/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkColorSpaceXform_A2B.h" #include "SkColorPriv.h" #include "SkColorSpace_A2B.h" #include "SkColorSpace_XYZ.h" #include "SkColorSpacePriv.h" #include "SkColorSpaceXformPriv.h" #include "SkMakeUnique.h" #include "SkNx.h" #include "SkSRGB.h" #include "SkTypes.h" bool SkColorSpaceXform_A2B::onApply(ColorFormat dstFormat, void* dst, ColorFormat srcFormat, const void* src, int count, SkAlphaType alphaType) const { SkRasterPipeline pipeline; switch (srcFormat) { case kBGRA_8888_ColorFormat: pipeline.append(SkRasterPipeline::load_8888, &src); pipeline.append(SkRasterPipeline::swap_rb); break; case kRGBA_8888_ColorFormat: pipeline.append(SkRasterPipeline::load_8888, &src); break; case kRGBA_U16_BE_ColorFormat: pipeline.append(SkRasterPipeline::load_u16_be, &src); break; case kRGB_U16_BE_ColorFormat: pipeline.append(SkRasterPipeline::load_rgb_u16_be, &src); break; default: SkCSXformPrintf("F16/F32 source color format not supported\n"); return false; } pipeline.extend(fElementsPipeline); if (kPremul_SkAlphaType == alphaType) { pipeline.append(SkRasterPipeline::premul); } switch (dstFormat) { case kBGRA_8888_ColorFormat: pipeline.append(SkRasterPipeline::swap_rb); pipeline.append(SkRasterPipeline::store_8888, &dst); break; case kRGBA_8888_ColorFormat: pipeline.append(SkRasterPipeline::store_8888, &dst); break; case kRGBA_F16_ColorFormat: if (!fLinearDstGamma) { return false; } pipeline.append(SkRasterPipeline::store_f16, &dst); break; case kRGBA_F32_ColorFormat: if (!fLinearDstGamma) { return false; } pipeline.append(SkRasterPipeline::store_f32, &dst); break; default: return false; } pipeline.run(0,count); return true; } static inline bool gamma_to_parametric(SkColorSpaceTransferFn* coeffs, const SkGammas& gammas, int channel) { switch (gammas.type(channel)) { case SkGammas::Type::kNamed_Type: return named_to_parametric(coeffs, gammas.data(channel).fNamed); case SkGammas::Type::kValue_Type: value_to_parametric(coeffs, gammas.data(channel).fValue); return true; case SkGammas::Type::kParam_Type: *coeffs = gammas.params(channel); return true; default: return false; } } static inline SkColorSpaceTransferFn invert_parametric(const SkColorSpaceTransferFn& fn) { // Original equation is: y = (ax + b)^g + e for x >= d // y = cx + f otherwise // // so 1st inverse is: (y - e)^(1/g) = ax + b // x = ((y - e)^(1/g) - b) / a // // which can be re-written as: x = (1/a)(y - e)^(1/g) - b/a // x = ((1/a)^g)^(1/g) * (y - e)^(1/g) - b/a // x = ([(1/a)^g]y + [-((1/a)^g)e]) ^ [1/g] + [-b/a] // // and 2nd inverse is: x = (y - f) / c // which can be re-written as: x = [1/c]y + [-f/c] // // and now both can be expressed in terms of the same parametric form as the // original - parameters are enclosed in square brackets. // find inverse for linear segment (if possible) float c, f; if (0.f == fn.fC) { // otherwise assume it should be 0 as it is the lower segment // as y = f is a constant function c = 0.f; f = 0.f; } else { c = 1.f / fn.fC; f = -fn.fF / fn.fC; } // find inverse for the other segment (if possible) float g, a, b, e; if (0.f == fn.fA || 0.f == fn.fG) { // otherwise assume it should be 1 as it is the top segment // as you can't invert the constant functions y = b^g + c, or y = 1 + c g = 1.f; a = 0.f; b = 0.f; e = 1.f; } else { g = 1.f / fn.fG; a = powf(1.f / fn.fA, fn.fG); b = -a * fn.fE; e = -fn.fB / fn.fA; } const float d = fn.fC * fn.fD + fn.fF; return {g, a, b, c, d, e, f}; } SkColorSpaceXform_A2B::SkColorSpaceXform_A2B(SkColorSpace_A2B* srcSpace, SkColorSpace_XYZ* dstSpace) : fLinearDstGamma(kLinear_SkGammaNamed == dstSpace->gammaNamed()) { #if (SkCSXformPrintfDefined) static const char* debugGammaNamed[4] = { "Linear", "SRGB", "2.2", "NonStandard" }; static const char* debugGammas[5] = { "None", "Named", "Value", "Table", "Param" }; #endif int currentChannels; switch (srcSpace->iccType()) { case SkColorSpace_Base::kRGB_ICCTypeFlag: currentChannels = 3; break; case SkColorSpace_Base::kCMYK_ICCTypeFlag: currentChannels = 4; // CMYK images from JPEGs (the only format that supports it) are actually // inverted CMYK, so we need to invert every channel. // TransferFn is y = -x + 1 for x < 1.f, otherwise 0x + 0, ie y = 1 - x for x in [0,1] this->addTransferFns({1.f, 0.f, 0.f, -1.f, 1.f, 0.f, 1.f}, 4); break; default: currentChannels = 0; SkASSERT(false); } // add in all input color space -> PCS xforms for (int i = 0; i < srcSpace->count(); ++i) { const SkColorSpace_A2B::Element& e = srcSpace->element(i); SkASSERT(e.inputChannels() == currentChannels); currentChannels = e.outputChannels(); switch (e.type()) { case SkColorSpace_A2B::Element::Type::kGammaNamed: if (kLinear_SkGammaNamed == e.gammaNamed()) { break; } // take the fast path for 3-channel named gammas if (3 == currentChannels) { if (k2Dot2Curve_SkGammaNamed == e.gammaNamed()) { SkCSXformPrintf("fast path from 2.2\n"); fElementsPipeline.append(SkRasterPipeline::from_2dot2); break; } else if (kSRGB_SkGammaNamed == e.gammaNamed()) { SkCSXformPrintf("fast path from sRGB\n"); // Images should always start the pipeline as unpremul fElementsPipeline.append_from_srgb(kUnpremul_SkAlphaType); break; } } SkCSXformPrintf("Gamma stage added: %s\n", debugGammaNamed[(int)e.gammaNamed()]); SkColorSpaceTransferFn fn; SkAssertResult(named_to_parametric(&fn, e.gammaNamed())); this->addTransferFns(fn, currentChannels); break; case SkColorSpace_A2B::Element::Type::kGammas: { const SkGammas& gammas = e.gammas(); SkCSXformPrintf("Gamma stage added:"); for (int channel = 0; channel < gammas.channels(); ++channel) { SkCSXformPrintf(" %s", debugGammas[(int)gammas.type(channel)]); } SkCSXformPrintf("\n"); bool gammaNeedsRef = false; for (int channel = 0; channel < gammas.channels(); ++channel) { if (SkGammas::Type::kTable_Type == gammas.type(channel)) { SkTableTransferFn table = { gammas.table(channel), gammas.data(channel).fTable.fSize, }; this->addTableFn(table, channel); gammaNeedsRef = true; } else { SkColorSpaceTransferFn fn; SkAssertResult(gamma_to_parametric(&fn, gammas, channel)); this->addTransferFn(fn, channel); } } if (gammaNeedsRef) { fGammaRefs.push_back(sk_ref_sp(&gammas)); } break; } case SkColorSpace_A2B::Element::Type::kCLUT: SkCSXformPrintf("CLUT (%d -> %d) stage added\n", e.colorLUT().inputChannels(), e.colorLUT().outputChannels()); fCLUTs.push_back(sk_ref_sp(&e.colorLUT())); fElementsPipeline.append(SkRasterPipeline::color_lookup_table, fCLUTs.back().get()); break; case SkColorSpace_A2B::Element::Type::kMatrix: if (!e.matrix().isIdentity()) { SkCSXformPrintf("Matrix stage added\n"); addMatrix(e.matrix()); } break; } } // Lab PCS -> XYZ PCS if (SkColorSpace_A2B::PCS::kLAB == srcSpace->pcs()) { SkCSXformPrintf("Lab -> XYZ element added\n"); fElementsPipeline.append(SkRasterPipeline::lab_to_xyz); } // we should now be in XYZ PCS SkASSERT(3 == currentChannels); // and XYZ PCS -> output color space xforms if (!dstSpace->fromXYZD50()->isIdentity()) { addMatrix(*dstSpace->fromXYZD50()); } switch (dstSpace->gammaNamed()) { case kLinear_SkGammaNamed: // do nothing break; case k2Dot2Curve_SkGammaNamed: fElementsPipeline.append(SkRasterPipeline::to_2dot2); break; case kSRGB_SkGammaNamed: fElementsPipeline.append(SkRasterPipeline::to_srgb); break; case kNonStandard_SkGammaNamed: { for (int channel = 0; channel < 3; ++channel) { const SkGammas& gammas = *dstSpace->gammas(); if (SkGammas::Type::kTable_Type == gammas.type(channel)) { static constexpr int kInvTableSize = 256; std::vector storage(kInvTableSize); invert_table_gamma(storage.data(), nullptr, storage.size(), gammas.table(channel), gammas.data(channel).fTable.fSize); SkTableTransferFn table = { storage.data(), (int) storage.size(), }; fTableStorage.push_front(std::move(storage)); this->addTableFn(table, channel); } else { SkColorSpaceTransferFn fn; SkAssertResult(gamma_to_parametric(&fn, gammas, channel)); this->addTransferFn(invert_parametric(fn), channel); } } } break; } } void SkColorSpaceXform_A2B::addTransferFns(const SkColorSpaceTransferFn& fn, int channelCount) { for (int i = 0; i < channelCount; ++i) { this->addTransferFn(fn, i); } } void SkColorSpaceXform_A2B::addTransferFn(const SkColorSpaceTransferFn& fn, int channelIndex) { fTransferFns.push_front(fn); switch (channelIndex) { case 0: fElementsPipeline.append(SkRasterPipeline::parametric_r, &fTransferFns.front()); break; case 1: fElementsPipeline.append(SkRasterPipeline::parametric_g, &fTransferFns.front()); break; case 2: fElementsPipeline.append(SkRasterPipeline::parametric_b, &fTransferFns.front()); break; case 3: fElementsPipeline.append(SkRasterPipeline::parametric_a, &fTransferFns.front()); break; default: SkASSERT(false); } } void SkColorSpaceXform_A2B::addTableFn(const SkTableTransferFn& fn, int channelIndex) { fTableTransferFns.push_front(fn); switch (channelIndex) { case 0: fElementsPipeline.append(SkRasterPipeline::table_r, &fTableTransferFns.front()); break; case 1: fElementsPipeline.append(SkRasterPipeline::table_g, &fTableTransferFns.front()); break; case 2: fElementsPipeline.append(SkRasterPipeline::table_b, &fTableTransferFns.front()); break; case 3: fElementsPipeline.append(SkRasterPipeline::table_a, &fTableTransferFns.front()); break; default: SkASSERT(false); } } void SkColorSpaceXform_A2B::addMatrix(const SkMatrix44& matrix) { fMatrices.push_front(std::vector(12)); auto& m = fMatrices.front(); m[ 0] = matrix.get(0, 0); m[ 1] = matrix.get(1, 0); m[ 2] = matrix.get(2, 0); m[ 3] = matrix.get(0, 1); m[ 4] = matrix.get(1, 1); m[ 5] = matrix.get(2, 1); m[ 6] = matrix.get(0, 2); m[ 7] = matrix.get(1, 2); m[ 8] = matrix.get(2, 2); m[ 9] = matrix.get(0, 3); m[10] = matrix.get(1, 3); m[11] = matrix.get(2, 3); SkASSERT(matrix.get(3, 0) == 0.f); SkASSERT(matrix.get(3, 1) == 0.f); SkASSERT(matrix.get(3, 2) == 0.f); SkASSERT(matrix.get(3, 3) == 1.f); fElementsPipeline.append(SkRasterPipeline::matrix_3x4, m.data()); fElementsPipeline.append(SkRasterPipeline::clamp_0); fElementsPipeline.append(SkRasterPipeline::clamp_1); }