/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkDistanceFieldGen.h" #include "SkPoint.h" struct DFData { float fAlpha; // alpha value of source texel float fDistSq; // distance squared to nearest (so far) edge texel SkPoint fDistVector; // distance vector to nearest (so far) edge texel }; // We treat an "edge" as a place where we cross from a texel >= 128 to a texel < 128, // or vice versa. This means we just need to check if the MSBs are different. static bool found_edge(const unsigned char* imagePtr, int width) { const int offsets[8] = {-1, 1, -width-1, -width, -width+1, width-1, width, width+1 }; // search for an edge int checkVal = *imagePtr >> 7; for (int i = 0; i < 8; ++i) { const unsigned char* checkPtr = imagePtr + offsets[i]; if (checkVal ^ (*checkPtr >> 7)) { return true; } } return false; } static void init_glyph_data(DFData* data, unsigned char* edges, const unsigned char* image, int dataWidth, int dataHeight, int imageWidth, int imageHeight, int pad) { data += pad*dataWidth; data += pad; edges += (pad*dataWidth + pad); for (int j = 0; j < imageHeight; ++j) { for (int i = 0; i < imageWidth; ++i) { if (255 == *image) { data->fAlpha = 1.0f; } else { data->fAlpha = (*image)*0.00392156862f; // 1/255 } if (i > 0 && i < imageWidth-1 && j > 0 && j < imageHeight-1 && found_edge(image, imageWidth)) { *edges = 255; // using 255 makes for convenient debug rendering } ++data; ++image; ++edges; } data += 2*pad; edges += 2*pad; } } // from Gustavson (2011) // computes the distance to an edge given an edge normal vector and a pixel's alpha value // assumes that direction has been pre-normalized static float edge_distance(const SkPoint& direction, float alpha) { float dx = direction.fX; float dy = direction.fY; float distance; if (SkScalarNearlyZero(dx) || SkScalarNearlyZero(dy)) { distance = 0.5f - alpha; } else { // this is easier if we treat the direction as being in the first octant // (other octants are symmetrical) dx = SkScalarAbs(dx); dy = SkScalarAbs(dy); if (dx < dy) { SkTSwap(dx, dy); } // a1 = 0.5*dy/dx is the smaller fractional area chopped off by the edge // to avoid the divide, we just consider the numerator float a1num = 0.5f*dy; // we now compute the approximate distance, depending where the alpha falls // relative to the edge fractional area // if 0 <= alpha < a1 if (alpha*dx < a1num) { // TODO: find a way to do this without square roots? distance = 0.5f*(dx + dy) - SkScalarSqrt(2.0f*dx*dy*alpha); // if a1 <= alpha <= 1 - a1 } else if (alpha*dx < (dx - a1num)) { distance = (0.5f - alpha)*dx; // if 1 - a1 < alpha <= 1 } else { // TODO: find a way to do this without square roots? distance = -0.5f*(dx + dy) + SkScalarSqrt(2.0f*dx*dy*(1.0f - alpha)); } } return distance; } static void init_distances(DFData* data, unsigned char* edges, int width, int height) { // skip one pixel border DFData* currData = data; DFData* prevData = data - width; DFData* nextData = data + width; for (int j = 0; j < height; ++j) { for (int i = 0; i < width; ++i) { if (*edges) { // we should not be in the one-pixel outside band SkASSERT(i > 0 && i < width-1 && j > 0 && j < height-1); // gradient will point from low to high // +y is down in this case // i.e., if you're outside, gradient points towards edge // if you're inside, gradient points away from edge SkPoint currGrad; currGrad.fX = (prevData+1)->fAlpha - (prevData-1)->fAlpha + SK_ScalarSqrt2*(currData+1)->fAlpha - SK_ScalarSqrt2*(currData-1)->fAlpha + (nextData+1)->fAlpha - (nextData-1)->fAlpha; currGrad.fY = (nextData-1)->fAlpha - (prevData-1)->fAlpha + SK_ScalarSqrt2*nextData->fAlpha - SK_ScalarSqrt2*prevData->fAlpha + (nextData+1)->fAlpha - (prevData+1)->fAlpha; currGrad.setLengthFast(1.0f); // init squared distance to edge and distance vector float dist = edge_distance(currGrad, currData->fAlpha); currGrad.scale(dist, &currData->fDistVector); currData->fDistSq = dist*dist; } else { // init distance to "far away" currData->fDistSq = 2000000.f; currData->fDistVector.fX = 1000.f; currData->fDistVector.fY = 1000.f; } ++currData; ++prevData; ++nextData; ++edges; } } } // Danielsson's 8SSEDT // first stage forward pass // (forward in Y, forward in X) static void F1(DFData* curr, int width) { // upper left DFData* check = curr - width-1; SkPoint distVec = check->fDistVector; float distSq = check->fDistSq - 2.0f*(distVec.fX + distVec.fY - 1.0f); if (distSq < curr->fDistSq) { distVec.fX -= 1.0f; distVec.fY -= 1.0f; curr->fDistSq = distSq; curr->fDistVector = distVec; } // up check = curr - width; distVec = check->fDistVector; distSq = check->fDistSq - 2.0f*distVec.fY + 1.0f; if (distSq < curr->fDistSq) { distVec.fY -= 1.0f; curr->fDistSq = distSq; curr->fDistVector = distVec; } // upper right check = curr - width+1; distVec = check->fDistVector; distSq = check->fDistSq + 2.0f*(distVec.fX - distVec.fY + 1.0f); if (distSq < curr->fDistSq) { distVec.fX += 1.0f; distVec.fY -= 1.0f; curr->fDistSq = distSq; curr->fDistVector = distVec; } // left check = curr - 1; distVec = check->fDistVector; distSq = check->fDistSq - 2.0f*distVec.fX + 1.0f; if (distSq < curr->fDistSq) { distVec.fX -= 1.0f; curr->fDistSq = distSq; curr->fDistVector = distVec; } } // second stage forward pass // (forward in Y, backward in X) static void F2(DFData* curr, int width) { // right DFData* check = curr + 1; float distSq = check->fDistSq; SkPoint distVec = check->fDistVector; distSq = check->fDistSq + 2.0f*distVec.fX + 1.0f; if (distSq < curr->fDistSq) { distVec.fX += 1.0f; curr->fDistSq = distSq; curr->fDistVector = distVec; } } // first stage backward pass // (backward in Y, forward in X) static void B1(DFData* curr, int width) { // left DFData* check = curr - 1; SkPoint distVec = check->fDistVector; float distSq = check->fDistSq - 2.0f*distVec.fX + 1.0f; if (distSq < curr->fDistSq) { distVec.fX -= 1.0f; curr->fDistSq = distSq; curr->fDistVector = distVec; } } // second stage backward pass // (backward in Y, backwards in X) static void B2(DFData* curr, int width) { // right DFData* check = curr + 1; SkPoint distVec = check->fDistVector; float distSq = check->fDistSq + 2.0f*distVec.fX + 1.0f; if (distSq < curr->fDistSq) { distVec.fX += 1.0f; curr->fDistSq = distSq; curr->fDistVector = distVec; } // bottom left check = curr + width-1; distVec = check->fDistVector; distSq = check->fDistSq - 2.0f*(distVec.fX - distVec.fY - 1.0f); if (distSq < curr->fDistSq) { distVec.fX -= 1.0f; distVec.fY += 1.0f; curr->fDistSq = distSq; curr->fDistVector = distVec; } // bottom check = curr + width; distVec = check->fDistVector; distSq = check->fDistSq + 2.0f*distVec.fY + 1.0f; if (distSq < curr->fDistSq) { distVec.fY += 1.0f; curr->fDistSq = distSq; curr->fDistVector = distVec; } // bottom right check = curr + width+1; distVec = check->fDistVector; distSq = check->fDistSq + 2.0f*(distVec.fX + distVec.fY + 1.0f); if (distSq < curr->fDistSq) { distVec.fX += 1.0f; distVec.fY += 1.0f; curr->fDistSq = distSq; curr->fDistVector = distVec; } } static unsigned char pack_distance_field_val(float dist, float distanceMagnitude) { if (dist <= -distanceMagnitude) { return 255; } else if (dist > distanceMagnitude) { return 0; } else { return (unsigned char)((distanceMagnitude-dist)*128.0f/distanceMagnitude); } } // assumes an 8-bit image and distance field bool SkGenerateDistanceFieldFromImage(unsigned char* distanceField, const unsigned char* image, int width, int height, int distanceMagnitude) { SkASSERT(NULL != distanceField); SkASSERT(NULL != image); // the final distance field will have additional texels on each side to handle // the maximum distance // we expand our temp data by one more on each side to simplify // the scanning code -- will always be treated as infinitely far away int pad = distanceMagnitude+1; // set params for distance field data int dataWidth = width + 2*pad; int dataHeight = height + 2*pad; // create temp data size_t dataSize = dataWidth*dataHeight*sizeof(DFData); SkAutoSMalloc<1024> dfStorage(dataSize); DFData* dataPtr = (DFData*) dfStorage.get(); sk_bzero(dataPtr, dataSize); SkAutoSMalloc<1024> edgeStorage(dataWidth*dataHeight*sizeof(char)); unsigned char* edgePtr = (unsigned char*) edgeStorage.get(); sk_bzero(edgePtr, dataWidth*dataHeight*sizeof(char)); // copy glyph into distance field storage init_glyph_data(dataPtr, edgePtr, image, dataWidth, dataHeight, width, height, pad); // create initial distance data, particularly at edges init_distances(dataPtr, edgePtr, dataWidth, dataHeight); // now perform Euclidean distance transform to propagate distances // forwards in y DFData* currData = dataPtr+dataWidth+1; // skip outer buffer unsigned char* currEdge = edgePtr+dataWidth+1; for (int j = 1; j < dataHeight-1; ++j) { // forwards in x for (int i = 1; i < dataWidth-1; ++i) { // don't need to calculate distance for edge pixels if (!*currEdge) { F1(currData, dataWidth); } ++currData; ++currEdge; } // backwards in x --currData; // reset to end --currEdge; for (int i = 1; i < dataWidth-1; ++i) { // don't need to calculate distance for edge pixels if (!*currEdge) { F2(currData, dataWidth); } --currData; --currEdge; } currData += dataWidth+1; currEdge += dataWidth+1; } // backwards in y currData = dataPtr+dataWidth*(dataHeight-2) - 1; // skip outer buffer currEdge = edgePtr+dataWidth*(dataHeight-2) - 1; for (int j = 1; j < dataHeight-1; ++j) { // forwards in x for (int i = 1; i < dataWidth-1; ++i) { // don't need to calculate distance for edge pixels if (!*currEdge) { B1(currData, dataWidth); } ++currData; ++currEdge; } // backwards in x --currData; // reset to end --currEdge; for (int i = 1; i < dataWidth-1; ++i) { // don't need to calculate distance for edge pixels if (!*currEdge) { B2(currData, dataWidth); } --currData; --currEdge; } currData -= dataWidth-1; currEdge -= dataWidth-1; } // copy results to final distance field data currData = dataPtr + dataWidth+1; currEdge = edgePtr + dataWidth+1; unsigned char *dfPtr = distanceField; for (int j = 1; j < dataHeight-1; ++j) { for (int i = 1; i < dataWidth-1; ++i) { float dist; if (currData->fAlpha > 0.5f) { dist = -SkScalarSqrt(currData->fDistSq); } else { dist = SkScalarSqrt(currData->fDistSq); } *dfPtr++ = pack_distance_field_val(dist, (float)distanceMagnitude); ++currData; ++currEdge; } currData += 2; currEdge += 2; } return true; }