/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkColorPriv.h" #include "SkColorSpace_Base.h" #include "SkColorSpacePriv.h" #include "SkColorSpaceXform_Base.h" #include "SkHalf.h" #include "SkOpts.h" #include "SkSRGB.h" static constexpr float sk_linear_from_2dot2[256] = { 0.000000000000000000f, 0.000005077051900662f, 0.000023328004666099f, 0.000056921765712193f, 0.000107187362341244f, 0.000175123977503027f, 0.000261543754548491f, 0.000367136269815943f, 0.000492503787191433f, 0.000638182842167022f, 0.000804658499513058f, 0.000992374304074325f, 0.001201739522438400f, 0.001433134589671860f, 0.001686915316789280f, 0.001963416213396470f, 0.002262953160706430f, 0.002585825596234170f, 0.002932318323938360f, 0.003302703032003640f, 0.003697239578900130f, 0.004116177093282750f, 0.004559754922526020f, 0.005028203456855540f, 0.005521744850239660f, 0.006040593654849810f, 0.006584957382581690f, 0.007155037004573030f, 0.007751027397660610f, 0.008373117745148580f, 0.009021491898012130f, 0.009696328701658230f, 0.010397802292555300f, 0.011126082368383200f, 0.011881334434813700f, 0.012663720031582100f, 0.013473396940142600f, 0.014310519374884100f, 0.015175238159625200f, 0.016067700890886900f, 0.016988052089250000f, 0.017936433339950200f, 0.018912983423721500f, 0.019917838438785700f, 0.020951131914781100f, 0.022012994919336500f, 0.023103556157921400f, 0.024222942067534200f, 0.025371276904734600f, 0.026548682828472900f, 0.027755279978126000f, 0.028991186547107800f, 0.030256518852388700f, 0.031551391400226400f, 0.032875916948383800f, 0.034230206565082000f, 0.035614369684918800f, 0.037028514161960200f, 0.038472746320194600f, 0.039947171001525600f, 0.041451891611462500f, 0.042987010162657100f, 0.044552627316421400f, 0.046148842422351000f, 0.047775753556170600f, 0.049433457555908000f, 0.051122050056493400f, 0.052841625522879000f, 0.054592277281760300f, 0.056374097551979800f, 0.058187177473685400f, 0.060031607136313200f, 0.061907475605455800f, 0.063814870948677200f, 0.065753880260330100f, 0.067724589685424300f, 0.069727084442598800f, 0.071761448846239100f, 0.073827766327784600f, 0.075926119456264800f, 0.078056589958101900f, 0.080219258736215100f, 0.082414205888459200f, 0.084641510725429500f, 0.086901251787660300f, 0.089193506862247800f, 0.091518352998919500f, 0.093875866525577800f, 0.096266123063339700f, 0.098689197541094500f, 0.101145164209600000f, 0.103634096655137000f, 0.106156067812744000f, 0.108711149979039000f, 0.111299414824660000f, 0.113920933406333000f, 0.116575776178572000f, 0.119264013005047000f, 0.121985713169619000f, 0.124740945387051000f, 0.127529777813422000f, 0.130352278056244000f, 0.133208513184300000f, 0.136098549737202000f, 0.139022453734703000f, 0.141980290685736000f, 0.144972125597231000f, 0.147998022982685000f, 0.151058046870511000f, 0.154152260812165000f, 0.157280727890073000f, 0.160443510725344000f, 0.163640671485290000f, 0.166872271890766000f, 0.170138373223312000f, 0.173439036332135000f, 0.176774321640903000f, 0.180144289154390000f, 0.183548998464951000f, 0.186988508758844000f, 0.190462878822409000f, 0.193972167048093000f, 0.197516431440340000f, 0.201095729621346000f, 0.204710118836677000f, 0.208359655960767000f, 0.212044397502288000f, 0.215764399609395000f, 0.219519718074868000f, 0.223310408341127000f, 0.227136525505149000f, 0.230998124323267000f, 0.234895259215880000f, 0.238827984272048000f, 0.242796353254002000f, 0.246800419601550000f, 0.250840236436400000f, 0.254915856566385000f, 0.259027332489606000f, 0.263174716398492000f, 0.267358060183772000f, 0.271577415438375000f, 0.275832833461245000f, 0.280124365261085000f, 0.284452061560024000f, 0.288815972797219000f, 0.293216149132375000f, 0.297652640449211000f, 0.302125496358853000f, 0.306634766203158000f, 0.311180499057984000f, 0.315762743736397000f, 0.320381548791810000f, 0.325036962521076000f, 0.329729032967515000f, 0.334457807923889000f, 0.339223334935327000f, 0.344025661302187000f, 0.348864834082879000f, 0.353740900096629000f, 0.358653905926199000f, 0.363603897920553000f, 0.368590922197487000f, 0.373615024646202000f, 0.378676250929840000f, 0.383774646487975000f, 0.388910256539059000f, 0.394083126082829000f, 0.399293299902674000f, 0.404540822567962000f, 0.409825738436323000f, 0.415148091655907000f, 0.420507926167587000f, 0.425905285707146000f, 0.431340213807410000f, 0.436812753800359000f, 0.442322948819202000f, 0.447870841800410000f, 0.453456475485731000f, 0.459079892424160000f, 0.464741134973889000f, 0.470440245304218000f, 0.476177265397440000f, 0.481952237050698000f, 0.487765201877811000f, 0.493616201311074000f, 0.499505276603030000f, 0.505432468828216000f, 0.511397818884880000f, 0.517401367496673000f, 0.523443155214325000f, 0.529523222417277000f, 0.535641609315311000f, 0.541798355950137000f, 0.547993502196972000f, 0.554227087766085000f, 0.560499152204328000f, 0.566809734896638000f, 0.573158875067523000f, 0.579546611782525000f, 0.585972983949661000f, 0.592438030320847000f, 0.598941789493296000f, 0.605484299910907000f, 0.612065599865624000f, 0.618685727498780000f, 0.625344720802427000f, 0.632042617620641000f, 0.638779455650817000f, 0.645555272444935000f, 0.652370105410821000f, 0.659223991813387000f, 0.666116968775851000f, 0.673049073280942000f, 0.680020342172095000f, 0.687030812154625000f, 0.694080519796882000f, 0.701169501531402000f, 0.708297793656032000f, 0.715465432335048000f, 0.722672453600255000f, 0.729918893352071000f, 0.737204787360605000f, 0.744530171266715000f, 0.751895080583051000f, 0.759299550695091000f, 0.766743616862161000f, 0.774227314218442000f, 0.781750677773962000f, 0.789313742415586000f, 0.796916542907978000f, 0.804559113894567000f, 0.812241489898490000f, 0.819963705323528000f, 0.827725794455034000f, 0.835527791460841000f, 0.843369730392169000f, 0.851251645184515000f, 0.859173569658532000f, 0.867135537520905000f, 0.875137582365205000f, 0.883179737672745000f, 0.891262036813419000f, 0.899384513046529000f, 0.907547199521614000f, 0.915750129279253000f, 0.923993335251873000f, 0.932276850264543000f, 0.940600707035753000f, 0.948964938178195000f, 0.957369576199527000f, 0.965814653503130000f, 0.974300202388861000f, 0.982826255053791000f, 0.991392843592940000f, 1.000000000000000000f, }; /////////////////////////////////////////////////////////////////////////////////////////////////// static void build_table_linear_from_gamma(float* outTable, float exponent) { for (float x = 0.0f; x <= 1.0f; x += (1.0f/255.0f)) { *outTable++ = powf(x, exponent); } } // Interpolating lookup in a variably sized table. static float interp_lut(float input, const float* table, int tableSize) { float index = input * (tableSize - 1); float diff = index - sk_float_floor2int(index); return table[(int) sk_float_floor2int(index)] * (1.0f - diff) + table[(int) sk_float_ceil2int(index)] * diff; } // outTable is always 256 entries, inTable may be larger or smaller. static void build_table_linear_from_gamma(float* outTable, const float* inTable, int inTableSize) { if (256 == inTableSize) { memcpy(outTable, inTable, sizeof(float) * 256); return; } for (float x = 0.0f; x <= 1.0f; x += (1.0f/255.0f)) { *outTable++ = interp_lut(x, inTable, inTableSize); } } static void build_table_linear_from_gamma(float* outTable, float g, float a, float b, float c, float d, float e, float f) { // Y = (aX + b)^g + c for X >= d // Y = eX + f otherwise for (float x = 0.0f; x <= 1.0f; x += (1.0f/255.0f)) { if (x >= d) { *outTable++ = powf(a * x + b, g) + c; } else { *outTable++ = e * x + f; } } } /////////////////////////////////////////////////////////////////////////////////////////////////// // Expand range from 0-1 to 0-255, then convert. static uint8_t clamp_normalized_float_to_byte(float v) { // The ordering of the logic is a little strange here in order // to make sure we convert NaNs to 0. v = v * 255.0f; if (v >= 254.5f) { return 255; } else if (v >= 0.5f) { return (uint8_t) (v + 0.5f); } else { return 0; } } static const int kDstGammaTableSize = SkColorSpaceXform_Base::kDstGammaTableSize; static void build_table_linear_to_gamma(uint8_t* outTable, float exponent) { float toGammaExp = 1.0f / exponent; for (int i = 0; i < kDstGammaTableSize; i++) { float x = ((float) i) * (1.0f / ((float) (kDstGammaTableSize - 1))); outTable[i] = clamp_normalized_float_to_byte(powf(x, toGammaExp)); } } // Inverse table lookup. Ex: what index corresponds to the input value? This will // have strange results when the table is non-increasing. But any sane gamma // function will be increasing. static float inverse_interp_lut(float input, const float* table, int tableSize) { if (input <= table[0]) { return table[0]; } else if (input >= table[tableSize - 1]) { return 1.0f; } for (int i = 1; i < tableSize; i++) { if (table[i] >= input) { // We are guaranteed that input is greater than table[i - 1]. float diff = input - table[i - 1]; float distance = table[i] - table[i - 1]; float index = (i - 1) + diff / distance; return index / (tableSize - 1); } } // Should be unreachable, since we'll return before the loop if input is // larger than the last entry. SkASSERT(false); return 0.0f; } static void build_table_linear_to_gamma(uint8_t* outTable, const float* inTable, int inTableSize) { for (int i = 0; i < kDstGammaTableSize; i++) { float x = ((float) i) * (1.0f / ((float) (kDstGammaTableSize - 1))); float y = inverse_interp_lut(x, inTable, inTableSize); outTable[i] = clamp_normalized_float_to_byte(y); } } static float inverse_parametric(float x, float g, float a, float b, float c, float d, float e, float f) { // We need to take the inverse of the following piecewise function. // Y = (aX + b)^g + c for X >= d // Y = eX + f otherwise // Assume that the gamma function is continuous, or this won't make much sense anyway. // Plug in |d| to the first equation to calculate the new piecewise interval. // Then simply use the inverse of the original functions. float interval = e * d + f; if (x < interval) { // X = (Y - F) / E if (0.0f == e) { // The gamma curve for this segment is constant, so the inverse is undefined. // Since this is the lower segment, guess zero. return 0.0f; } return (x - f) / e; } // X = ((Y - C)^(1 / G) - B) / A if (0.0f == a || 0.0f == g) { // The gamma curve for this segment is constant, so the inverse is undefined. // Since this is the upper segment, guess one. return 1.0f; } return (powf(x - c, 1.0f / g) - b) / a; } static void build_table_linear_to_gamma(uint8_t* outTable, float g, float a, float b, float c, float d, float e, float f) { for (int i = 0; i < kDstGammaTableSize; i++) { float x = ((float) i) * (1.0f / ((float) (kDstGammaTableSize - 1))); float y = inverse_parametric(x, g, a, b, c, d, e, f); outTable[i] = clamp_normalized_float_to_byte(y); } } /////////////////////////////////////////////////////////////////////////////////////////////////// template struct GammaFns { const T* fSRGBTable; const T* f2Dot2Table; void (*fBuildFromValue)(T*, float); void (*fBuildFromTable)(T*, const float*, int); void (*fBuildFromParam)(T*, float, float, float, float, float, float, float); }; static const GammaFns kToLinear { sk_linear_from_srgb, sk_linear_from_2dot2, &build_table_linear_from_gamma, &build_table_linear_from_gamma, &build_table_linear_from_gamma, }; static const GammaFns kFromLinear { nullptr, nullptr, &build_table_linear_to_gamma, &build_table_linear_to_gamma, &build_table_linear_to_gamma, }; // Build tables to transform src gamma to linear. template static void build_gamma_tables(const T* outGammaTables[3], T* gammaTableStorage, int gammaTableSize, const SkColorSpace* space, const GammaFns& fns, bool gammasAreMatching) { switch (as_CSB(space)->gammaNamed()) { case kSRGB_SkGammaNamed: outGammaTables[0] = outGammaTables[1] = outGammaTables[2] = fns.fSRGBTable; break; case k2Dot2Curve_SkGammaNamed: outGammaTables[0] = outGammaTables[1] = outGammaTables[2] = fns.f2Dot2Table; break; case kLinear_SkGammaNamed: outGammaTables[0] = outGammaTables[1] = outGammaTables[2] = nullptr; break; default: { const SkGammas* gammas = as_CSB(space)->gammas(); SkASSERT(gammas); auto build_table = [=](int i) { if (gammas->isNamed(i)) { switch (gammas->data(i).fNamed) { case kSRGB_SkGammaNamed: (*fns.fBuildFromParam)(&gammaTableStorage[i * gammaTableSize], 2.4f, (1.0f / 1.055f), (0.055f / 1.055f), 0.0f, 0.04045f, (1.0f / 12.92f), 0.0f); outGammaTables[i] = &gammaTableStorage[i * gammaTableSize]; break; case k2Dot2Curve_SkGammaNamed: (*fns.fBuildFromValue)(&gammaTableStorage[i * gammaTableSize], 2.2f); outGammaTables[i] = &gammaTableStorage[i * gammaTableSize]; break; case kLinear_SkGammaNamed: (*fns.fBuildFromValue)(&gammaTableStorage[i * gammaTableSize], 1.0f); outGammaTables[i] = &gammaTableStorage[i * gammaTableSize]; break; default: SkASSERT(false); break; } } else if (gammas->isValue(i)) { (*fns.fBuildFromValue)(&gammaTableStorage[i * gammaTableSize], gammas->data(i).fValue); outGammaTables[i] = &gammaTableStorage[i * gammaTableSize]; } else if (gammas->isTable(i)) { (*fns.fBuildFromTable)(&gammaTableStorage[i * gammaTableSize], gammas->table(i), gammas->data(i).fTable.fSize); outGammaTables[i] = &gammaTableStorage[i * gammaTableSize]; } else { SkASSERT(gammas->isParametric(i)); const SkColorSpaceTransferFn& params = gammas->params(i); (*fns.fBuildFromParam)(&gammaTableStorage[i * gammaTableSize], params.fG, params.fA, params.fB, params.fC, params.fD, params.fE, params.fF); outGammaTables[i] = &gammaTableStorage[i * gammaTableSize]; } }; if (gammasAreMatching) { build_table(0); outGammaTables[1] = outGammaTables[0]; outGammaTables[2] = outGammaTables[0]; } else { build_table(0); build_table(1); build_table(2); } break; } } } void SkColorSpaceXform_Base::BuildDstGammaTables(const uint8_t* dstGammaTables[3], uint8_t* dstStorage, const SkColorSpace* space, bool gammasAreMatching) { build_gamma_tables(dstGammaTables, dstStorage, kDstGammaTableSize, space, kFromLinear, gammasAreMatching); } /////////////////////////////////////////////////////////////////////////////////////////////////// static inline bool is_almost_identity(const SkMatrix44& srcToDst) { for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { float expected = (i == j) ? 1.0f : 0.0f; if (!color_space_almost_equal(srcToDst.getFloat(i,j), expected)) { return false; } } } return true; } /////////////////////////////////////////////////////////////////////////////////////////////////// std::unique_ptr SkColorSpaceXform::New(SkColorSpace* srcSpace, SkColorSpace* dstSpace) { if (!srcSpace || !dstSpace) { // Invalid input return nullptr; } ColorSpaceMatch csm = kNone_ColorSpaceMatch; SkMatrix44 srcToDst(SkMatrix44::kUninitialized_Constructor); if (SkColorSpace::Equals(srcSpace, dstSpace)) { srcToDst.setIdentity(); csm = kFull_ColorSpaceMatch; } else { srcToDst.setConcat(as_CSB(dstSpace)->fromXYZD50(), as_CSB(srcSpace)->toXYZD50()); if (is_almost_identity(srcToDst)) { srcToDst.setIdentity(); csm = kGamut_ColorSpaceMatch; } } switch (csm) { case kNone_ColorSpaceMatch: switch (as_CSB(dstSpace)->gammaNamed()) { case kSRGB_SkGammaNamed: if (srcSpace->gammaIsLinear()) { return std::unique_ptr(new SkColorSpaceXform_XYZ (srcSpace, srcToDst, dstSpace)); } else { return std::unique_ptr(new SkColorSpaceXform_XYZ (srcSpace, srcToDst, dstSpace)); } case k2Dot2Curve_SkGammaNamed: if (srcSpace->gammaIsLinear()) { return std::unique_ptr(new SkColorSpaceXform_XYZ (srcSpace, srcToDst, dstSpace)); } else { return std::unique_ptr(new SkColorSpaceXform_XYZ (srcSpace, srcToDst, dstSpace)); } case kLinear_SkGammaNamed: if (srcSpace->gammaIsLinear()) { return std::unique_ptr(new SkColorSpaceXform_XYZ (srcSpace, srcToDst, dstSpace)); } else { return std::unique_ptr(new SkColorSpaceXform_XYZ (srcSpace, srcToDst, dstSpace)); } default: if (srcSpace->gammaIsLinear()) { return std::unique_ptr(new SkColorSpaceXform_XYZ (srcSpace, srcToDst, dstSpace)); } else { return std::unique_ptr(new SkColorSpaceXform_XYZ (srcSpace, srcToDst, dstSpace)); } } case kGamut_ColorSpaceMatch: switch (as_CSB(dstSpace)->gammaNamed()) { case kSRGB_SkGammaNamed: if (srcSpace->gammaIsLinear()) { return std::unique_ptr(new SkColorSpaceXform_XYZ (srcSpace, srcToDst, dstSpace)); } else { return std::unique_ptr(new SkColorSpaceXform_XYZ (srcSpace, srcToDst, dstSpace)); } case k2Dot2Curve_SkGammaNamed: if (srcSpace->gammaIsLinear()) { return std::unique_ptr(new SkColorSpaceXform_XYZ (srcSpace, srcToDst, dstSpace)); } else { return std::unique_ptr(new SkColorSpaceXform_XYZ (srcSpace, srcToDst, dstSpace)); } case kLinear_SkGammaNamed: if (srcSpace->gammaIsLinear()) { return std::unique_ptr(new SkColorSpaceXform_XYZ (srcSpace, srcToDst, dstSpace)); } else { return std::unique_ptr(new SkColorSpaceXform_XYZ (srcSpace, srcToDst, dstSpace)); } default: if (srcSpace->gammaIsLinear()) { return std::unique_ptr(new SkColorSpaceXform_XYZ (srcSpace, srcToDst, dstSpace)); } else { return std::unique_ptr(new SkColorSpaceXform_XYZ (srcSpace, srcToDst, dstSpace)); } } case kFull_ColorSpaceMatch: switch (as_CSB(dstSpace)->gammaNamed()) { case kSRGB_SkGammaNamed: return std::unique_ptr(new SkColorSpaceXform_XYZ (srcSpace, srcToDst, dstSpace)); case k2Dot2Curve_SkGammaNamed: return std::unique_ptr(new SkColorSpaceXform_XYZ (srcSpace, srcToDst, dstSpace)); case kLinear_SkGammaNamed: return std::unique_ptr(new SkColorSpaceXform_XYZ (srcSpace, srcToDst, dstSpace)); default: return std::unique_ptr(new SkColorSpaceXform_XYZ (srcSpace, srcToDst, dstSpace)); } default: SkASSERT(false); return nullptr; } } /////////////////////////////////////////////////////////////////////////////////////////////////// static float byte_to_float(uint8_t byte) { return ((float) byte) * (1.0f / 255.0f); } // Clamp to the 0-1 range. static float clamp_normalized_float(float v) { if (v > 1.0f) { return 1.0f; } else if ((v < 0.0f) || (v != v)) { return 0.0f; } else { return v; } } static void interp_3d_clut(float dst[3], float src[3], const SkColorLookUpTable* colorLUT) { // Call the src components x, y, and z. uint8_t maxX = colorLUT->fGridPoints[0] - 1; uint8_t maxY = colorLUT->fGridPoints[1] - 1; uint8_t maxZ = colorLUT->fGridPoints[2] - 1; // An approximate index into each of the three dimensions of the table. float x = src[0] * maxX; float y = src[1] * maxY; float z = src[2] * maxZ; // This gives us the low index for our interpolation. int ix = sk_float_floor2int(x); int iy = sk_float_floor2int(y); int iz = sk_float_floor2int(z); // Make sure the low index is not also the max index. ix = (maxX == ix) ? ix - 1 : ix; iy = (maxY == iy) ? iy - 1 : iy; iz = (maxZ == iz) ? iz - 1 : iz; // Weighting factors for the interpolation. float diffX = x - ix; float diffY = y - iy; float diffZ = z - iz; // Constants to help us navigate the 3D table. // Ex: Assume x = a, y = b, z = c. // table[a * n001 + b * n010 + c * n100] logically equals table[a][b][c]. const int n000 = 0; const int n001 = 3 * colorLUT->fGridPoints[1] * colorLUT->fGridPoints[2]; const int n010 = 3 * colorLUT->fGridPoints[2]; const int n011 = n001 + n010; const int n100 = 3; const int n101 = n100 + n001; const int n110 = n100 + n010; const int n111 = n110 + n001; // Base ptr into the table. const float* ptr = &(colorLUT->table()[ix*n001 + iy*n010 + iz*n100]); // The code below performs a tetrahedral interpolation for each of the three // dst components. Once the tetrahedron containing the interpolation point is // identified, the interpolation is a weighted sum of grid values at the // vertices of the tetrahedron. The claim is that tetrahedral interpolation // provides a more accurate color conversion. // blogs.mathworks.com/steve/2006/11/24/tetrahedral-interpolation-for-colorspace-conversion/ // // I have one test image, and visually I can't tell the difference between // tetrahedral and trilinear interpolation. In terms of computation, the // tetrahedral code requires more branches but less computation. The // SampleICC library provides an option for the client to choose either // tetrahedral or trilinear. for (int i = 0; i < 3; i++) { if (diffZ < diffY) { if (diffZ < diffX) { dst[i] = (ptr[n000] + diffZ * (ptr[n110] - ptr[n010]) + diffY * (ptr[n010] - ptr[n000]) + diffX * (ptr[n111] - ptr[n110])); } else if (diffY < diffX) { dst[i] = (ptr[n000] + diffZ * (ptr[n111] - ptr[n011]) + diffY * (ptr[n011] - ptr[n001]) + diffX * (ptr[n001] - ptr[n000])); } else { dst[i] = (ptr[n000] + diffZ * (ptr[n111] - ptr[n011]) + diffY * (ptr[n010] - ptr[n000]) + diffX * (ptr[n011] - ptr[n010])); } } else { if (diffZ < diffX) { dst[i] = (ptr[n000] + diffZ * (ptr[n101] - ptr[n001]) + diffY * (ptr[n111] - ptr[n101]) + diffX * (ptr[n001] - ptr[n000])); } else if (diffY < diffX) { dst[i] = (ptr[n000] + diffZ * (ptr[n100] - ptr[n000]) + diffY * (ptr[n111] - ptr[n101]) + diffX * (ptr[n101] - ptr[n100])); } else { dst[i] = (ptr[n000] + diffZ * (ptr[n100] - ptr[n000]) + diffY * (ptr[n110] - ptr[n100]) + diffX * (ptr[n111] - ptr[n110])); } } // Increment the table ptr in order to handle the next component. // Note that this is the how table is designed: all of nXXX // variables are multiples of 3 because there are 3 output // components. ptr++; } } static void handle_color_lut(uint32_t* dst, const void* vsrc, int len, SkColorLookUpTable* colorLUT) { const uint32_t* src = (const uint32_t*) vsrc; while (len-- > 0) { uint8_t r = (*src >> 0) & 0xFF, g = (*src >> 8) & 0xFF, b = (*src >> 16) & 0xFF; float in[3]; float out[3]; in[0] = byte_to_float(r); in[1] = byte_to_float(g); in[2] = byte_to_float(b); interp_3d_clut(out, in, colorLUT); r = sk_float_round2int(255.0f * clamp_normalized_float(out[0])); g = sk_float_round2int(255.0f * clamp_normalized_float(out[1])); b = sk_float_round2int(255.0f * clamp_normalized_float(out[2])); *dst = SkPackARGB_as_RGBA(0xFF, r, g, b); src++; dst++; } } static inline void load_matrix(const float matrix[16], Sk4f& rXgXbX, Sk4f& rYgYbY, Sk4f& rZgZbZ, Sk4f& rTgTbT) { rXgXbX = Sk4f::Load(matrix + 0); rYgYbY = Sk4f::Load(matrix + 4); rZgZbZ = Sk4f::Load(matrix + 8); rTgTbT = Sk4f::Load(matrix + 12); } enum Order { kRGBA_Order, kBGRA_Order, }; static inline void set_rb_shifts(Order kOrder, int* kRShift, int* kBShift) { if (kRGBA_Order == kOrder) { *kRShift = 0; *kBShift = 16; } else { *kRShift = 16; *kBShift = 0; } } template static inline void load_rgb_from_tables(const uint32_t* src, Sk4f& r, Sk4f& g, Sk4f& b, Sk4f& a, const float* const srcTables[3]) { int kRShift, kGShift = 8, kBShift; set_rb_shifts(kOrder, &kRShift, &kBShift); r = { srcTables[0][(src[0] >> kRShift) & 0xFF], srcTables[0][(src[1] >> kRShift) & 0xFF], srcTables[0][(src[2] >> kRShift) & 0xFF], srcTables[0][(src[3] >> kRShift) & 0xFF], }; g = { srcTables[1][(src[0] >> kGShift) & 0xFF], srcTables[1][(src[1] >> kGShift) & 0xFF], srcTables[1][(src[2] >> kGShift) & 0xFF], srcTables[1][(src[3] >> kGShift) & 0xFF], }; b = { srcTables[2][(src[0] >> kBShift) & 0xFF], srcTables[2][(src[1] >> kBShift) & 0xFF], srcTables[2][(src[2] >> kBShift) & 0xFF], srcTables[2][(src[3] >> kBShift) & 0xFF], }; a = 0.0f; // Don't let the compiler complain that |a| is uninitialized. } template static inline void load_rgba_from_tables(const uint32_t* src, Sk4f& r, Sk4f& g, Sk4f& b, Sk4f& a, const float* const srcTables[3]) { int kRShift, kGShift = 8, kBShift; set_rb_shifts(kOrder, &kRShift, &kBShift); r = { srcTables[0][(src[0] >> kRShift) & 0xFF], srcTables[0][(src[1] >> kRShift) & 0xFF], srcTables[0][(src[2] >> kRShift) & 0xFF], srcTables[0][(src[3] >> kRShift) & 0xFF], }; g = { srcTables[1][(src[0] >> kGShift) & 0xFF], srcTables[1][(src[1] >> kGShift) & 0xFF], srcTables[1][(src[2] >> kGShift) & 0xFF], srcTables[1][(src[3] >> kGShift) & 0xFF], }; b = { srcTables[2][(src[0] >> kBShift) & 0xFF], srcTables[2][(src[1] >> kBShift) & 0xFF], srcTables[2][(src[2] >> kBShift) & 0xFF], srcTables[2][(src[3] >> kBShift) & 0xFF], }; a = (1.0f / 255.0f) * SkNx_cast(Sk4u::Load(src) >> 24); } template static inline void load_rgb_linear(const uint32_t* src, Sk4f& r, Sk4f& g, Sk4f& b, Sk4f& a, const float* const[3]) { int kRShift, kGShift = 8, kBShift; set_rb_shifts(kOrder, &kRShift, &kBShift); r = (1.0f / 255.0f) * SkNx_cast((Sk4u::Load(src) >> kRShift) & 0xFF); g = (1.0f / 255.0f) * SkNx_cast((Sk4u::Load(src) >> kGShift) & 0xFF); b = (1.0f / 255.0f) * SkNx_cast((Sk4u::Load(src) >> kBShift) & 0xFF); a = 0.0f; // Don't let the compiler complain that |a| is uninitialized. } template static inline void load_rgba_linear(const uint32_t* src, Sk4f& r, Sk4f& g, Sk4f& b, Sk4f& a, const float* const[3]) { int kRShift, kGShift = 8, kBShift; set_rb_shifts(kOrder, &kRShift, &kBShift); r = (1.0f / 255.0f) * SkNx_cast((Sk4u::Load(src) >> kRShift) & 0xFF); g = (1.0f / 255.0f) * SkNx_cast((Sk4u::Load(src) >> kGShift) & 0xFF); b = (1.0f / 255.0f) * SkNx_cast((Sk4u::Load(src) >> kBShift) & 0xFF); a = (1.0f / 255.0f) * SkNx_cast((Sk4u::Load(src) >> 24)); } template static inline void load_rgb_from_tables_1(const uint32_t* src, Sk4f& r, Sk4f& g, Sk4f& b, Sk4f&, const float* const srcTables[3]) { int kRShift, kGShift = 8, kBShift; set_rb_shifts(kOrder, &kRShift, &kBShift); r = Sk4f(srcTables[0][(*src >> kRShift) & 0xFF]); g = Sk4f(srcTables[1][(*src >> kGShift) & 0xFF]); b = Sk4f(srcTables[2][(*src >> kBShift) & 0xFF]); } template static inline void load_rgba_from_tables_1(const uint32_t* src, Sk4f& r, Sk4f& g, Sk4f& b, Sk4f& a, const float* const srcTables[3]) { int kRShift, kGShift = 8, kBShift; set_rb_shifts(kOrder, &kRShift, &kBShift); r = Sk4f(srcTables[0][(*src >> kRShift) & 0xFF]); g = Sk4f(srcTables[1][(*src >> kGShift) & 0xFF]); b = Sk4f(srcTables[2][(*src >> kBShift) & 0xFF]); a = (1.0f / 255.0f) * Sk4f(*src >> 24); } template static inline void load_rgb_linear_1(const uint32_t* src, Sk4f& r, Sk4f& g, Sk4f& b, Sk4f&, const float* const srcTables[3]) { int kRShift, kGShift = 8, kBShift; set_rb_shifts(kOrder, &kRShift, &kBShift); r = Sk4f((1.0f / 255.0f) * ((*src >> kRShift) & 0xFF)); g = Sk4f((1.0f / 255.0f) * ((*src >> kGShift) & 0xFF)); b = Sk4f((1.0f / 255.0f) * ((*src >> kBShift) & 0xFF)); } template static inline void load_rgba_linear_1(const uint32_t* src, Sk4f& r, Sk4f& g, Sk4f& b, Sk4f& a, const float* const srcTables[3]) { int kRShift, kGShift = 8, kBShift; set_rb_shifts(kOrder, &kRShift, &kBShift); r = Sk4f((1.0f / 255.0f) * ((*src >> kRShift) & 0xFF)); g = Sk4f((1.0f / 255.0f) * ((*src >> kGShift) & 0xFF)); b = Sk4f((1.0f / 255.0f) * ((*src >> kBShift) & 0xFF)); a = Sk4f((1.0f / 255.0f) * ((*src >> 24))); } static inline void transform_gamut(const Sk4f& r, const Sk4f& g, const Sk4f& b, const Sk4f& a, const Sk4f& rXgXbX, const Sk4f& rYgYbY, const Sk4f& rZgZbZ, Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f& da) { dr = rXgXbX[0]*r + rYgYbY[0]*g + rZgZbZ[0]*b; dg = rXgXbX[1]*r + rYgYbY[1]*g + rZgZbZ[1]*b; db = rXgXbX[2]*r + rYgYbY[2]*g + rZgZbZ[2]*b; da = a; } static inline void transform_gamut_1(const Sk4f& r, const Sk4f& g, const Sk4f& b, const Sk4f& rXgXbX, const Sk4f& rYgYbY, const Sk4f& rZgZbZ, Sk4f& rgba) { rgba = rXgXbX*r + rYgYbY*g + rZgZbZ*b; } static inline void translate_gamut(const Sk4f& rTgTbT, Sk4f& dr, Sk4f& dg, Sk4f& db) { dr = dr + rTgTbT[0]; dg = dg + rTgTbT[1]; db = db + rTgTbT[2]; } static inline void translate_gamut_1(const Sk4f& rTgTbT, Sk4f& rgba) { rgba = rgba + rTgTbT; } static inline void premultiply(Sk4f& dr, Sk4f& dg, Sk4f& db, const Sk4f& da) { dr = da * dr; dg = da * dg; db = da * db; } static inline void premultiply_1(const Sk4f& a, Sk4f& rgba) { rgba = a * rgba; } template static inline void store_srgb(void* dst, const uint32_t* src, Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f&, const uint8_t* const[3]) { int kRShift, kGShift = 8, kBShift; set_rb_shifts(kOrder, &kRShift, &kBShift); dr = sk_linear_to_srgb_needs_trunc(dr); dg = sk_linear_to_srgb_needs_trunc(dg); db = sk_linear_to_srgb_needs_trunc(db); dr = sk_clamp_0_255(dr); dg = sk_clamp_0_255(dg); db = sk_clamp_0_255(db); Sk4i da = Sk4i::Load(src) & 0xFF000000; Sk4i rgba = (SkNx_cast(dr) << kRShift) | (SkNx_cast(dg) << kGShift) | (SkNx_cast(db) << kBShift) | (da ); rgba.store(dst); } template static inline void store_srgb_1(void* dst, const uint32_t* src, Sk4f& rgba, const Sk4f&, const uint8_t* const[3]) { rgba = sk_clamp_0_255(sk_linear_to_srgb_needs_trunc(rgba)); uint32_t tmp; SkNx_cast(SkNx_cast(rgba)).store(&tmp); tmp = (*src & 0xFF000000) | (tmp & 0x00FFFFFF); if (kBGRA_Order == kOrder) { tmp = SkSwizzle_RB(tmp); } *(uint32_t*)dst = tmp; } static inline Sk4f linear_to_2dot2(const Sk4f& x) { // x^(29/64) is a very good approximation of the true value, x^(1/2.2). auto x2 = x.rsqrt(), // x^(-1/2) x32 = x2.rsqrt().rsqrt().rsqrt().rsqrt(), // x^(-1/32) x64 = x32.rsqrt(); // x^(+1/64) // 29 = 32 - 2 - 1 return 255.0f * x2.invert() * x32 * x64.invert(); } template static inline void store_2dot2(void* dst, const uint32_t* src, Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f&, const uint8_t* const[3]) { int kRShift, kGShift = 8, kBShift; set_rb_shifts(kOrder, &kRShift, &kBShift); dr = linear_to_2dot2(dr); dg = linear_to_2dot2(dg); db = linear_to_2dot2(db); dr = sk_clamp_0_255(dr); dg = sk_clamp_0_255(dg); db = sk_clamp_0_255(db); Sk4i da = Sk4i::Load(src) & 0xFF000000; Sk4i rgba = (Sk4f_round(dr) << kRShift) | (Sk4f_round(dg) << kGShift) | (Sk4f_round(db) << kBShift) | (da ); rgba.store(dst); } template static inline void store_2dot2_1(void* dst, const uint32_t* src, Sk4f& rgba, const Sk4f&, const uint8_t* const[3]) { rgba = sk_clamp_0_255(linear_to_2dot2(rgba)); uint32_t tmp; SkNx_cast(Sk4f_round(rgba)).store(&tmp); tmp = (*src & 0xFF000000) | (tmp & 0x00FFFFFF); if (kBGRA_Order == kOrder) { tmp = SkSwizzle_RB(tmp); } *(uint32_t*)dst = tmp; } template static inline void store_linear(void* dst, const uint32_t* src, Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f&, const uint8_t* const[3]) { int kRShift, kGShift = 8, kBShift; set_rb_shifts(kOrder, &kRShift, &kBShift); dr = sk_clamp_0_255(255.0f * dr); dg = sk_clamp_0_255(255.0f * dg); db = sk_clamp_0_255(255.0f * db); Sk4i da = Sk4i::Load(src) & 0xFF000000; Sk4i rgba = (Sk4f_round(dr) << kRShift) | (Sk4f_round(dg) << kGShift) | (Sk4f_round(db) << kBShift) | (da ); rgba.store(dst); } template static inline void store_linear_1(void* dst, const uint32_t* src, Sk4f& rgba, const Sk4f&, const uint8_t* const[3]) { rgba = sk_clamp_0_255(255.0f * rgba); uint32_t tmp; SkNx_cast(Sk4f_round(rgba)).store(&tmp); tmp = (*src & 0xFF000000) | (tmp & 0x00FFFFFF); if (kBGRA_Order == kOrder) { tmp = SkSwizzle_RB(tmp); } *(uint32_t*)dst = tmp; } template static inline void store_f16(void* dst, const uint32_t* src, Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f& da, const uint8_t* const[3]) { Sk4h::Store4(dst, SkFloatToHalf_finite_ftz(dr), SkFloatToHalf_finite_ftz(dg), SkFloatToHalf_finite_ftz(db), SkFloatToHalf_finite_ftz(da)); } template static inline void store_f16_1(void* dst, const uint32_t* src, Sk4f& rgba, const Sk4f& a, const uint8_t* const[3]) { rgba = Sk4f(rgba[0], rgba[1], rgba[2], a[3]); SkFloatToHalf_finite_ftz(rgba).store((uint64_t*) dst); } template static inline void store_f32(void* dst, const uint32_t* src, Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f& da, const uint8_t* const[3]) { Sk4f::Store4(dst, dr, dg, db, da); } template static inline void store_f32_1(void* dst, const uint32_t* src, Sk4f& rgba, const Sk4f& a, const uint8_t* const[3]) { rgba = Sk4f(rgba[0], rgba[1], rgba[2], a[3]); rgba.store((float*) dst); } template static inline void store_f16_opaque(void* dst, const uint32_t* src, Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f&, const uint8_t* const[3]) { Sk4h::Store4(dst, SkFloatToHalf_finite_ftz(dr), SkFloatToHalf_finite_ftz(dg), SkFloatToHalf_finite_ftz(db), SK_Half1); } template static inline void store_f16_1_opaque(void* dst, const uint32_t* src, Sk4f& rgba, const Sk4f&, const uint8_t* const[3]) { uint64_t tmp; SkFloatToHalf_finite_ftz(rgba).store(&tmp); tmp |= static_cast(SK_Half1) << 48; *((uint64_t*) dst) = tmp; } template static inline void store_generic(void* dst, const uint32_t* src, Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f&, const uint8_t* const dstTables[3]) { int kRShift, kGShift = 8, kBShift; set_rb_shifts(kOrder, &kRShift, &kBShift); dr = Sk4f::Min(Sk4f::Max(1023.0f * dr, 0.0f), 1023.0f); dg = Sk4f::Min(Sk4f::Max(1023.0f * dg, 0.0f), 1023.0f); db = Sk4f::Min(Sk4f::Max(1023.0f * db, 0.0f), 1023.0f); Sk4i ir = Sk4f_round(dr); Sk4i ig = Sk4f_round(dg); Sk4i ib = Sk4f_round(db); Sk4i da = Sk4i::Load(src) & 0xFF000000; uint32_t* dst32 = (uint32_t*) dst; dst32[0] = dstTables[0][ir[0]] << kRShift | dstTables[1][ig[0]] << kGShift | dstTables[2][ib[0]] << kBShift | da[0]; dst32[1] = dstTables[0][ir[1]] << kRShift | dstTables[1][ig[1]] << kGShift | dstTables[2][ib[1]] << kBShift | da[1]; dst32[2] = dstTables[0][ir[2]] << kRShift | dstTables[1][ig[2]] << kGShift | dstTables[2][ib[2]] << kBShift | da[2]; dst32[3] = dstTables[0][ir[3]] << kRShift | dstTables[1][ig[3]] << kGShift | dstTables[2][ib[3]] << kBShift | da[3]; } template static inline void store_generic_1(void* dst, const uint32_t* src, Sk4f& rgba, const Sk4f&, const uint8_t* const dstTables[3]) { int kRShift, kGShift = 8, kBShift; set_rb_shifts(kOrder, &kRShift, &kBShift); rgba = Sk4f::Min(Sk4f::Max(1023.0f * rgba, 0.0f), 1023.0f); Sk4i indices = Sk4f_round(rgba); *((uint32_t*) dst) = dstTables[0][indices[0]] << kRShift | dstTables[1][indices[1]] << kGShift | dstTables[2][indices[2]] << kBShift | (*src & 0xFF000000); } typedef decltype(load_rgb_from_tables )* LoadFn; typedef decltype(load_rgb_from_tables_1)* Load1Fn; typedef decltype(store_generic )* StoreFn; typedef decltype(store_generic_1 )* Store1Fn; enum SrcFormat { kRGBA_8888_Linear_SrcFormat, kRGBA_8888_Table_SrcFormat, kBGRA_8888_Linear_SrcFormat, kBGRA_8888_Table_SrcFormat, }; enum DstFormat { kRGBA_8888_Linear_DstFormat, kRGBA_8888_SRGB_DstFormat, kRGBA_8888_2Dot2_DstFormat, kRGBA_8888_Table_DstFormat, kBGRA_8888_Linear_DstFormat, kBGRA_8888_SRGB_DstFormat, kBGRA_8888_2Dot2_DstFormat, kBGRA_8888_Table_DstFormat, kF16_Linear_DstFormat, kF32_Linear_DstFormat, }; template static void color_xform_RGBA(void* dst, const void* vsrc, int len, const float* const srcTables[3], const float matrix[16], const uint8_t* const dstTables[3]) { LoadFn load; Load1Fn load_1; static constexpr bool loadAlpha = (kPremul_SkAlphaType == kAlphaType) || (kF16_Linear_DstFormat == kDst) || (kF32_Linear_DstFormat == kDst); switch (kSrc) { case kRGBA_8888_Linear_SrcFormat: if (loadAlpha) { load = load_rgba_linear; load_1 = load_rgba_linear_1; } else { load = load_rgb_linear; load_1 = load_rgb_linear_1; } break; case kRGBA_8888_Table_SrcFormat: if (loadAlpha) { load = load_rgba_from_tables; load_1 = load_rgba_from_tables_1; } else { load = load_rgb_from_tables; load_1 = load_rgb_from_tables_1; } break; case kBGRA_8888_Linear_SrcFormat: if (loadAlpha) { load = load_rgba_linear; load_1 = load_rgba_linear_1; } else { load = load_rgb_linear; load_1 = load_rgb_linear_1; } break; case kBGRA_8888_Table_SrcFormat: if (loadAlpha) { load = load_rgba_from_tables; load_1 = load_rgba_from_tables_1; } else { load = load_rgb_from_tables; load_1 = load_rgb_from_tables_1; } break; } StoreFn store; Store1Fn store_1; size_t sizeOfDstPixel; switch (kDst) { case kRGBA_8888_Linear_DstFormat: store = store_linear; store_1 = store_linear_1; sizeOfDstPixel = 4; break; case kRGBA_8888_SRGB_DstFormat: store = store_srgb; store_1 = store_srgb_1; sizeOfDstPixel = 4; break; case kRGBA_8888_2Dot2_DstFormat: store = store_2dot2; store_1 = store_2dot2_1; sizeOfDstPixel = 4; break; case kRGBA_8888_Table_DstFormat: store = store_generic; store_1 = store_generic_1; sizeOfDstPixel = 4; break; case kBGRA_8888_Linear_DstFormat: store = store_linear; store_1 = store_linear_1; sizeOfDstPixel = 4; break; case kBGRA_8888_SRGB_DstFormat: store = store_srgb; store_1 = store_srgb_1; sizeOfDstPixel = 4; break; case kBGRA_8888_2Dot2_DstFormat: store = store_2dot2; store_1 = store_2dot2_1; sizeOfDstPixel = 4; break; case kBGRA_8888_Table_DstFormat: store = store_generic; store_1 = store_generic_1; sizeOfDstPixel = 4; break; case kF16_Linear_DstFormat: store = (kOpaque_SkAlphaType == kAlphaType) ? store_f16_opaque : store_f16; store_1 = (kOpaque_SkAlphaType == kAlphaType) ? store_f16_1_opaque : store_f16_1; sizeOfDstPixel = 8; break; case kF32_Linear_DstFormat: store = store_f32; store_1 = store_f32_1; sizeOfDstPixel = 16; break; } const uint32_t* src = (const uint32_t*) vsrc; Sk4f rXgXbX, rYgYbY, rZgZbZ, rTgTbT; load_matrix(matrix, rXgXbX, rYgYbY, rZgZbZ, rTgTbT); if (len >= 4) { // Naively this would be a loop of load-transform-store, but we found it faster to // move the N+1th load ahead of the Nth store. We don't bother doing this for N<4. Sk4f r, g, b, a; load(src, r, g, b, a, srcTables); src += 4; len -= 4; Sk4f dr, dg, db, da; while (len >= 4) { if (kNone_ColorSpaceMatch == kCSM) { transform_gamut(r, g, b, a, rXgXbX, rYgYbY, rZgZbZ, dr, dg, db, da); translate_gamut(rTgTbT, dr, dg, db); } else { dr = r; dg = g; db = b; da = a; } if (kPremul_SkAlphaType == kAlphaType) { premultiply(dr, dg, db, da); } load(src, r, g, b, a, srcTables); store(dst, src - 4, dr, dg, db, da, dstTables); dst = SkTAddOffset(dst, 4 * sizeOfDstPixel); src += 4; len -= 4; } if (kNone_ColorSpaceMatch == kCSM) { transform_gamut(r, g, b, a, rXgXbX, rYgYbY, rZgZbZ, dr, dg, db, da); translate_gamut(rTgTbT, dr, dg, db); } else { dr = r; dg = g; db = b; da = a; } if (kPremul_SkAlphaType == kAlphaType) { premultiply(dr, dg, db, da); } store(dst, src - 4, dr, dg, db, da, dstTables); dst = SkTAddOffset(dst, 4 * sizeOfDstPixel); } while (len > 0) { Sk4f r, g, b, a; load_1(src, r, g, b, a, srcTables); Sk4f rgba; if (kNone_ColorSpaceMatch == kCSM) { transform_gamut_1(r, g, b, rXgXbX, rYgYbY, rZgZbZ, rgba); translate_gamut_1(rTgTbT, rgba); } else { rgba = Sk4f(r[0], g[0], b[0], a[0]); } if (kPremul_SkAlphaType == kAlphaType) { premultiply_1(a, rgba); } store_1(dst, src, rgba, a, dstTables); src += 1; len -= 1; dst = SkTAddOffset(dst, sizeOfDstPixel); } } /////////////////////////////////////////////////////////////////////////////////////////////////// static inline int num_tables(SkColorSpace* space) { switch (as_CSB(space)->gammaNamed()) { case kSRGB_SkGammaNamed: case k2Dot2Curve_SkGammaNamed: case kLinear_SkGammaNamed: return 0; default: { const SkGammas* gammas = as_CSB(space)->gammas(); SkASSERT(gammas); bool gammasAreMatching = (gammas->type(0) == gammas->type(1)) && (gammas->data(0) == gammas->data(1)) && (gammas->type(0) == gammas->type(2)) && (gammas->data(0) == gammas->data(2)); // It's likely that each component will have the same gamma. In this case, // we only need to build one table. return gammasAreMatching ? 1 : 3; } } } template SkColorSpaceXform_XYZ ::SkColorSpaceXform_XYZ(SkColorSpace* srcSpace, const SkMatrix44& srcToDst, SkColorSpace* dstSpace) : fColorLUT(sk_ref_sp((SkColorLookUpTable*) as_CSB(srcSpace)->colorLUT())) { srcToDst.asColMajorf(fSrcToDst); const int numSrcTables = num_tables(srcSpace); const size_t srcEntries = numSrcTables * 256; const bool srcGammasAreMatching = (1 >= numSrcTables); fSrcStorage.reset(srcEntries); build_gamma_tables(fSrcGammaTables, fSrcStorage.get(), 256, srcSpace, kToLinear, srcGammasAreMatching); const int numDstTables = num_tables(dstSpace); as_CSB(dstSpace)->toDstGammaTables(fDstGammaTables, &fDstStorage, numDstTables); } /////////////////////////////////////////////////////////////////////////////////////////////////// template static inline bool apply_set_alpha(void* dst, const void* src, int len, SkAlphaType alphaType, const float* const srcTables[3], const float matrix[16], const uint8_t* const dstTables[3]) { switch (alphaType) { case kOpaque_SkAlphaType: color_xform_RGBA (dst, src, len, srcTables, matrix, dstTables); return true; case kPremul_SkAlphaType: color_xform_RGBA (dst, src, len, srcTables, matrix, dstTables); return true; case kUnpremul_SkAlphaType: color_xform_RGBA (dst, src, len, srcTables, matrix, dstTables); return true; default: return false; } } template static inline bool apply_set_src(void* dst, const void* src, int len, SkAlphaType alphaType, const float* const srcTables[3], const float matrix[16], const uint8_t* const dstTables[3], SkColorSpaceXform::ColorFormat srcColorFormat) { switch (srcColorFormat) { case SkColorSpaceXform::kRGBA_8888_ColorFormat: switch (kSrc) { case kLinear_SrcGamma: return apply_set_alpha (dst, src, len, alphaType, nullptr, matrix, dstTables); case kTable_SrcGamma: return apply_set_alpha (dst, src, len, alphaType, srcTables, matrix, dstTables); } case SkColorSpaceXform::kBGRA_8888_ColorFormat: switch (kSrc) { case kLinear_SrcGamma: return apply_set_alpha (dst, src, len, alphaType, nullptr, matrix, dstTables); case kTable_SrcGamma: return apply_set_alpha (dst, src, len, alphaType, srcTables, matrix, dstTables); } default: return false; } } template bool SkColorSpaceXform_XYZ ::onApply(ColorFormat dstColorFormat, void* dst, ColorFormat srcColorFormat, const void* src, int len, SkAlphaType alphaType) const { if (kFull_ColorSpaceMatch == kCSM) { switch (alphaType) { case kPremul_SkAlphaType: // We can't skip the xform since we need to perform a premultiply in the // linear space. break; default: switch (dstColorFormat) { case kRGBA_8888_ColorFormat: memcpy(dst, src, len * sizeof(uint32_t)); return true; case kBGRA_8888_ColorFormat: SkOpts::RGBA_to_BGRA((uint32_t*) dst, src, len); return true; case kRGBA_F16_ColorFormat: case kRGBA_F32_ColorFormat: // There's still work to do to xform to linear floats. break; default: return false; } } } #if defined(GOOGLE3) // Stack frame size is limited in GOOGLE3. SkAutoSMalloc<256 * sizeof(uint32_t)> storage; #else SkAutoSMalloc<1024 * sizeof(uint32_t)> storage; #endif if (fColorLUT) { size_t storageBytes = len * sizeof(uint32_t); storage.reset(storageBytes); handle_color_lut((uint32_t*) storage.get(), src, len, fColorLUT.get()); src = (const uint32_t*) storage.get(); } switch (dstColorFormat) { case kRGBA_8888_ColorFormat: switch (kDst) { case kLinear_DstGamma: return apply_set_src (dst, src, len, alphaType, fSrcGammaTables, fSrcToDst, nullptr, srcColorFormat); case kSRGB_DstGamma: return apply_set_src (dst, src, len, alphaType, fSrcGammaTables, fSrcToDst, nullptr, srcColorFormat); case k2Dot2_DstGamma: return apply_set_src (dst, src, len, alphaType, fSrcGammaTables, fSrcToDst, nullptr, srcColorFormat); case kTable_DstGamma: return apply_set_src (dst, src, len, alphaType, fSrcGammaTables, fSrcToDst, fDstGammaTables, srcColorFormat); } case kBGRA_8888_ColorFormat: switch (kDst) { case kLinear_DstGamma: return apply_set_src (dst, src, len, alphaType, fSrcGammaTables, fSrcToDst, nullptr, srcColorFormat); case kSRGB_DstGamma: return apply_set_src (dst, src, len, alphaType, fSrcGammaTables, fSrcToDst, nullptr, srcColorFormat); case k2Dot2_DstGamma: return apply_set_src (dst, src, len, alphaType, fSrcGammaTables, fSrcToDst, nullptr, srcColorFormat); case kTable_DstGamma: return apply_set_src (dst, src, len, alphaType, fSrcGammaTables, fSrcToDst, fDstGammaTables, srcColorFormat); } case kRGBA_F16_ColorFormat: switch (kDst) { case kLinear_DstGamma: return apply_set_src (dst, src, len, alphaType, fSrcGammaTables, fSrcToDst, nullptr, srcColorFormat); default: return false; } case kRGBA_F32_ColorFormat: switch (kDst) { case kLinear_DstGamma: return apply_set_src (dst, src, len, alphaType, fSrcGammaTables, fSrcToDst, nullptr, srcColorFormat); default: return false; } default: return false; } } bool SkColorSpaceXform::apply(ColorFormat dstColorFormat, void* dst, ColorFormat srcColorFormat, const void* src, int len, SkAlphaType alphaType) const { return ((SkColorSpaceXform_Base*) this)->onApply(dstColorFormat, dst, srcColorFormat, src, len, alphaType); } /////////////////////////////////////////////////////////////////////////////////////////////////// std::unique_ptr SlowIdentityXform(SkColorSpace* space) { return std::unique_ptr(new SkColorSpaceXform_XYZ (space, SkMatrix::I(), space)); }