/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkDraw.h" #include "SkBlitter.h" #include "SkBounder.h" #include "SkCanvas.h" #include "SkColorPriv.h" #include "SkDevice.h" #include "SkDeviceLooper.h" #include "SkFixed.h" #include "SkMaskFilter.h" #include "SkPaint.h" #include "SkPathEffect.h" #include "SkRasterClip.h" #include "SkRasterizer.h" #include "SkRRect.h" #include "SkScan.h" #include "SkShader.h" #include "SkString.h" #include "SkStroke.h" #include "SkTemplatesPriv.h" #include "SkTLazy.h" #include "SkUtils.h" #include "SkAutoKern.h" #include "SkBitmapProcShader.h" #include "SkDrawProcs.h" #include "SkMatrixUtils.h" //#define TRACE_BITMAP_DRAWS #define kBlitterStorageLongCount (sizeof(SkBitmapProcShader) >> 2) /** Helper for allocating small blitters on the stack. */ class SkAutoBlitterChoose : SkNoncopyable { public: SkAutoBlitterChoose() { fBlitter = NULL; } SkAutoBlitterChoose(const SkBitmap& device, const SkMatrix& matrix, const SkPaint& paint, bool drawCoverage = false) { fBlitter = SkBlitter::Choose(device, matrix, paint, fStorage, sizeof(fStorage), drawCoverage); } ~SkAutoBlitterChoose() { if ((void*)fBlitter == (void*)fStorage) { fBlitter->~SkBlitter(); } else { SkDELETE(fBlitter); } } SkBlitter* operator->() { return fBlitter; } SkBlitter* get() const { return fBlitter; } void choose(const SkBitmap& device, const SkMatrix& matrix, const SkPaint& paint) { SkASSERT(!fBlitter); fBlitter = SkBlitter::Choose(device, matrix, paint, fStorage, sizeof(fStorage)); } private: SkBlitter* fBlitter; uint32_t fStorage[kBlitterStorageLongCount]; }; #define SkAutoBlitterChoose(...) SK_REQUIRE_LOCAL_VAR(SkAutoBlitterChoose) /** * Since we are providing the storage for the shader (to avoid the perf cost * of calling new) we insist that in our destructor we can account for all * owners of the shader. */ class SkAutoBitmapShaderInstall : SkNoncopyable { public: SkAutoBitmapShaderInstall(const SkBitmap& src, const SkPaint& paint) : fPaint(paint) /* makes a copy of the paint */ { fPaint.setShader(SkShader::CreateBitmapShader(src, SkShader::kClamp_TileMode, SkShader::kClamp_TileMode, fStorage, sizeof(fStorage))); // we deliberately left the shader with an owner-count of 2 SkASSERT(2 == fPaint.getShader()->getRefCnt()); } ~SkAutoBitmapShaderInstall() { SkShader* shader = fPaint.getShader(); // since we manually destroy shader, we insist that owners == 2 SkASSERT(2 == shader->getRefCnt()); fPaint.setShader(NULL); // unref the shader by 1 // now destroy to take care of the 2nd owner-count if ((void*)shader == (void*)fStorage) { shader->~SkShader(); } else { SkDELETE(shader); } } // return the new paint that has the shader applied const SkPaint& paintWithShader() const { return fPaint; } private: SkPaint fPaint; // copy of caller's paint (which we then modify) uint32_t fStorage[kBlitterStorageLongCount]; }; #define SkAutoBitmapShaderInstall(...) SK_REQUIRE_LOCAL_VAR(SkAutoBitmapShaderInstall) /////////////////////////////////////////////////////////////////////////////// SkDraw::SkDraw() { sk_bzero(this, sizeof(*this)); } SkDraw::SkDraw(const SkDraw& src) { memcpy(this, &src, sizeof(*this)); } bool SkDraw::computeConservativeLocalClipBounds(SkRect* localBounds) const { if (fRC->isEmpty()) { return false; } SkMatrix inverse; if (!fMatrix->invert(&inverse)) { return false; } SkIRect devBounds = fRC->getBounds(); // outset to have slop for antialasing and hairlines devBounds.outset(1, 1); inverse.mapRect(localBounds, SkRect::Make(devBounds)); return true; } /////////////////////////////////////////////////////////////////////////////// typedef void (*BitmapXferProc)(void* pixels, size_t bytes, uint32_t data); static void D_Clear_BitmapXferProc(void* pixels, size_t bytes, uint32_t) { sk_bzero(pixels, bytes); } static void D_Dst_BitmapXferProc(void*, size_t, uint32_t data) {} static void D32_Src_BitmapXferProc(void* pixels, size_t bytes, uint32_t data) { sk_memset32((uint32_t*)pixels, data, bytes >> 2); } static void D16_Src_BitmapXferProc(void* pixels, size_t bytes, uint32_t data) { sk_memset16((uint16_t*)pixels, data, bytes >> 1); } static void DA8_Src_BitmapXferProc(void* pixels, size_t bytes, uint32_t data) { memset(pixels, data, bytes); } static BitmapXferProc ChooseBitmapXferProc(const SkBitmap& bitmap, const SkPaint& paint, uint32_t* data) { // todo: we can apply colorfilter up front if no shader, so we wouldn't // need to abort this fastpath if (paint.getShader() || paint.getColorFilter()) { return NULL; } SkXfermode::Mode mode; if (!SkXfermode::AsMode(paint.getXfermode(), &mode)) { return NULL; } SkColor color = paint.getColor(); // collaps modes based on color... if (SkXfermode::kSrcOver_Mode == mode) { unsigned alpha = SkColorGetA(color); if (0 == alpha) { mode = SkXfermode::kDst_Mode; } else if (0xFF == alpha) { mode = SkXfermode::kSrc_Mode; } } switch (mode) { case SkXfermode::kClear_Mode: // SkDebugf("--- D_Clear_BitmapXferProc\n"); return D_Clear_BitmapXferProc; // ignore data case SkXfermode::kDst_Mode: // SkDebugf("--- D_Dst_BitmapXferProc\n"); return D_Dst_BitmapXferProc; // ignore data case SkXfermode::kSrc_Mode: { /* should I worry about dithering for the lower depths? */ SkPMColor pmc = SkPreMultiplyColor(color); switch (bitmap.config()) { case SkBitmap::kARGB_8888_Config: if (data) { *data = pmc; } // SkDebugf("--- D32_Src_BitmapXferProc\n"); return D32_Src_BitmapXferProc; case SkBitmap::kRGB_565_Config: if (data) { *data = SkPixel32ToPixel16(pmc); } // SkDebugf("--- D16_Src_BitmapXferProc\n"); return D16_Src_BitmapXferProc; case SkBitmap::kA8_Config: if (data) { *data = SkGetPackedA32(pmc); } // SkDebugf("--- DA8_Src_BitmapXferProc\n"); return DA8_Src_BitmapXferProc; default: break; } break; } default: break; } return NULL; } static void CallBitmapXferProc(const SkBitmap& bitmap, const SkIRect& rect, BitmapXferProc proc, uint32_t procData) { int shiftPerPixel; switch (bitmap.config()) { case SkBitmap::kARGB_8888_Config: shiftPerPixel = 2; break; case SkBitmap::kRGB_565_Config: shiftPerPixel = 1; break; case SkBitmap::kA8_Config: shiftPerPixel = 0; break; default: SkDEBUGFAIL("Can't use xferproc on this config"); return; } uint8_t* pixels = (uint8_t*)bitmap.getPixels(); SkASSERT(pixels); const size_t rowBytes = bitmap.rowBytes(); const int widthBytes = rect.width() << shiftPerPixel; // skip down to the first scanline and X position pixels += rect.fTop * rowBytes + (rect.fLeft << shiftPerPixel); for (int scans = rect.height() - 1; scans >= 0; --scans) { proc(pixels, widthBytes, procData); pixels += rowBytes; } } void SkDraw::drawPaint(const SkPaint& paint) const { SkDEBUGCODE(this->validate();) if (fRC->isEmpty()) { return; } SkIRect devRect; devRect.set(0, 0, fBitmap->width(), fBitmap->height()); if (fBounder && !fBounder->doIRect(devRect)) { return; } if (fRC->isBW()) { /* If we don't have a shader (i.e. we're just a solid color) we may be faster to operate directly on the device bitmap, rather than invoking a blitter. Esp. true for xfermodes, which require a colorshader to be present, which is just redundant work. Since we're drawing everywhere in the clip, we don't have to worry about antialiasing. */ uint32_t procData = 0; // to avoid the warning BitmapXferProc proc = ChooseBitmapXferProc(*fBitmap, paint, &procData); if (proc) { if (D_Dst_BitmapXferProc == proc) { // nothing to do return; } SkRegion::Iterator iter(fRC->bwRgn()); while (!iter.done()) { CallBitmapXferProc(*fBitmap, iter.rect(), proc, procData); iter.next(); } return; } } // normal case: use a blitter SkAutoBlitterChoose blitter(*fBitmap, *fMatrix, paint); SkScan::FillIRect(devRect, *fRC, blitter.get()); } /////////////////////////////////////////////////////////////////////////////// struct PtProcRec { SkCanvas::PointMode fMode; const SkPaint* fPaint; const SkRegion* fClip; const SkRasterClip* fRC; // computed values SkFixed fRadius; typedef void (*Proc)(const PtProcRec&, const SkPoint devPts[], int count, SkBlitter*); bool init(SkCanvas::PointMode, const SkPaint&, const SkMatrix* matrix, const SkRasterClip*); Proc chooseProc(SkBlitter** blitter); private: SkAAClipBlitterWrapper fWrapper; }; static void bw_pt_rect_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { SkASSERT(rec.fClip->isRect()); const SkIRect& r = rec.fClip->getBounds(); for (int i = 0; i < count; i++) { int x = SkScalarFloorToInt(devPts[i].fX); int y = SkScalarFloorToInt(devPts[i].fY); if (r.contains(x, y)) { blitter->blitH(x, y, 1); } } } static void bw_pt_rect_16_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { SkASSERT(rec.fRC->isRect()); const SkIRect& r = rec.fRC->getBounds(); uint32_t value; const SkBitmap* bitmap = blitter->justAnOpaqueColor(&value); SkASSERT(bitmap); uint16_t* addr = bitmap->getAddr16(0, 0); size_t rb = bitmap->rowBytes(); for (int i = 0; i < count; i++) { int x = SkScalarFloorToInt(devPts[i].fX); int y = SkScalarFloorToInt(devPts[i].fY); if (r.contains(x, y)) { ((uint16_t*)((char*)addr + y * rb))[x] = SkToU16(value); } } } static void bw_pt_rect_32_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { SkASSERT(rec.fRC->isRect()); const SkIRect& r = rec.fRC->getBounds(); uint32_t value; const SkBitmap* bitmap = blitter->justAnOpaqueColor(&value); SkASSERT(bitmap); SkPMColor* addr = bitmap->getAddr32(0, 0); size_t rb = bitmap->rowBytes(); for (int i = 0; i < count; i++) { int x = SkScalarFloorToInt(devPts[i].fX); int y = SkScalarFloorToInt(devPts[i].fY); if (r.contains(x, y)) { ((SkPMColor*)((char*)addr + y * rb))[x] = value; } } } static void bw_pt_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { for (int i = 0; i < count; i++) { int x = SkScalarFloorToInt(devPts[i].fX); int y = SkScalarFloorToInt(devPts[i].fY); if (rec.fClip->contains(x, y)) { blitter->blitH(x, y, 1); } } } static void bw_line_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { for (int i = 0; i < count; i += 2) { SkScan::HairLine(devPts[i], devPts[i+1], *rec.fRC, blitter); } } static void bw_poly_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { for (int i = 0; i < count - 1; i++) { SkScan::HairLine(devPts[i], devPts[i+1], *rec.fRC, blitter); } } // aa versions static void aa_line_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { for (int i = 0; i < count; i += 2) { SkScan::AntiHairLine(devPts[i], devPts[i+1], *rec.fRC, blitter); } } static void aa_poly_hair_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { for (int i = 0; i < count - 1; i++) { SkScan::AntiHairLine(devPts[i], devPts[i+1], *rec.fRC, blitter); } } // square procs (strokeWidth > 0 but matrix is square-scale (sx == sy) static void bw_square_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { const SkFixed radius = rec.fRadius; for (int i = 0; i < count; i++) { SkFixed x = SkScalarToFixed(devPts[i].fX); SkFixed y = SkScalarToFixed(devPts[i].fY); SkXRect r; r.fLeft = x - radius; r.fTop = y - radius; r.fRight = x + radius; r.fBottom = y + radius; SkScan::FillXRect(r, *rec.fRC, blitter); } } static void aa_square_proc(const PtProcRec& rec, const SkPoint devPts[], int count, SkBlitter* blitter) { const SkFixed radius = rec.fRadius; for (int i = 0; i < count; i++) { SkFixed x = SkScalarToFixed(devPts[i].fX); SkFixed y = SkScalarToFixed(devPts[i].fY); SkXRect r; r.fLeft = x - radius; r.fTop = y - radius; r.fRight = x + radius; r.fBottom = y + radius; SkScan::AntiFillXRect(r, *rec.fRC, blitter); } } // If this guy returns true, then chooseProc() must return a valid proc bool PtProcRec::init(SkCanvas::PointMode mode, const SkPaint& paint, const SkMatrix* matrix, const SkRasterClip* rc) { if (paint.getPathEffect()) { return false; } SkScalar width = paint.getStrokeWidth(); if (0 == width) { fMode = mode; fPaint = &paint; fClip = NULL; fRC = rc; fRadius = SK_FixedHalf; return true; } if (paint.getStrokeCap() != SkPaint::kRound_Cap && matrix->rectStaysRect() && SkCanvas::kPoints_PointMode == mode) { SkScalar sx = matrix->get(SkMatrix::kMScaleX); SkScalar sy = matrix->get(SkMatrix::kMScaleY); if (SkScalarNearlyZero(sx - sy)) { if (sx < 0) { sx = -sx; } fMode = mode; fPaint = &paint; fClip = NULL; fRC = rc; fRadius = SkScalarToFixed(SkScalarMul(width, sx)) >> 1; return true; } } return false; } PtProcRec::Proc PtProcRec::chooseProc(SkBlitter** blitterPtr) { Proc proc = NULL; SkBlitter* blitter = *blitterPtr; if (fRC->isBW()) { fClip = &fRC->bwRgn(); } else { fWrapper.init(*fRC, blitter); fClip = &fWrapper.getRgn(); blitter = fWrapper.getBlitter(); *blitterPtr = blitter; } // for our arrays SkASSERT(0 == SkCanvas::kPoints_PointMode); SkASSERT(1 == SkCanvas::kLines_PointMode); SkASSERT(2 == SkCanvas::kPolygon_PointMode); SkASSERT((unsigned)fMode <= (unsigned)SkCanvas::kPolygon_PointMode); if (fPaint->isAntiAlias()) { if (0 == fPaint->getStrokeWidth()) { static const Proc gAAProcs[] = { aa_square_proc, aa_line_hair_proc, aa_poly_hair_proc }; proc = gAAProcs[fMode]; } else if (fPaint->getStrokeCap() != SkPaint::kRound_Cap) { SkASSERT(SkCanvas::kPoints_PointMode == fMode); proc = aa_square_proc; } } else { // BW if (fRadius <= SK_FixedHalf) { // small radii and hairline if (SkCanvas::kPoints_PointMode == fMode && fClip->isRect()) { uint32_t value; const SkBitmap* bm = blitter->justAnOpaqueColor(&value); if (bm && SkBitmap::kRGB_565_Config == bm->config()) { proc = bw_pt_rect_16_hair_proc; } else if (bm && SkBitmap::kARGB_8888_Config == bm->config()) { proc = bw_pt_rect_32_hair_proc; } else { proc = bw_pt_rect_hair_proc; } } else { static Proc gBWProcs[] = { bw_pt_hair_proc, bw_line_hair_proc, bw_poly_hair_proc }; proc = gBWProcs[fMode]; } } else { proc = bw_square_proc; } } return proc; } static bool bounder_points(SkBounder* bounder, SkCanvas::PointMode mode, size_t count, const SkPoint pts[], const SkPaint& paint, const SkMatrix& matrix) { SkIRect ibounds; SkRect bounds; SkScalar inset = paint.getStrokeWidth(); bounds.set(pts, count); bounds.inset(-inset, -inset); matrix.mapRect(&bounds); bounds.roundOut(&ibounds); return bounder->doIRect(ibounds); } // each of these costs 8-bytes of stack space, so don't make it too large // must be even for lines/polygon to work #define MAX_DEV_PTS 32 void SkDraw::drawPoints(SkCanvas::PointMode mode, size_t count, const SkPoint pts[], const SkPaint& paint, bool forceUseDevice) const { // if we're in lines mode, force count to be even if (SkCanvas::kLines_PointMode == mode) { count &= ~(size_t)1; } if ((long)count <= 0) { return; } SkASSERT(pts != NULL); SkDEBUGCODE(this->validate();) // nothing to draw if (fRC->isEmpty()) { return; } if (fBounder) { if (!bounder_points(fBounder, mode, count, pts, paint, *fMatrix)) { return; } // clear the bounder and call this again, so we don't invoke the bounder // later if we happen to call ourselves for drawRect, drawPath, etc. SkDraw noBounder(*this); noBounder.fBounder = NULL; noBounder.drawPoints(mode, count, pts, paint, forceUseDevice); return; } PtProcRec rec; if (!forceUseDevice && rec.init(mode, paint, fMatrix, fRC)) { SkAutoBlitterChoose blitter(*fBitmap, *fMatrix, paint); SkPoint devPts[MAX_DEV_PTS]; const SkMatrix* matrix = fMatrix; SkBlitter* bltr = blitter.get(); PtProcRec::Proc proc = rec.chooseProc(&bltr); // we have to back up subsequent passes if we're in polygon mode const size_t backup = (SkCanvas::kPolygon_PointMode == mode); do { size_t n = count; if (n > MAX_DEV_PTS) { n = MAX_DEV_PTS; } matrix->mapPoints(devPts, pts, n); proc(rec, devPts, n, bltr); pts += n - backup; SkASSERT(count >= n); count -= n; if (count > 0) { count += backup; } } while (count != 0); } else { switch (mode) { case SkCanvas::kPoints_PointMode: { // temporarily mark the paint as filling. SkPaint newPaint(paint); newPaint.setStyle(SkPaint::kFill_Style); SkScalar width = newPaint.getStrokeWidth(); SkScalar radius = SkScalarHalf(width); if (newPaint.getStrokeCap() == SkPaint::kRound_Cap) { SkPath path; SkMatrix preMatrix; path.addCircle(0, 0, radius); for (size_t i = 0; i < count; i++) { preMatrix.setTranslate(pts[i].fX, pts[i].fY); // pass true for the last point, since we can modify // then path then if (fDevice) { fDevice->drawPath(*this, path, newPaint, &preMatrix, (count-1) == i); } else { this->drawPath(path, newPaint, &preMatrix, (count-1) == i); } } } else { SkRect r; for (size_t i = 0; i < count; i++) { r.fLeft = pts[i].fX - radius; r.fTop = pts[i].fY - radius; r.fRight = r.fLeft + width; r.fBottom = r.fTop + width; if (fDevice) { fDevice->drawRect(*this, r, newPaint); } else { this->drawRect(r, newPaint); } } } break; } case SkCanvas::kLines_PointMode: #ifndef SK_DISABLE_DASHING_OPTIMIZATION if (2 == count && NULL != paint.getPathEffect()) { // most likely a dashed line - see if it is one of the ones // we can accelerate SkStrokeRec rec(paint); SkPathEffect::PointData pointData; SkPath path; path.moveTo(pts[0]); path.lineTo(pts[1]); SkRect cullRect = SkRect::Make(fRC->getBounds()); if (paint.getPathEffect()->asPoints(&pointData, path, rec, *fMatrix, &cullRect)) { // 'asPoints' managed to find some fast path SkPaint newP(paint); newP.setPathEffect(NULL); newP.setStyle(SkPaint::kFill_Style); if (!pointData.fFirst.isEmpty()) { if (fDevice) { fDevice->drawPath(*this, pointData.fFirst, newP); } else { this->drawPath(pointData.fFirst, newP); } } if (!pointData.fLast.isEmpty()) { if (fDevice) { fDevice->drawPath(*this, pointData.fLast, newP); } else { this->drawPath(pointData.fLast, newP); } } if (pointData.fSize.fX == pointData.fSize.fY) { // The rest of the dashed line can just be drawn as points SkASSERT(pointData.fSize.fX == SkScalarHalf(newP.getStrokeWidth())); if (SkPathEffect::PointData::kCircles_PointFlag & pointData.fFlags) { newP.setStrokeCap(SkPaint::kRound_Cap); } else { newP.setStrokeCap(SkPaint::kButt_Cap); } if (fDevice) { fDevice->drawPoints(*this, SkCanvas::kPoints_PointMode, pointData.fNumPoints, pointData.fPoints, newP); } else { this->drawPoints(SkCanvas::kPoints_PointMode, pointData.fNumPoints, pointData.fPoints, newP, forceUseDevice); } break; } else { // The rest of the dashed line must be drawn as rects SkASSERT(!(SkPathEffect::PointData::kCircles_PointFlag & pointData.fFlags)); SkRect r; for (int i = 0; i < pointData.fNumPoints; ++i) { r.set(pointData.fPoints[i].fX - pointData.fSize.fX, pointData.fPoints[i].fY - pointData.fSize.fY, pointData.fPoints[i].fX + pointData.fSize.fX, pointData.fPoints[i].fY + pointData.fSize.fY); if (fDevice) { fDevice->drawRect(*this, r, newP); } else { this->drawRect(r, newP); } } } break; } } #endif // DISABLE_DASHING_OPTIMIZATION // couldn't take fast path so fall through! case SkCanvas::kPolygon_PointMode: { count -= 1; SkPath path; SkPaint p(paint); p.setStyle(SkPaint::kStroke_Style); size_t inc = (SkCanvas::kLines_PointMode == mode) ? 2 : 1; for (size_t i = 0; i < count; i += inc) { path.moveTo(pts[i]); path.lineTo(pts[i+1]); if (fDevice) { fDevice->drawPath(*this, path, p, NULL, true); } else { this->drawPath(path, p, NULL, true); } path.rewind(); } break; } } } } static bool easy_rect_join(const SkPaint& paint, const SkMatrix& matrix, SkPoint* strokeSize) { if (SkPaint::kMiter_Join != paint.getStrokeJoin() || paint.getStrokeMiter() < SK_ScalarSqrt2) { return false; } SkASSERT(matrix.rectStaysRect()); SkPoint pt = { paint.getStrokeWidth(), paint.getStrokeWidth() }; matrix.mapVectors(strokeSize, &pt, 1); strokeSize->fX = SkScalarAbs(strokeSize->fX); strokeSize->fY = SkScalarAbs(strokeSize->fY); return true; } SkDraw::RectType SkDraw::ComputeRectType(const SkPaint& paint, const SkMatrix& matrix, SkPoint* strokeSize) { RectType rtype; const SkScalar width = paint.getStrokeWidth(); const bool zeroWidth = (0 == width); SkPaint::Style style = paint.getStyle(); if ((SkPaint::kStrokeAndFill_Style == style) && zeroWidth) { style = SkPaint::kFill_Style; } if (paint.getPathEffect() || paint.getMaskFilter() || paint.getRasterizer() || !matrix.rectStaysRect() || SkPaint::kStrokeAndFill_Style == style) { rtype = kPath_RectType; } else if (SkPaint::kFill_Style == style) { rtype = kFill_RectType; } else if (zeroWidth) { rtype = kHair_RectType; } else if (easy_rect_join(paint, matrix, strokeSize)) { rtype = kStroke_RectType; } else { rtype = kPath_RectType; } return rtype; } static const SkPoint* rect_points(const SkRect& r) { return SkTCast(&r); } static SkPoint* rect_points(SkRect& r) { return SkTCast(&r); } void SkDraw::drawRect(const SkRect& rect, const SkPaint& paint) const { SkDEBUGCODE(this->validate();) // nothing to draw if (fRC->isEmpty()) { return; } SkPoint strokeSize; RectType rtype = ComputeRectType(paint, *fMatrix, &strokeSize); if (kPath_RectType == rtype) { SkPath tmp; tmp.addRect(rect); tmp.setFillType(SkPath::kWinding_FillType); this->drawPath(tmp, paint, NULL, true); return; } const SkMatrix& matrix = *fMatrix; SkRect devRect; // transform rect into devRect matrix.mapPoints(rect_points(devRect), rect_points(rect), 2); devRect.sort(); if (fBounder && !fBounder->doRect(devRect, paint)) { return; } // look for the quick exit, before we build a blitter SkIRect ir; devRect.roundOut(&ir); if (paint.getStyle() != SkPaint::kFill_Style) { // extra space for hairlines ir.inset(-1, -1); } if (fRC->quickReject(ir)) { return; } SkDeviceLooper looper(*fBitmap, *fRC, ir, paint.isAntiAlias()); while (looper.next()) { SkRect localDevRect; looper.mapRect(&localDevRect, devRect); SkMatrix localMatrix; looper.mapMatrix(&localMatrix, matrix); SkAutoBlitterChoose blitterStorage(looper.getBitmap(), localMatrix, paint); const SkRasterClip& clip = looper.getRC(); SkBlitter* blitter = blitterStorage.get(); // we want to "fill" if we are kFill or kStrokeAndFill, since in the latter // case we are also hairline (if we've gotten to here), which devolves to // effectively just kFill switch (rtype) { case kFill_RectType: if (paint.isAntiAlias()) { SkScan::AntiFillRect(localDevRect, clip, blitter); } else { SkScan::FillRect(localDevRect, clip, blitter); } break; case kStroke_RectType: if (paint.isAntiAlias()) { SkScan::AntiFrameRect(localDevRect, strokeSize, clip, blitter); } else { SkScan::FrameRect(localDevRect, strokeSize, clip, blitter); } break; case kHair_RectType: if (paint.isAntiAlias()) { SkScan::AntiHairRect(localDevRect, clip, blitter); } else { SkScan::HairRect(localDevRect, clip, blitter); } break; default: SkDEBUGFAIL("bad rtype"); } } } void SkDraw::drawDevMask(const SkMask& srcM, const SkPaint& paint) const { if (srcM.fBounds.isEmpty()) { return; } const SkMask* mask = &srcM; SkMask dstM; if (paint.getMaskFilter() && paint.getMaskFilter()->filterMask(&dstM, srcM, *fMatrix, NULL)) { mask = &dstM; } else { dstM.fImage = NULL; } SkAutoMaskFreeImage ami(dstM.fImage); if (fBounder && !fBounder->doIRect(mask->fBounds)) { return; } SkAutoBlitterChoose blitterChooser(*fBitmap, *fMatrix, paint); SkBlitter* blitter = blitterChooser.get(); SkAAClipBlitterWrapper wrapper; const SkRegion* clipRgn; if (fRC->isBW()) { clipRgn = &fRC->bwRgn(); } else { wrapper.init(*fRC, blitter); clipRgn = &wrapper.getRgn(); blitter = wrapper.getBlitter(); } blitter->blitMaskRegion(*mask, *clipRgn); } static SkScalar fast_len(const SkVector& vec) { SkScalar x = SkScalarAbs(vec.fX); SkScalar y = SkScalarAbs(vec.fY); if (x < y) { SkTSwap(x, y); } return x + SkScalarHalf(y); } static bool xfermodeSupportsCoverageAsAlpha(SkXfermode* xfer) { SkXfermode::Coeff dc; if (!SkXfermode::AsCoeff(xfer, NULL, &dc)) { return false; } switch (dc) { case SkXfermode::kOne_Coeff: case SkXfermode::kISA_Coeff: case SkXfermode::kISC_Coeff: return true; default: return false; } } bool SkDrawTreatAAStrokeAsHairline(SkScalar strokeWidth, const SkMatrix& matrix, SkScalar* coverage) { SkASSERT(strokeWidth > 0); // We need to try to fake a thick-stroke with a modulated hairline. if (matrix.hasPerspective()) { return false; } SkVector src[2], dst[2]; src[0].set(strokeWidth, 0); src[1].set(0, strokeWidth); matrix.mapVectors(dst, src, 2); SkScalar len0 = fast_len(dst[0]); SkScalar len1 = fast_len(dst[1]); if (len0 <= SK_Scalar1 && len1 <= SK_Scalar1) { if (NULL != coverage) { *coverage = SkScalarAve(len0, len1); } return true; } return false; } void SkDraw::drawRRect(const SkRRect& rrect, const SkPaint& paint) const { SkDEBUGCODE(this->validate()); if (fRC->isEmpty()) { return; } { // TODO: Investigate optimizing these options. They are in the same // order as SkDraw::drawPath, which handles each case. It may be // that there is no way to optimize for these using the SkRRect path. SkScalar coverage; if (SkDrawTreatAsHairline(paint, *fMatrix, &coverage)) { goto DRAW_PATH; } if (paint.getPathEffect() || paint.getStyle() != SkPaint::kFill_Style) { goto DRAW_PATH; } if (paint.getRasterizer()) { goto DRAW_PATH; } } if (paint.getMaskFilter()) { // Transform the rrect into device space. SkRRect devRRect; if (rrect.transform(*fMatrix, &devRRect)) { SkAutoBlitterChoose blitter(*fBitmap, *fMatrix, paint); if (paint.getMaskFilter()->filterRRect(devRRect, *fMatrix, *fRC, fBounder, blitter.get(), SkPaint::kFill_Style)) { return; // filterRRect() called the blitter, so we're done } } } DRAW_PATH: // Now fall back to the default case of using a path. SkPath path; path.addRRect(rrect); this->drawPath(path, paint, NULL, true); } void SkDraw::drawPath(const SkPath& origSrcPath, const SkPaint& origPaint, const SkMatrix* prePathMatrix, bool pathIsMutable, bool drawCoverage) const { SkDEBUGCODE(this->validate();) // nothing to draw if (fRC->isEmpty()) { return; } SkPath* pathPtr = (SkPath*)&origSrcPath; bool doFill = true; SkPath tmpPath; SkMatrix tmpMatrix; const SkMatrix* matrix = fMatrix; if (prePathMatrix) { if (origPaint.getPathEffect() || origPaint.getStyle() != SkPaint::kFill_Style || origPaint.getRasterizer()) { SkPath* result = pathPtr; if (!pathIsMutable) { result = &tmpPath; pathIsMutable = true; } pathPtr->transform(*prePathMatrix, result); pathPtr = result; } else { if (!tmpMatrix.setConcat(*matrix, *prePathMatrix)) { // overflow return; } matrix = &tmpMatrix; } } // at this point we're done with prePathMatrix SkDEBUGCODE(prePathMatrix = (const SkMatrix*)0x50FF8001;) SkTCopyOnFirstWrite paint(origPaint); { SkScalar coverage; if (SkDrawTreatAsHairline(origPaint, *matrix, &coverage)) { if (SK_Scalar1 == coverage) { paint.writable()->setStrokeWidth(0); } else if (xfermodeSupportsCoverageAsAlpha(origPaint.getXfermode())) { U8CPU newAlpha; #if 0 newAlpha = SkToU8(SkScalarRoundToInt(coverage * origPaint.getAlpha())); #else // this is the old technique, which we preserve for now so // we don't change previous results (testing) // the new way seems fine, its just (a tiny bit) different int scale = (int)SkScalarMul(coverage, 256); newAlpha = origPaint.getAlpha() * scale >> 8; #endif SkPaint* writablePaint = paint.writable(); writablePaint->setStrokeWidth(0); writablePaint->setAlpha(newAlpha); } } } if (paint->getPathEffect() || paint->getStyle() != SkPaint::kFill_Style) { SkRect cullRect; const SkRect* cullRectPtr = NULL; if (this->computeConservativeLocalClipBounds(&cullRect)) { cullRectPtr = &cullRect; } doFill = paint->getFillPath(*pathPtr, &tmpPath, cullRectPtr); pathPtr = &tmpPath; } if (paint->getRasterizer()) { SkMask mask; if (paint->getRasterizer()->rasterize(*pathPtr, *matrix, &fRC->getBounds(), paint->getMaskFilter(), &mask, SkMask::kComputeBoundsAndRenderImage_CreateMode)) { this->drawDevMask(mask, *paint); SkMask::FreeImage(mask.fImage); } return; } // avoid possibly allocating a new path in transform if we can SkPath* devPathPtr = pathIsMutable ? pathPtr : &tmpPath; // transform the path into device space pathPtr->transform(*matrix, devPathPtr); SkAutoBlitterChoose blitter(*fBitmap, *fMatrix, *paint, drawCoverage); if (paint->getMaskFilter()) { SkPaint::Style style = doFill ? SkPaint::kFill_Style : SkPaint::kStroke_Style; if (paint->getMaskFilter()->filterPath(*devPathPtr, *fMatrix, *fRC, fBounder, blitter.get(), style)) { return; // filterPath() called the blitter, so we're done } } if (fBounder && !fBounder->doPath(*devPathPtr, *paint, doFill)) { return; } void (*proc)(const SkPath&, const SkRasterClip&, SkBlitter*); if (doFill) { if (paint->isAntiAlias()) { proc = SkScan::AntiFillPath; } else { proc = SkScan::FillPath; } } else { // hairline if (paint->isAntiAlias()) { proc = SkScan::AntiHairPath; } else { proc = SkScan::HairPath; } } proc(*devPathPtr, *fRC, blitter.get()); } /** For the purposes of drawing bitmaps, if a matrix is "almost" translate go ahead and treat it as if it were, so that subsequent code can go fast. */ static bool just_translate(const SkMatrix& matrix, const SkBitmap& bitmap) { unsigned bits = 0; // TODO: find a way to allow the caller to tell us to // respect filtering. return SkTreatAsSprite(matrix, bitmap.width(), bitmap.height(), bits); } void SkDraw::drawBitmapAsMask(const SkBitmap& bitmap, const SkPaint& paint) const { SkASSERT(bitmap.config() == SkBitmap::kA8_Config); if (just_translate(*fMatrix, bitmap)) { int ix = SkScalarRoundToInt(fMatrix->getTranslateX()); int iy = SkScalarRoundToInt(fMatrix->getTranslateY()); SkAutoLockPixels alp(bitmap); if (!bitmap.readyToDraw()) { return; } SkMask mask; mask.fBounds.set(ix, iy, ix + bitmap.width(), iy + bitmap.height()); mask.fFormat = SkMask::kA8_Format; mask.fRowBytes = SkToU32(bitmap.rowBytes()); mask.fImage = bitmap.getAddr8(0, 0); this->drawDevMask(mask, paint); } else { // need to xform the bitmap first SkRect r; SkMask mask; r.set(0, 0, SkIntToScalar(bitmap.width()), SkIntToScalar(bitmap.height())); fMatrix->mapRect(&r); r.round(&mask.fBounds); // set the mask's bounds to the transformed bitmap-bounds, // clipped to the actual device { SkIRect devBounds; devBounds.set(0, 0, fBitmap->width(), fBitmap->height()); // need intersect(l, t, r, b) on irect if (!mask.fBounds.intersect(devBounds)) { return; } } mask.fFormat = SkMask::kA8_Format; mask.fRowBytes = SkAlign4(mask.fBounds.width()); size_t size = mask.computeImageSize(); if (0 == size) { // the mask is too big to allocated, draw nothing return; } // allocate (and clear) our temp buffer to hold the transformed bitmap SkAutoMalloc storage(size); mask.fImage = (uint8_t*)storage.get(); memset(mask.fImage, 0, size); // now draw our bitmap(src) into mask(dst), transformed by the matrix { SkBitmap device; device.setConfig(SkBitmap::kA8_Config, mask.fBounds.width(), mask.fBounds.height(), mask.fRowBytes); device.setPixels(mask.fImage); SkCanvas c(device); // need the unclipped top/left for the translate c.translate(-SkIntToScalar(mask.fBounds.fLeft), -SkIntToScalar(mask.fBounds.fTop)); c.concat(*fMatrix); // We can't call drawBitmap, or we'll infinitely recurse. Instead // we manually build a shader and draw that into our new mask SkPaint tmpPaint; tmpPaint.setFlags(paint.getFlags()); SkAutoBitmapShaderInstall install(bitmap, tmpPaint); SkRect rr; rr.set(0, 0, SkIntToScalar(bitmap.width()), SkIntToScalar(bitmap.height())); c.drawRect(rr, install.paintWithShader()); } this->drawDevMask(mask, paint); } } static bool clipped_out(const SkMatrix& m, const SkRasterClip& c, const SkRect& srcR) { SkRect dstR; SkIRect devIR; m.mapRect(&dstR, srcR); dstR.roundOut(&devIR); return c.quickReject(devIR); } static bool clipped_out(const SkMatrix& matrix, const SkRasterClip& clip, int width, int height) { SkRect r; r.set(0, 0, SkIntToScalar(width), SkIntToScalar(height)); return clipped_out(matrix, clip, r); } static bool clipHandlesSprite(const SkRasterClip& clip, int x, int y, const SkBitmap& bitmap) { return clip.isBW() || clip.quickContains(x, y, x + bitmap.width(), y + bitmap.height()); } void SkDraw::drawBitmap(const SkBitmap& bitmap, const SkMatrix& prematrix, const SkPaint& origPaint) const { SkDEBUGCODE(this->validate();) // nothing to draw if (fRC->isEmpty() || bitmap.width() == 0 || bitmap.height() == 0 || bitmap.config() == SkBitmap::kNo_Config) { return; } SkPaint paint(origPaint); paint.setStyle(SkPaint::kFill_Style); SkMatrix matrix; if (!matrix.setConcat(*fMatrix, prematrix)) { return; } if (clipped_out(matrix, *fRC, bitmap.width(), bitmap.height())) { return; } if (fBounder && just_translate(matrix, bitmap)) { SkIRect ir; int32_t ix = SkScalarRoundToInt(matrix.getTranslateX()); int32_t iy = SkScalarRoundToInt(matrix.getTranslateY()); ir.set(ix, iy, ix + bitmap.width(), iy + bitmap.height()); if (!fBounder->doIRect(ir)) { return; } } if (bitmap.config() != SkBitmap::kA8_Config && just_translate(matrix, bitmap)) { // // It is safe to call lock pixels now, since we know the matrix is // (more or less) identity. // SkAutoLockPixels alp(bitmap); if (!bitmap.readyToDraw()) { return; } int ix = SkScalarRoundToInt(matrix.getTranslateX()); int iy = SkScalarRoundToInt(matrix.getTranslateY()); if (clipHandlesSprite(*fRC, ix, iy, bitmap)) { uint32_t storage[kBlitterStorageLongCount]; SkBlitter* blitter = SkBlitter::ChooseSprite(*fBitmap, paint, bitmap, ix, iy, storage, sizeof(storage)); if (blitter) { SkAutoTPlacementDelete ad(blitter, storage); SkIRect ir; ir.set(ix, iy, ix + bitmap.width(), iy + bitmap.height()); SkScan::FillIRect(ir, *fRC, blitter); return; } } } // now make a temp draw on the stack, and use it // SkDraw draw(*this); draw.fMatrix = &matrix; if (bitmap.config() == SkBitmap::kA8_Config) { draw.drawBitmapAsMask(bitmap, paint); } else { SkAutoBitmapShaderInstall install(bitmap, paint); SkRect r; r.set(0, 0, SkIntToScalar(bitmap.width()), SkIntToScalar(bitmap.height())); // is this ok if paint has a rasterizer? draw.drawRect(r, install.paintWithShader()); } } void SkDraw::drawSprite(const SkBitmap& bitmap, int x, int y, const SkPaint& origPaint) const { SkDEBUGCODE(this->validate();) // nothing to draw if (fRC->isEmpty() || bitmap.width() == 0 || bitmap.height() == 0 || bitmap.config() == SkBitmap::kNo_Config) { return; } SkIRect bounds; bounds.set(x, y, x + bitmap.width(), y + bitmap.height()); if (fRC->quickReject(bounds)) { return; // nothing to draw } SkPaint paint(origPaint); paint.setStyle(SkPaint::kFill_Style); if (NULL == paint.getColorFilter() && clipHandlesSprite(*fRC, x, y, bitmap)) { uint32_t storage[kBlitterStorageLongCount]; SkBlitter* blitter = SkBlitter::ChooseSprite(*fBitmap, paint, bitmap, x, y, storage, sizeof(storage)); if (blitter) { SkAutoTPlacementDelete ad(blitter, storage); if (fBounder && !fBounder->doIRect(bounds)) { return; } SkScan::FillIRect(bounds, *fRC, blitter); return; } } SkAutoBitmapShaderInstall install(bitmap, paint); const SkPaint& shaderPaint = install.paintWithShader(); SkMatrix matrix; SkRect r; // get a scalar version of our rect r.set(bounds); // tell the shader our offset matrix.setTranslate(r.fLeft, r.fTop); shaderPaint.getShader()->setLocalMatrix(matrix); SkDraw draw(*this); matrix.reset(); draw.fMatrix = &matrix; // call ourself with a rect // is this OK if paint has a rasterizer? draw.drawRect(r, shaderPaint); } /////////////////////////////////////////////////////////////////////////////// #include "SkScalerContext.h" #include "SkGlyphCache.h" #include "SkTextToPathIter.h" #include "SkUtils.h" static void measure_text(SkGlyphCache* cache, SkDrawCacheProc glyphCacheProc, const char text[], size_t byteLength, SkVector* stopVector) { SkFixed x = 0, y = 0; const char* stop = text + byteLength; SkAutoKern autokern; while (text < stop) { // don't need x, y here, since all subpixel variants will have the // same advance const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0); x += autokern.adjust(glyph) + glyph.fAdvanceX; y += glyph.fAdvanceY; } stopVector->set(SkFixedToScalar(x), SkFixedToScalar(y)); SkASSERT(text == stop); } bool SkDraw::ShouldDrawTextAsPaths(const SkPaint& paint, const SkMatrix& ctm) { // hairline glyphs are fast enough so we don't need to cache them if (SkPaint::kStroke_Style == paint.getStyle() && 0 == paint.getStrokeWidth()) { return true; } // we don't cache perspective if (ctm.hasPerspective()) { return true; } SkMatrix textM; return SkPaint::TooBigToUseCache(ctm, *paint.setTextMatrix(&textM)); } void SkDraw::drawText_asPaths(const char text[], size_t byteLength, SkScalar x, SkScalar y, const SkPaint& paint) const { SkDEBUGCODE(this->validate();) SkTextToPathIter iter(text, byteLength, paint, true); SkMatrix matrix; matrix.setScale(iter.getPathScale(), iter.getPathScale()); matrix.postTranslate(x, y); const SkPath* iterPath; SkScalar xpos, prevXPos = 0; while (iter.next(&iterPath, &xpos)) { matrix.postTranslate(xpos - prevXPos, 0); if (iterPath) { const SkPaint& pnt = iter.getPaint(); if (fDevice) { fDevice->drawPath(*this, *iterPath, pnt, &matrix, false); } else { this->drawPath(*iterPath, pnt, &matrix, false); } } prevXPos = xpos; } } // disable warning : local variable used without having been initialized #if defined _WIN32 && _MSC_VER >= 1300 #pragma warning ( push ) #pragma warning ( disable : 4701 ) #endif ////////////////////////////////////////////////////////////////////////////// static void D1G_NoBounder_RectClip(const SkDraw1Glyph& state, SkFixed fx, SkFixed fy, const SkGlyph& glyph) { int left = SkFixedFloorToInt(fx); int top = SkFixedFloorToInt(fy); SkASSERT(glyph.fWidth > 0 && glyph.fHeight > 0); SkASSERT(NULL == state.fBounder); SkASSERT((NULL == state.fClip && state.fAAClip) || (state.fClip && NULL == state.fAAClip && state.fClip->isRect())); left += glyph.fLeft; top += glyph.fTop; int right = left + glyph.fWidth; int bottom = top + glyph.fHeight; SkMask mask; SkIRect storage; SkIRect* bounds = &mask.fBounds; mask.fBounds.set(left, top, right, bottom); // this extra test is worth it, assuming that most of the time it succeeds // since we can avoid writing to storage if (!state.fClipBounds.containsNoEmptyCheck(left, top, right, bottom)) { if (!storage.intersectNoEmptyCheck(mask.fBounds, state.fClipBounds)) return; bounds = &storage; } uint8_t* aa = (uint8_t*)glyph.fImage; if (NULL == aa) { aa = (uint8_t*)state.fCache->findImage(glyph); if (NULL == aa) { return; // can't rasterize glyph } } mask.fRowBytes = glyph.rowBytes(); mask.fFormat = static_cast(glyph.fMaskFormat); mask.fImage = aa; state.blitMask(mask, *bounds); } static void D1G_NoBounder_RgnClip(const SkDraw1Glyph& state, SkFixed fx, SkFixed fy, const SkGlyph& glyph) { int left = SkFixedFloorToInt(fx); int top = SkFixedFloorToInt(fy); SkASSERT(glyph.fWidth > 0 && glyph.fHeight > 0); SkASSERT(!state.fClip->isRect()); SkASSERT(NULL == state.fBounder); SkMask mask; left += glyph.fLeft; top += glyph.fTop; mask.fBounds.set(left, top, left + glyph.fWidth, top + glyph.fHeight); SkRegion::Cliperator clipper(*state.fClip, mask.fBounds); if (!clipper.done()) { const SkIRect& cr = clipper.rect(); const uint8_t* aa = (const uint8_t*)glyph.fImage; if (NULL == aa) { aa = (uint8_t*)state.fCache->findImage(glyph); if (NULL == aa) { return; } } mask.fRowBytes = glyph.rowBytes(); mask.fFormat = static_cast(glyph.fMaskFormat); mask.fImage = (uint8_t*)aa; do { state.blitMask(mask, cr); clipper.next(); } while (!clipper.done()); } } static void D1G_Bounder(const SkDraw1Glyph& state, SkFixed fx, SkFixed fy, const SkGlyph& glyph) { int left = SkFixedFloorToInt(fx); int top = SkFixedFloorToInt(fy); SkASSERT(glyph.fWidth > 0 && glyph.fHeight > 0); SkMask mask; left += glyph.fLeft; top += glyph.fTop; mask.fBounds.set(left, top, left + glyph.fWidth, top + glyph.fHeight); SkRegion::Cliperator clipper(*state.fClip, mask.fBounds); if (!clipper.done()) { const SkIRect& cr = clipper.rect(); const uint8_t* aa = (const uint8_t*)glyph.fImage; if (NULL == aa) { aa = (uint8_t*)state.fCache->findImage(glyph); if (NULL == aa) { return; } } // we need to pass the origin, which we approximate with our // (unadjusted) left,top coordinates (the caller called fixedfloor) if (state.fBounder->doIRectGlyph(cr, left - glyph.fLeft, top - glyph.fTop, glyph)) { mask.fRowBytes = glyph.rowBytes(); mask.fFormat = static_cast(glyph.fMaskFormat); mask.fImage = (uint8_t*)aa; do { state.blitMask(mask, cr); clipper.next(); } while (!clipper.done()); } } } static void D1G_Bounder_AAClip(const SkDraw1Glyph& state, SkFixed fx, SkFixed fy, const SkGlyph& glyph) { int left = SkFixedFloorToInt(fx); int top = SkFixedFloorToInt(fy); SkIRect bounds; bounds.set(left, top, left + glyph.fWidth, top + glyph.fHeight); if (state.fBounder->doIRectGlyph(bounds, left, top, glyph)) { D1G_NoBounder_RectClip(state, fx, fy, glyph); } } static bool hasCustomD1GProc(const SkDraw& draw) { return draw.fProcs && draw.fProcs->fD1GProc; } static bool needsRasterTextBlit(const SkDraw& draw) { return !hasCustomD1GProc(draw); } SkDraw1Glyph::Proc SkDraw1Glyph::init(const SkDraw* draw, SkBlitter* blitter, SkGlyphCache* cache, const SkPaint& pnt) { fDraw = draw; fBounder = draw->fBounder; fBlitter = blitter; fCache = cache; fPaint = &pnt; if (cache->isSubpixel()) { fHalfSampleX = fHalfSampleY = (SK_FixedHalf >> SkGlyph::kSubBits); } else { fHalfSampleX = fHalfSampleY = SK_FixedHalf; } if (hasCustomD1GProc(*draw)) { // todo: fix this assumption about clips w/ custom fClip = draw->fClip; fClipBounds = fClip->getBounds(); return draw->fProcs->fD1GProc; } if (draw->fRC->isBW()) { fAAClip = NULL; fClip = &draw->fRC->bwRgn(); fClipBounds = fClip->getBounds(); if (NULL == fBounder) { if (fClip->isRect()) { return D1G_NoBounder_RectClip; } else { return D1G_NoBounder_RgnClip; } } else { return D1G_Bounder; } } else { // aaclip fAAClip = &draw->fRC->aaRgn(); fClip = NULL; fClipBounds = fAAClip->getBounds(); if (NULL == fBounder) { return D1G_NoBounder_RectClip; } else { return D1G_Bounder_AAClip; } } } void SkDraw1Glyph::blitMaskAsSprite(const SkMask& mask) const { SkASSERT(SkMask::kARGB32_Format == mask.fFormat); SkBitmap bm; bm.setConfig(SkBitmap::kARGB_8888_Config, mask.fBounds.width(), mask.fBounds.height(), mask.fRowBytes); bm.setPixels((SkPMColor*)mask.fImage); fDraw->drawSprite(bm, mask.fBounds.x(), mask.fBounds.y(), *fPaint); } /////////////////////////////////////////////////////////////////////////////// void SkDraw::drawText(const char text[], size_t byteLength, SkScalar x, SkScalar y, const SkPaint& paint) const { SkASSERT(byteLength == 0 || text != NULL); SkDEBUGCODE(this->validate();) // nothing to draw if (text == NULL || byteLength == 0 || fRC->isEmpty()) { return; } // SkScalarRec doesn't currently have a way of representing hairline stroke and // will fill if its frame-width is 0. if (ShouldDrawTextAsPaths(paint, *fMatrix)) { this->drawText_asPaths(text, byteLength, x, y, paint); return; } SkDrawCacheProc glyphCacheProc = paint.getDrawCacheProc(); SkAutoGlyphCache autoCache(paint, &fDevice->fLeakyProperties, fMatrix); SkGlyphCache* cache = autoCache.getCache(); // transform our starting point { SkPoint loc; fMatrix->mapXY(x, y, &loc); x = loc.fX; y = loc.fY; } // need to measure first if (paint.getTextAlign() != SkPaint::kLeft_Align) { SkVector stop; measure_text(cache, glyphCacheProc, text, byteLength, &stop); SkScalar stopX = stop.fX; SkScalar stopY = stop.fY; if (paint.getTextAlign() == SkPaint::kCenter_Align) { stopX = SkScalarHalf(stopX); stopY = SkScalarHalf(stopY); } x -= stopX; y -= stopY; } const char* stop = text + byteLength; SkAAClipBlitter aaBlitter; SkAutoBlitterChoose blitterChooser; SkBlitter* blitter = NULL; if (needsRasterTextBlit(*this)) { blitterChooser.choose(*fBitmap, *fMatrix, paint); blitter = blitterChooser.get(); if (fRC->isAA()) { aaBlitter.init(blitter, &fRC->aaRgn()); blitter = &aaBlitter; } } SkAutoKern autokern; SkDraw1Glyph d1g; SkDraw1Glyph::Proc proc = d1g.init(this, blitter, cache, paint); SkFixed fxMask = ~0; SkFixed fyMask = ~0; if (cache->isSubpixel()) { SkAxisAlignment baseline = SkComputeAxisAlignmentForHText(*fMatrix); if (kX_SkAxisAlignment == baseline) { fyMask = 0; d1g.fHalfSampleY = SK_FixedHalf; } else if (kY_SkAxisAlignment == baseline) { fxMask = 0; d1g.fHalfSampleX = SK_FixedHalf; } } SkFixed fx = SkScalarToFixed(x) + d1g.fHalfSampleX; SkFixed fy = SkScalarToFixed(y) + d1g.fHalfSampleY; while (text < stop) { const SkGlyph& glyph = glyphCacheProc(cache, &text, fx & fxMask, fy & fyMask); fx += autokern.adjust(glyph); if (glyph.fWidth) { proc(d1g, fx, fy, glyph); } fx += glyph.fAdvanceX; fy += glyph.fAdvanceY; } } // last parameter is interpreted as SkFixed [x, y] // return the fixed position, which may be rounded or not by the caller // e.g. subpixel doesn't round typedef void (*AlignProc)(const SkPoint&, const SkGlyph&, SkIPoint*); static void leftAlignProc(const SkPoint& loc, const SkGlyph& glyph, SkIPoint* dst) { dst->set(SkScalarToFixed(loc.fX), SkScalarToFixed(loc.fY)); } static void centerAlignProc(const SkPoint& loc, const SkGlyph& glyph, SkIPoint* dst) { dst->set(SkScalarToFixed(loc.fX) - (glyph.fAdvanceX >> 1), SkScalarToFixed(loc.fY) - (glyph.fAdvanceY >> 1)); } static void rightAlignProc(const SkPoint& loc, const SkGlyph& glyph, SkIPoint* dst) { dst->set(SkScalarToFixed(loc.fX) - glyph.fAdvanceX, SkScalarToFixed(loc.fY) - glyph.fAdvanceY); } static AlignProc pick_align_proc(SkPaint::Align align) { static const AlignProc gProcs[] = { leftAlignProc, centerAlignProc, rightAlignProc }; SkASSERT((unsigned)align < SK_ARRAY_COUNT(gProcs)); return gProcs[align]; } typedef void (*AlignProc_scalar)(const SkPoint&, const SkGlyph&, SkPoint*); static void leftAlignProc_scalar(const SkPoint& loc, const SkGlyph& glyph, SkPoint* dst) { dst->set(loc.fX, loc.fY); } static void centerAlignProc_scalar(const SkPoint& loc, const SkGlyph& glyph, SkPoint* dst) { dst->set(loc.fX - SkFixedToScalar(glyph.fAdvanceX >> 1), loc.fY - SkFixedToScalar(glyph.fAdvanceY >> 1)); } static void rightAlignProc_scalar(const SkPoint& loc, const SkGlyph& glyph, SkPoint* dst) { dst->set(loc.fX - SkFixedToScalar(glyph.fAdvanceX), loc.fY - SkFixedToScalar(glyph.fAdvanceY)); } static AlignProc_scalar pick_align_proc_scalar(SkPaint::Align align) { static const AlignProc_scalar gProcs[] = { leftAlignProc_scalar, centerAlignProc_scalar, rightAlignProc_scalar }; SkASSERT((unsigned)align < SK_ARRAY_COUNT(gProcs)); return gProcs[align]; } class TextMapState { public: mutable SkPoint fLoc; TextMapState(const SkMatrix& matrix, SkScalar y) : fMatrix(matrix), fProc(matrix.getMapXYProc()), fY(y) {} typedef void (*Proc)(const TextMapState&, const SkScalar pos[]); Proc pickProc(int scalarsPerPosition); private: const SkMatrix& fMatrix; SkMatrix::MapXYProc fProc; SkScalar fY; // ignored by MapXYProc // these are only used by Only... procs SkScalar fScaleX, fTransX, fTransformedY; static void MapXProc(const TextMapState& state, const SkScalar pos[]) { state.fProc(state.fMatrix, *pos, state.fY, &state.fLoc); } static void MapXYProc(const TextMapState& state, const SkScalar pos[]) { state.fProc(state.fMatrix, pos[0], pos[1], &state.fLoc); } static void MapOnlyScaleXProc(const TextMapState& state, const SkScalar pos[]) { state.fLoc.set(SkScalarMul(state.fScaleX, *pos) + state.fTransX, state.fTransformedY); } static void MapOnlyTransXProc(const TextMapState& state, const SkScalar pos[]) { state.fLoc.set(*pos + state.fTransX, state.fTransformedY); } }; TextMapState::Proc TextMapState::pickProc(int scalarsPerPosition) { SkASSERT(1 == scalarsPerPosition || 2 == scalarsPerPosition); if (1 == scalarsPerPosition) { unsigned mtype = fMatrix.getType(); if (mtype & (SkMatrix::kAffine_Mask | SkMatrix::kPerspective_Mask)) { return MapXProc; } else { fScaleX = fMatrix.getScaleX(); fTransX = fMatrix.getTranslateX(); fTransformedY = SkScalarMul(fY, fMatrix.getScaleY()) + fMatrix.getTranslateY(); return (mtype & SkMatrix::kScale_Mask) ? MapOnlyScaleXProc : MapOnlyTransXProc; } } else { return MapXYProc; } } ////////////////////////////////////////////////////////////////////////////// void SkDraw::drawPosText_asPaths(const char text[], size_t byteLength, const SkScalar pos[], SkScalar constY, int scalarsPerPosition, const SkPaint& origPaint) const { // setup our std paint, in hopes of getting hits in the cache SkPaint paint(origPaint); SkScalar matrixScale = paint.setupForAsPaths(); SkMatrix matrix; matrix.setScale(matrixScale, matrixScale); SkDrawCacheProc glyphCacheProc = paint.getDrawCacheProc(); SkAutoGlyphCache autoCache(paint, NULL, NULL); SkGlyphCache* cache = autoCache.getCache(); const char* stop = text + byteLength; AlignProc_scalar alignProc = pick_align_proc_scalar(paint.getTextAlign()); TextMapState tms(SkMatrix::I(), constY); TextMapState::Proc tmsProc = tms.pickProc(scalarsPerPosition); while (text < stop) { const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0); if (glyph.fWidth) { const SkPath* path = cache->findPath(glyph); if (path) { tmsProc(tms, pos); SkPoint loc; alignProc(tms.fLoc, glyph, &loc); matrix[SkMatrix::kMTransX] = loc.fX; matrix[SkMatrix::kMTransY] = loc.fY; if (fDevice) { fDevice->drawPath(*this, *path, paint, &matrix, false); } else { this->drawPath(*path, paint, &matrix, false); } } } pos += scalarsPerPosition; } } void SkDraw::drawPosText(const char text[], size_t byteLength, const SkScalar pos[], SkScalar constY, int scalarsPerPosition, const SkPaint& paint) const { SkASSERT(byteLength == 0 || text != NULL); SkASSERT(1 == scalarsPerPosition || 2 == scalarsPerPosition); SkDEBUGCODE(this->validate();) // nothing to draw if (text == NULL || byteLength == 0 || fRC->isEmpty()) { return; } if (ShouldDrawTextAsPaths(paint, *fMatrix)) { this->drawPosText_asPaths(text, byteLength, pos, constY, scalarsPerPosition, paint); return; } SkDrawCacheProc glyphCacheProc = paint.getDrawCacheProc(); SkAutoGlyphCache autoCache(paint, &fDevice->fLeakyProperties, fMatrix); SkGlyphCache* cache = autoCache.getCache(); SkAAClipBlitterWrapper wrapper; SkAutoBlitterChoose blitterChooser; SkBlitter* blitter = NULL; if (needsRasterTextBlit(*this)) { blitterChooser.choose(*fBitmap, *fMatrix, paint); blitter = blitterChooser.get(); if (fRC->isAA()) { wrapper.init(*fRC, blitter); blitter = wrapper.getBlitter(); } } const char* stop = text + byteLength; AlignProc alignProc = pick_align_proc(paint.getTextAlign()); SkDraw1Glyph d1g; SkDraw1Glyph::Proc proc = d1g.init(this, blitter, cache, paint); TextMapState tms(*fMatrix, constY); TextMapState::Proc tmsProc = tms.pickProc(scalarsPerPosition); if (cache->isSubpixel()) { // maybe we should skip the rounding if linearText is set SkAxisAlignment baseline = SkComputeAxisAlignmentForHText(*fMatrix); SkFixed fxMask = ~0; SkFixed fyMask = ~0; if (kX_SkAxisAlignment == baseline) { fyMask = 0; #ifndef SK_IGNORE_SUBPIXEL_AXIS_ALIGN_FIX d1g.fHalfSampleY = SK_FixedHalf; #endif } else if (kY_SkAxisAlignment == baseline) { fxMask = 0; #ifndef SK_IGNORE_SUBPIXEL_AXIS_ALIGN_FIX d1g.fHalfSampleX = SK_FixedHalf; #endif } if (SkPaint::kLeft_Align == paint.getTextAlign()) { while (text < stop) { tmsProc(tms, pos); SkFixed fx = SkScalarToFixed(tms.fLoc.fX) + d1g.fHalfSampleX; SkFixed fy = SkScalarToFixed(tms.fLoc.fY) + d1g.fHalfSampleY; const SkGlyph& glyph = glyphCacheProc(cache, &text, fx & fxMask, fy & fyMask); if (glyph.fWidth) { proc(d1g, fx, fy, glyph); } pos += scalarsPerPosition; } } else { while (text < stop) { const char* currentText = text; const SkGlyph& metricGlyph = glyphCacheProc(cache, &text, 0, 0); if (metricGlyph.fWidth) { SkDEBUGCODE(SkFixed prevAdvX = metricGlyph.fAdvanceX;) SkDEBUGCODE(SkFixed prevAdvY = metricGlyph.fAdvanceY;) tmsProc(tms, pos); SkIPoint fixedLoc; alignProc(tms.fLoc, metricGlyph, &fixedLoc); SkFixed fx = fixedLoc.fX + d1g.fHalfSampleX; SkFixed fy = fixedLoc.fY + d1g.fHalfSampleY; // have to call again, now that we've been "aligned" const SkGlyph& glyph = glyphCacheProc(cache, ¤tText, fx & fxMask, fy & fyMask); // the assumption is that the metrics haven't changed SkASSERT(prevAdvX == glyph.fAdvanceX); SkASSERT(prevAdvY == glyph.fAdvanceY); SkASSERT(glyph.fWidth); proc(d1g, fx, fy, glyph); } pos += scalarsPerPosition; } } } else { // not subpixel if (SkPaint::kLeft_Align == paint.getTextAlign()) { while (text < stop) { // the last 2 parameters are ignored const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0); if (glyph.fWidth) { tmsProc(tms, pos); proc(d1g, SkScalarToFixed(tms.fLoc.fX) + SK_FixedHalf, //d1g.fHalfSampleX, SkScalarToFixed(tms.fLoc.fY) + SK_FixedHalf, //d1g.fHalfSampleY, glyph); } pos += scalarsPerPosition; } } else { while (text < stop) { // the last 2 parameters are ignored const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0); if (glyph.fWidth) { tmsProc(tms, pos); SkIPoint fixedLoc; alignProc(tms.fLoc, glyph, &fixedLoc); proc(d1g, fixedLoc.fX + SK_FixedHalf, //d1g.fHalfSampleX, fixedLoc.fY + SK_FixedHalf, //d1g.fHalfSampleY, glyph); } pos += scalarsPerPosition; } } } } #if defined _WIN32 && _MSC_VER >= 1300 #pragma warning ( pop ) #endif /////////////////////////////////////////////////////////////////////////////// #include "SkPathMeasure.h" static void morphpoints(SkPoint dst[], const SkPoint src[], int count, SkPathMeasure& meas, const SkMatrix& matrix) { SkMatrix::MapXYProc proc = matrix.getMapXYProc(); for (int i = 0; i < count; i++) { SkPoint pos; SkVector tangent; proc(matrix, src[i].fX, src[i].fY, &pos); SkScalar sx = pos.fX; SkScalar sy = pos.fY; if (!meas.getPosTan(sx, &pos, &tangent)) { // set to 0 if the measure failed, so that we just set dst == pos tangent.set(0, 0); } /* This is the old way (that explains our approach but is way too slow SkMatrix matrix; SkPoint pt; pt.set(sx, sy); matrix.setSinCos(tangent.fY, tangent.fX); matrix.preTranslate(-sx, 0); matrix.postTranslate(pos.fX, pos.fY); matrix.mapPoints(&dst[i], &pt, 1); */ dst[i].set(pos.fX - SkScalarMul(tangent.fY, sy), pos.fY + SkScalarMul(tangent.fX, sy)); } } /* TODO Need differentially more subdivisions when the follow-path is curvy. Not sure how to determine that, but we need it. I guess a cheap answer is let the caller tell us, but that seems like a cop-out. Another answer is to get Rob Johnson to figure it out. */ static void morphpath(SkPath* dst, const SkPath& src, SkPathMeasure& meas, const SkMatrix& matrix) { SkPath::Iter iter(src, false); SkPoint srcP[4], dstP[3]; SkPath::Verb verb; while ((verb = iter.next(srcP)) != SkPath::kDone_Verb) { switch (verb) { case SkPath::kMove_Verb: morphpoints(dstP, srcP, 1, meas, matrix); dst->moveTo(dstP[0]); break; case SkPath::kLine_Verb: // turn lines into quads to look bendy srcP[0].fX = SkScalarAve(srcP[0].fX, srcP[1].fX); srcP[0].fY = SkScalarAve(srcP[0].fY, srcP[1].fY); morphpoints(dstP, srcP, 2, meas, matrix); dst->quadTo(dstP[0], dstP[1]); break; case SkPath::kQuad_Verb: morphpoints(dstP, &srcP[1], 2, meas, matrix); dst->quadTo(dstP[0], dstP[1]); break; case SkPath::kCubic_Verb: morphpoints(dstP, &srcP[1], 3, meas, matrix); dst->cubicTo(dstP[0], dstP[1], dstP[2]); break; case SkPath::kClose_Verb: dst->close(); break; default: SkDEBUGFAIL("unknown verb"); break; } } } void SkDraw::drawTextOnPath(const char text[], size_t byteLength, const SkPath& follow, const SkMatrix* matrix, const SkPaint& paint) const { SkASSERT(byteLength == 0 || text != NULL); // nothing to draw if (text == NULL || byteLength == 0 || fRC->isEmpty()) { return; } SkTextToPathIter iter(text, byteLength, paint, true); SkPathMeasure meas(follow, false); SkScalar hOffset = 0; // need to measure first if (paint.getTextAlign() != SkPaint::kLeft_Align) { SkScalar pathLen = meas.getLength(); if (paint.getTextAlign() == SkPaint::kCenter_Align) { pathLen = SkScalarHalf(pathLen); } hOffset += pathLen; } const SkPath* iterPath; SkScalar xpos; SkMatrix scaledMatrix; SkScalar scale = iter.getPathScale(); scaledMatrix.setScale(scale, scale); while (iter.next(&iterPath, &xpos)) { if (iterPath) { SkPath tmp; SkMatrix m(scaledMatrix); m.postTranslate(xpos + hOffset, 0); if (matrix) { m.postConcat(*matrix); } morphpath(&tmp, *iterPath, meas, m); if (fDevice) { fDevice->drawPath(*this, tmp, iter.getPaint(), NULL, true); } else { this->drawPath(tmp, iter.getPaint(), NULL, true); } } } } /////////////////////////////////////////////////////////////////////////////// struct VertState { int f0, f1, f2; VertState(int vCount, const uint16_t indices[], int indexCount) : fIndices(indices) { fCurrIndex = 0; if (indices) { fCount = indexCount; } else { fCount = vCount; } } typedef bool (*Proc)(VertState*); Proc chooseProc(SkCanvas::VertexMode mode); private: int fCount; int fCurrIndex; const uint16_t* fIndices; static bool Triangles(VertState*); static bool TrianglesX(VertState*); static bool TriangleStrip(VertState*); static bool TriangleStripX(VertState*); static bool TriangleFan(VertState*); static bool TriangleFanX(VertState*); }; bool VertState::Triangles(VertState* state) { int index = state->fCurrIndex; if (index + 3 > state->fCount) { return false; } state->f0 = index + 0; state->f1 = index + 1; state->f2 = index + 2; state->fCurrIndex = index + 3; return true; } bool VertState::TrianglesX(VertState* state) { const uint16_t* indices = state->fIndices; int index = state->fCurrIndex; if (index + 3 > state->fCount) { return false; } state->f0 = indices[index + 0]; state->f1 = indices[index + 1]; state->f2 = indices[index + 2]; state->fCurrIndex = index + 3; return true; } bool VertState::TriangleStrip(VertState* state) { int index = state->fCurrIndex; if (index + 3 > state->fCount) { return false; } state->f2 = index + 2; if (index & 1) { state->f0 = index + 1; state->f1 = index + 0; } else { state->f0 = index + 0; state->f1 = index + 1; } state->fCurrIndex = index + 1; return true; } bool VertState::TriangleStripX(VertState* state) { const uint16_t* indices = state->fIndices; int index = state->fCurrIndex; if (index + 3 > state->fCount) { return false; } state->f2 = indices[index + 2]; if (index & 1) { state->f0 = indices[index + 1]; state->f1 = indices[index + 0]; } else { state->f0 = indices[index + 0]; state->f1 = indices[index + 1]; } state->fCurrIndex = index + 1; return true; } bool VertState::TriangleFan(VertState* state) { int index = state->fCurrIndex; if (index + 3 > state->fCount) { return false; } state->f0 = 0; state->f1 = index + 1; state->f2 = index + 2; state->fCurrIndex = index + 1; return true; } bool VertState::TriangleFanX(VertState* state) { const uint16_t* indices = state->fIndices; int index = state->fCurrIndex; if (index + 3 > state->fCount) { return false; } state->f0 = indices[0]; state->f1 = indices[index + 1]; state->f2 = indices[index + 2]; state->fCurrIndex = index + 1; return true; } VertState::Proc VertState::chooseProc(SkCanvas::VertexMode mode) { switch (mode) { case SkCanvas::kTriangles_VertexMode: return fIndices ? TrianglesX : Triangles; case SkCanvas::kTriangleStrip_VertexMode: return fIndices ? TriangleStripX : TriangleStrip; case SkCanvas::kTriangleFan_VertexMode: return fIndices ? TriangleFanX : TriangleFan; default: return NULL; } } typedef void (*HairProc)(const SkPoint&, const SkPoint&, const SkRasterClip&, SkBlitter*); static HairProc ChooseHairProc(bool doAntiAlias) { return doAntiAlias ? SkScan::AntiHairLine : SkScan::HairLine; } static bool texture_to_matrix(const VertState& state, const SkPoint verts[], const SkPoint texs[], SkMatrix* matrix) { SkPoint src[3], dst[3]; src[0] = texs[state.f0]; src[1] = texs[state.f1]; src[2] = texs[state.f2]; dst[0] = verts[state.f0]; dst[1] = verts[state.f1]; dst[2] = verts[state.f2]; return matrix->setPolyToPoly(src, dst, 3); } class SkTriColorShader : public SkShader { public: SkTriColorShader() {} bool setup(const SkPoint pts[], const SkColor colors[], int, int, int); virtual void shadeSpan(int x, int y, SkPMColor dstC[], int count) SK_OVERRIDE; SK_DEVELOPER_TO_STRING() SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkTriColorShader) protected: SkTriColorShader(SkFlattenableReadBuffer& buffer) : SkShader(buffer) {} private: SkMatrix fDstToUnit; SkPMColor fColors[3]; typedef SkShader INHERITED; }; bool SkTriColorShader::setup(const SkPoint pts[], const SkColor colors[], int index0, int index1, int index2) { fColors[0] = SkPreMultiplyColor(colors[index0]); fColors[1] = SkPreMultiplyColor(colors[index1]); fColors[2] = SkPreMultiplyColor(colors[index2]); SkMatrix m, im; m.reset(); m.set(0, pts[index1].fX - pts[index0].fX); m.set(1, pts[index2].fX - pts[index0].fX); m.set(2, pts[index0].fX); m.set(3, pts[index1].fY - pts[index0].fY); m.set(4, pts[index2].fY - pts[index0].fY); m.set(5, pts[index0].fY); if (!m.invert(&im)) { return false; } return fDstToUnit.setConcat(im, this->getTotalInverse()); } #include "SkColorPriv.h" #include "SkComposeShader.h" static int ScalarTo256(SkScalar v) { int scale = SkScalarToFixed(v) >> 8; if (scale < 0) { scale = 0; } if (scale > 255) { scale = 255; } return SkAlpha255To256(scale); } void SkTriColorShader::shadeSpan(int x, int y, SkPMColor dstC[], int count) { SkPoint src; for (int i = 0; i < count; i++) { fDstToUnit.mapXY(SkIntToScalar(x), SkIntToScalar(y), &src); x += 1; int scale1 = ScalarTo256(src.fX); int scale2 = ScalarTo256(src.fY); int scale0 = 256 - scale1 - scale2; if (scale0 < 0) { if (scale1 > scale2) { scale2 = 256 - scale1; } else { scale1 = 256 - scale2; } scale0 = 0; } dstC[i] = SkAlphaMulQ(fColors[0], scale0) + SkAlphaMulQ(fColors[1], scale1) + SkAlphaMulQ(fColors[2], scale2); } } #ifdef SK_DEVELOPER void SkTriColorShader::toString(SkString* str) const { str->append("SkTriColorShader: ("); this->INHERITED::toString(str); str->append(")"); } #endif void SkDraw::drawVertices(SkCanvas::VertexMode vmode, int count, const SkPoint vertices[], const SkPoint textures[], const SkColor colors[], SkXfermode* xmode, const uint16_t indices[], int indexCount, const SkPaint& paint) const { SkASSERT(0 == count || NULL != vertices); // abort early if there is nothing to draw if (count < 3 || (indices && indexCount < 3) || fRC->isEmpty()) { return; } // transform out vertices into device coordinates SkAutoSTMalloc<16, SkPoint> storage(count); SkPoint* devVerts = storage.get(); fMatrix->mapPoints(devVerts, vertices, count); if (fBounder) { SkRect bounds; bounds.set(devVerts, count); if (!fBounder->doRect(bounds, paint)) { return; } } /* We can draw the vertices in 1 of 4 ways: - solid color (no shader/texture[], no colors[]) - just colors (no shader/texture[], has colors[]) - just texture (has shader/texture[], no colors[]) - colors * texture (has shader/texture[], has colors[]) Thus for texture drawing, we need both texture[] and a shader. */ SkTriColorShader triShader; // must be above declaration of p SkPaint p(paint); SkShader* shader = p.getShader(); if (NULL == shader) { // if we have no shader, we ignore the texture coordinates textures = NULL; } else if (NULL == textures) { // if we don't have texture coordinates, ignore the shader p.setShader(NULL); shader = NULL; } // setup the custom shader (if needed) if (NULL != colors) { if (NULL == textures) { // just colors (no texture) shader = p.setShader(&triShader); } else { // colors * texture SkASSERT(shader); bool releaseMode = false; if (NULL == xmode) { xmode = SkXfermode::Create(SkXfermode::kModulate_Mode); releaseMode = true; } SkShader* compose = SkNEW_ARGS(SkComposeShader, (&triShader, shader, xmode)); p.setShader(compose)->unref(); if (releaseMode) { xmode->unref(); } } } SkAutoBlitterChoose blitter(*fBitmap, *fMatrix, p); // important that we abort early, as below we may manipulate the shader // and that is only valid if the shader returned true from setContext. // If it returned false, then our blitter will be the NullBlitter. if (blitter->isNullBlitter()) { return; } // setup our state and function pointer for iterating triangles VertState state(count, indices, indexCount); VertState::Proc vertProc = state.chooseProc(vmode); if (NULL != textures || NULL != colors) { SkMatrix tempM; SkMatrix savedLocalM; if (shader) { savedLocalM = shader->getLocalMatrix(); } // setContext has already been called and verified to return true // by the constructor of SkAutoBlitterChoose bool prevContextSuccess = true; while (vertProc(&state)) { if (NULL != textures) { if (texture_to_matrix(state, vertices, textures, &tempM)) { tempM.postConcat(savedLocalM); shader->setLocalMatrix(tempM); // Need to recall setContext since we changed the local matrix. // However, we also need to balance the calls this with a // call to endContext which requires tracking the result of // the previous call to setContext. if (prevContextSuccess) { shader->endContext(); } prevContextSuccess = shader->setContext(*fBitmap, p, *fMatrix); if (!prevContextSuccess) { continue; } } } if (NULL != colors) { if (!triShader.setup(vertices, colors, state.f0, state.f1, state.f2)) { continue; } } SkPoint tmp[] = { devVerts[state.f0], devVerts[state.f1], devVerts[state.f2] }; SkScan::FillTriangle(tmp, *fRC, blitter.get()); } // now restore the shader's original local matrix if (NULL != shader) { shader->setLocalMatrix(savedLocalM); } // If the final call to setContext fails we must make it suceed so that the // call to endContext in the destructor for SkAutoBlitterChoose is balanced. if (!prevContextSuccess) { prevContextSuccess = shader->setContext(*fBitmap, paint, SkMatrix::I()); SkASSERT(prevContextSuccess); } } else { // no colors[] and no texture HairProc hairProc = ChooseHairProc(paint.isAntiAlias()); const SkRasterClip& clip = *fRC; while (vertProc(&state)) { hairProc(devVerts[state.f0], devVerts[state.f1], clip, blitter.get()); hairProc(devVerts[state.f1], devVerts[state.f2], clip, blitter.get()); hairProc(devVerts[state.f2], devVerts[state.f0], clip, blitter.get()); } } } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// #ifdef SK_DEBUG void SkDraw::validate() const { SkASSERT(fBitmap != NULL); SkASSERT(fMatrix != NULL); SkASSERT(fClip != NULL); SkASSERT(fRC != NULL); const SkIRect& cr = fRC->getBounds(); SkIRect br; br.set(0, 0, fBitmap->width(), fBitmap->height()); SkASSERT(cr.isEmpty() || br.contains(cr)); } #endif /////////////////////////////////////////////////////////////////////////////// SkBounder::SkBounder() { // initialize up front. This gets reset by SkCanvas before each draw call. fClip = &SkRegion::GetEmptyRegion(); } bool SkBounder::doIRect(const SkIRect& r) { SkIRect rr; return rr.intersect(fClip->getBounds(), r) && this->onIRect(rr); } // TODO: change the prototype to take fixed, and update the callers bool SkBounder::doIRectGlyph(const SkIRect& r, int x, int y, const SkGlyph& glyph) { SkIRect rr; if (!rr.intersect(fClip->getBounds(), r)) { return false; } GlyphRec rec; rec.fLSB.set(SkIntToFixed(x), SkIntToFixed(y)); rec.fRSB.set(rec.fLSB.fX + glyph.fAdvanceX, rec.fLSB.fY + glyph.fAdvanceY); rec.fGlyphID = glyph.getGlyphID(); rec.fFlags = 0; return this->onIRectGlyph(rr, rec); } bool SkBounder::doHairline(const SkPoint& pt0, const SkPoint& pt1, const SkPaint& paint) { SkIRect r; SkScalar v0, v1; v0 = pt0.fX; v1 = pt1.fX; if (v0 > v1) { SkTSwap(v0, v1); } r.fLeft = SkScalarFloorToInt(v0); r.fRight = SkScalarCeilToInt(v1); v0 = pt0.fY; v1 = pt1.fY; if (v0 > v1) { SkTSwap(v0, v1); } r.fTop = SkScalarFloorToInt(v0); r.fBottom = SkScalarCeilToInt(v1); if (paint.isAntiAlias()) { r.inset(-1, -1); } return this->doIRect(r); } bool SkBounder::doRect(const SkRect& rect, const SkPaint& paint) { SkIRect r; if (paint.getStyle() == SkPaint::kFill_Style) { rect.round(&r); } else { int rad = -1; rect.roundOut(&r); if (paint.isAntiAlias()) { rad = -2; } r.inset(rad, rad); } return this->doIRect(r); } bool SkBounder::doPath(const SkPath& path, const SkPaint& paint, bool doFill) { SkIRect r; const SkRect& bounds = path.getBounds(); if (doFill) { bounds.round(&r); } else { // hairline bounds.roundOut(&r); } if (paint.isAntiAlias()) { r.inset(-1, -1); } return this->doIRect(r); } void SkBounder::commit() { // override in subclass } //////////////////////////////////////////////////////////////////////////////////////////////// #include "SkPath.h" #include "SkDraw.h" #include "SkRegion.h" #include "SkBlitter.h" static bool compute_bounds(const SkPath& devPath, const SkIRect* clipBounds, const SkMaskFilter* filter, const SkMatrix* filterMatrix, SkIRect* bounds) { if (devPath.isEmpty()) { return false; } // init our bounds from the path { SkRect pathBounds = devPath.getBounds(); pathBounds.inset(-SK_ScalarHalf, -SK_ScalarHalf); pathBounds.roundOut(bounds); } SkIPoint margin = SkIPoint::Make(0, 0); if (filter) { SkASSERT(filterMatrix); SkMask srcM, dstM; srcM.fBounds = *bounds; srcM.fFormat = SkMask::kA8_Format; srcM.fImage = NULL; if (!filter->filterMask(&dstM, srcM, *filterMatrix, &margin)) { return false; } } // (possibly) trim the bounds to reflect the clip // (plus whatever slop the filter needs) if (clipBounds) { SkIRect tmp = *clipBounds; // Ugh. Guard against gigantic margins from wacky filters. Without this // check we can request arbitrary amounts of slop beyond our visible // clip, and bring down the renderer (at least on finite RAM machines // like handsets, etc.). Need to balance this invented value between // quality of large filters like blurs, and the corresponding memory // requests. static const int MAX_MARGIN = 128; tmp.inset(-SkMin32(margin.fX, MAX_MARGIN), -SkMin32(margin.fY, MAX_MARGIN)); if (!bounds->intersect(tmp)) { return false; } } return true; } static void draw_into_mask(const SkMask& mask, const SkPath& devPath, SkPaint::Style style) { SkBitmap bm; SkDraw draw; SkRasterClip clip; SkMatrix matrix; SkPaint paint; bm.setConfig(SkBitmap::kA8_Config, mask.fBounds.width(), mask.fBounds.height(), mask.fRowBytes); bm.setPixels(mask.fImage); clip.setRect(SkIRect::MakeWH(mask.fBounds.width(), mask.fBounds.height())); matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft), -SkIntToScalar(mask.fBounds.fTop)); draw.fBitmap = &bm; draw.fRC = &clip; draw.fClip = &clip.bwRgn(); draw.fMatrix = &matrix; draw.fBounder = NULL; paint.setAntiAlias(true); paint.setStyle(style); draw.drawPath(devPath, paint); } bool SkDraw::DrawToMask(const SkPath& devPath, const SkIRect* clipBounds, const SkMaskFilter* filter, const SkMatrix* filterMatrix, SkMask* mask, SkMask::CreateMode mode, SkPaint::Style style) { if (SkMask::kJustRenderImage_CreateMode != mode) { if (!compute_bounds(devPath, clipBounds, filter, filterMatrix, &mask->fBounds)) return false; } if (SkMask::kComputeBoundsAndRenderImage_CreateMode == mode) { mask->fFormat = SkMask::kA8_Format; mask->fRowBytes = mask->fBounds.width(); size_t size = mask->computeImageSize(); if (0 == size) { // we're too big to allocate the mask, abort return false; } mask->fImage = SkMask::AllocImage(size); memset(mask->fImage, 0, mask->computeImageSize()); } if (SkMask::kJustComputeBounds_CreateMode != mode) { draw_into_mask(*mask, devPath, style); } return true; }