatrix* filterMatrix, SkMask* mask, SkMask::CreateMode mode, SkPaint::Style style) { if (SkMask::kJustRenderImage_CreateMode != mode) { if (!compute_bounds(devPath, clipBounds, filter, filterMatrix, &mask->fBounds)) return false; } if (SkMask::kComputeBoundsAndRenderImage_CreateMode == mode) { mask->fFormat = SkMask::kA8_Format; mask->fRowBytes = mask->fBounds.width(); size_t size = mask->computeImageSize(); if (0 == size) { // we're too big to allocate the mask, abort return false; } mask->fImage = SkMask::AllocImage(size); memset(mask->fImage, 0, mask->computeImageSize()); } if (SkMask::kJustComputeBounds_CreateMode != mode) { draw_into_mask(*mask, devPath, style); } return true; }