/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkData.h" #include "SkFlattenableBuffers.h" #if SK_MMAP_SUPPORT #include #include #include #include #endif SK_DEFINE_INST_COUNT(SkData) SkData::SkData(const void* ptr, size_t size, ReleaseProc proc, void* context) { fPtr = ptr; fSize = size; fReleaseProc = proc; fReleaseProcContext = context; } SkData::~SkData() { if (fReleaseProc) { fReleaseProc(fPtr, fSize, fReleaseProcContext); } } bool SkData::equals(const SkData* other) const { if (NULL == other) { return false; } return fSize == other->fSize && !memcmp(fPtr, other->fPtr, fSize); } size_t SkData::copyRange(size_t offset, size_t length, void* buffer) const { size_t available = fSize; if (offset >= available || 0 == length) { return 0; } available -= offset; if (length > available) { length = available; } SkASSERT(length > 0); memcpy(buffer, this->bytes() + offset, length); return length; } /////////////////////////////////////////////////////////////////////////////// SkData* SkData::NewEmpty() { static SkData* gEmptyRef; if (NULL == gEmptyRef) { gEmptyRef = new SkData(NULL, 0, NULL, NULL); } gEmptyRef->ref(); return gEmptyRef; } // assumes fPtr was allocated via sk_malloc static void sk_free_releaseproc(const void* ptr, size_t, void*) { sk_free((void*)ptr); } SkData* SkData::NewFromMalloc(const void* data, size_t length) { return new SkData(data, length, sk_free_releaseproc, NULL); } SkData* SkData::NewWithCopy(const void* data, size_t length) { if (0 == length) { return SkData::NewEmpty(); } void* copy = sk_malloc_throw(length); // balanced in sk_free_releaseproc memcpy(copy, data, length); return new SkData(copy, length, sk_free_releaseproc, NULL); } SkData* SkData::NewWithProc(const void* data, size_t length, ReleaseProc proc, void* context) { return new SkData(data, length, proc, context); } // assumes context is a SkData static void sk_dataref_releaseproc(const void*, size_t, void* context) { SkData* src = reinterpret_cast(context); src->unref(); } SkData* SkData::NewSubset(const SkData* src, size_t offset, size_t length) { /* We could, if we wanted/need to, just make a deep copy of src's data, rather than referencing it. This would duplicate the storage (of the subset amount) but would possibly allow src to go out of scope sooner. */ size_t available = src->size(); if (offset >= available || 0 == length) { return SkData::NewEmpty(); } available -= offset; if (length > available) { length = available; } SkASSERT(length > 0); src->ref(); // this will be balanced in sk_dataref_releaseproc return new SkData(src->bytes() + offset, length, sk_dataref_releaseproc, const_cast(src)); } SkData* SkData::NewWithCString(const char cstr[]) { size_t size; if (NULL == cstr) { cstr = ""; size = 1; } else { size = strlen(cstr) + 1; } return NewWithCopy(cstr, size); } #if SK_MMAP_SUPPORT static void sk_munmap_releaseproc(const void* addr, size_t length, void*) { munmap(const_cast(addr), length); } SkData* SkData::NewFromMMap(const void* addr, size_t length) { return SkNEW_ARGS(SkData, (addr, length, sk_munmap_releaseproc, NULL)); } #else SkData* SkData::NewFromMMap(const void* addr, size_t length) { return NULL; } #endif /////////////////////////////////////////////////////////////////////////////// void SkData::flatten(SkFlattenableWriteBuffer& buffer) const { buffer.writeByteArray(fPtr, fSize); } SkData::SkData(SkFlattenableReadBuffer& buffer) { fSize = buffer.getArrayCount(); fReleaseProcContext = NULL; if (fSize > 0) { fPtr = sk_malloc_throw(fSize); fReleaseProc = sk_free_releaseproc; } else { fPtr = NULL; fReleaseProc = NULL; } buffer.readByteArray(const_cast(fPtr)); } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// #include "SkDataSet.h" #include "SkFlattenable.h" #include "SkStream.h" static SkData* dupdata(SkData* data) { if (data) { data->ref(); } else { data = SkData::NewEmpty(); } return data; } static SkData* findValue(const char key[], const SkDataSet::Pair array[], int n) { for (int i = 0; i < n; ++i) { if (!strcmp(key, array[i].fKey)) { return array[i].fValue; } } return NULL; } static SkDataSet::Pair* allocatePairStorage(int count, size_t storage) { size_t size = count * sizeof(SkDataSet::Pair) + storage; return (SkDataSet::Pair*)sk_malloc_throw(size); } SkDataSet::SkDataSet(const char key[], SkData* value) { size_t keyLen = strlen(key); fCount = 1; fKeySize = keyLen + 1; fPairs = allocatePairStorage(1, keyLen + 1); fPairs[0].fKey = (char*)(fPairs + 1); memcpy(const_cast(fPairs[0].fKey), key, keyLen + 1); fPairs[0].fValue = dupdata(value); } SkDataSet::SkDataSet(const Pair array[], int count) { if (count < 1) { fCount = 0; fKeySize = 0; fPairs = NULL; return; } int i; size_t keySize = 0; for (i = 0; i < count; ++i) { keySize += strlen(array[i].fKey) + 1; } Pair* pairs = fPairs = allocatePairStorage(count, keySize); char* keyStorage = (char*)(pairs + count); keySize = 0; // reset this, so we can compute the size for unique keys int uniqueCount = 0; for (int i = 0; i < count; ++i) { if (!findValue(array[i].fKey, pairs, uniqueCount)) { size_t len = strlen(array[i].fKey); memcpy(keyStorage, array[i].fKey, len + 1); pairs[uniqueCount].fKey = keyStorage; keyStorage += len + 1; keySize += len + 1; pairs[uniqueCount].fValue = dupdata(array[i].fValue); uniqueCount += 1; } } fCount = uniqueCount; fKeySize = keySize; } SkDataSet::~SkDataSet() { for (int i = 0; i < fCount; ++i) { fPairs[i].fValue->unref(); } sk_free(fPairs); // this also frees the key storage } SkData* SkDataSet::find(const char key[]) const { return findValue(key, fPairs, fCount); } void SkDataSet::writeToStream(SkWStream* stream) const { stream->write32(fCount); if (fCount > 0) { stream->write32(fKeySize); // our first key points to all the key storage stream->write(fPairs[0].fKey, fKeySize); for (int i = 0; i < fCount; ++i) { stream->writeData(fPairs[i].fValue); } } } void SkDataSet::flatten(SkFlattenableWriteBuffer& buffer) const { buffer.writeInt(fCount); if (fCount > 0) { buffer.writeByteArray(fPairs[0].fKey, fKeySize); for (int i = 0; i < fCount; ++i) { buffer.writeFlattenable(fPairs[i].fValue); } } } SkDataSet::SkDataSet(SkStream* stream) { fCount = stream->readU32(); if (fCount > 0) { fKeySize = stream->readU32(); fPairs = allocatePairStorage(fCount, fKeySize); char* keyStorage = (char*)(fPairs + fCount); stream->read(keyStorage, fKeySize); for (int i = 0; i < fCount; ++i) { fPairs[i].fKey = keyStorage; keyStorage += strlen(keyStorage) + 1; fPairs[i].fValue = stream->readData(); } } else { fKeySize = 0; fPairs = NULL; } } SkDataSet::SkDataSet(SkFlattenableReadBuffer& buffer) { fCount = buffer.readInt(); if (fCount > 0) { fKeySize = buffer.getArrayCount(); fPairs = allocatePairStorage(fCount, fKeySize); char* keyStorage = (char*)(fPairs + fCount); buffer.readByteArray(keyStorage); for (int i = 0; i < fCount; ++i) { fPairs[i].fKey = keyStorage; keyStorage += strlen(keyStorage) + 1; fPairs[i].fValue = buffer.readFlattenableT(); } } else { fKeySize = 0; fPairs = NULL; } } SkDataSet* SkDataSet::NewEmpty() { static SkDataSet* gEmptySet; if (NULL == gEmptySet) { gEmptySet = SkNEW_ARGS(SkDataSet, (NULL, 0)); } gEmptySet->ref(); return gEmptySet; }