/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkClipStack.h" #include "SkPath.h" #include struct SkClipStack::Rec { enum State { kEmpty_State, kRect_State, kPath_State }; SkPath fPath; SkRect fRect; int fSaveCount; SkRegion::Op fOp; State fState; bool fDoAA; // fFiniteBoundType and fFiniteBound are used to incrementally update // the clip stack's bound. When fFiniteBoundType is kNormal_BoundsType, // fFiniteBound represents the conservative bounding box of the pixels // that aren't clipped (i.e., any pixels that can be drawn to are inside // the bound). When fFiniteBoundType is kInsideOut_BoundsType (which occurs // when a clip is inverse filled), fFiniteBound represents the // conservative bounding box of the pixels that _are_ clipped (i.e., any // pixels that cannot be drawn to are inside the bound). When // fFiniteBoundType is kInsideOut_BoundsType the actual bound is // the infinite plane. This behavior of fFiniteBoundType and // fFiniteBound is required so that we can capture the cancelling out // of the extensions to infinity when two inverse filled clips are // Booleaned together. SkClipStack::BoundsType fFiniteBoundType; SkRect fFiniteBound; bool fIsIntersectionOfRects; Rec(int saveCount, const SkRect& rect, SkRegion::Op op, bool doAA) : fRect(rect) { fSaveCount = saveCount; fOp = op; fState = kRect_State; fDoAA = doAA; // bounding box members are updated in a following updateBound call } Rec(int saveCount, const SkPath& path, SkRegion::Op op, bool doAA) : fPath(path) { fRect.setEmpty(); fSaveCount = saveCount; fOp = op; fState = kPath_State; fDoAA = doAA; // bounding box members are updated in a following updateBound call } void setEmpty() { fState = kEmpty_State; fFiniteBound.setEmpty(); fFiniteBoundType = kNormal_BoundsType; fIsIntersectionOfRects = false; } bool operator==(const Rec& b) const { if (fSaveCount != b.fSaveCount || fOp != b.fOp || fState != b.fState || fDoAA != b.fDoAA) { return false; } switch (fState) { case kEmpty_State: return true; case kRect_State: return fRect == b.fRect; case kPath_State: return fPath == b.fPath; } return false; // Silence the compiler. } bool operator!=(const Rec& b) const { return !(*this == b); } /** * Returns true if this Rec can be intersected in place with a new clip */ bool canBeIntersectedInPlace(int saveCount, SkRegion::Op op) const { if (kEmpty_State == fState && ( SkRegion::kDifference_Op == op || SkRegion::kIntersect_Op == op)) { return true; } return fSaveCount == saveCount && SkRegion::kIntersect_Op == op && (SkRegion::kIntersect_Op == fOp || SkRegion::kReplace_Op == fOp); } /** * This method checks to see if two rect clips can be safely merged into * one. The issue here is that to be strictly correct all the edges of * the resulting rect must have the same anti-aliasing. */ bool rectRectIntersectAllowed(const SkRect& newR, bool newAA) const { SkASSERT(kRect_State == fState); if (fDoAA == newAA) { // if the AA setting is the same there is no issue return true; } if (!SkRect::Intersects(fRect, newR)) { // The calling code will correctly set the result to the empty clip return true; } if (fRect.contains(newR)) { // if the new rect carves out a portion of the old one there is no // issue return true; } // So either the two overlap in some complex manner or newR contains oldR. // In the first, case the edges will require different AA. In the second, // the AA setting that would be carried forward is incorrect (e.g., oldR // is AA while newR is BW but since newR contains oldR, oldR will be // drawn BW) since the new AA setting will predominate. return false; } /** * The different combination of fill & inverse fill when combining * bounding boxes */ enum FillCombo { kPrev_Cur_FillCombo, kPrev_InvCur_FillCombo, kInvPrev_Cur_FillCombo, kInvPrev_InvCur_FillCombo }; // a mirror of CombineBoundsRevDiff void CombineBoundsDiff(FillCombo combination, const SkRect& prevFinite) { switch (combination) { case kInvPrev_InvCur_FillCombo: // In this case the only pixels that can remain set // are inside the current clip rect since the extensions // to infinity of both clips cancel out and whatever // is outside of the current clip is removed fFiniteBoundType = kNormal_BoundsType; break; case kInvPrev_Cur_FillCombo: // In this case the current op is finite so the only pixels // that aren't set are whatever isn't set in the previous // clip and whatever this clip carves out fFiniteBound.join(prevFinite); fFiniteBoundType = kInsideOut_BoundsType; break; case kPrev_InvCur_FillCombo: // In this case everything outside of this clip's bound // is erased, so the only pixels that can remain set // occur w/in the intersection of the two finite bounds if (!fFiniteBound.intersect(prevFinite)) { fFiniteBound.setEmpty(); } fFiniteBoundType = kNormal_BoundsType; break; case kPrev_Cur_FillCombo: // The most conservative result bound is that of the // prior clip. This could be wildly incorrect if the // second clip either exactly matches the first clip // (which should yield the empty set) or reduces the // size of the prior bound (e.g., if the second clip // exactly matched the bottom half of the prior clip). // We ignore these two possibilities. fFiniteBound = prevFinite; break; default: SkDEBUGFAIL("SkClipStack::Rec::CombineBoundsDiff Invalid fill combination"); break; } } void CombineBoundsXOR(int combination, const SkRect& prevFinite) { switch (combination) { case kInvPrev_Cur_FillCombo: // fall through case kPrev_InvCur_FillCombo: // With only one of the clips inverted the result will always // extend to infinity. The only pixels that may be un-writeable // lie within the union of the two finite bounds fFiniteBound.join(prevFinite); fFiniteBoundType = kInsideOut_BoundsType; break; case kInvPrev_InvCur_FillCombo: // The only pixels that can survive are within the // union of the two bounding boxes since the extensions // to infinity of both clips cancel out // fall through! case kPrev_Cur_FillCombo: // The most conservative bound for xor is the // union of the two bounds. If the two clips exactly overlapped // the xor could yield the empty set. Similarly the xor // could reduce the size of the original clip's bound (e.g., // if the second clip exactly matched the bottom half of the // first clip). We ignore these two cases. fFiniteBound.join(prevFinite); fFiniteBoundType = kNormal_BoundsType; break; default: SkDEBUGFAIL("SkClipStack::Rec::CombineBoundsXOR Invalid fill combination"); break; } } // a mirror of CombineBoundsIntersection void CombineBoundsUnion(int combination, const SkRect& prevFinite) { switch (combination) { case kInvPrev_InvCur_FillCombo: if (!fFiniteBound.intersect(prevFinite)) { fFiniteBound.setEmpty(); } fFiniteBoundType = kInsideOut_BoundsType; break; case kInvPrev_Cur_FillCombo: // The only pixels that won't be drawable are inside // the prior clip's finite bound fFiniteBound = prevFinite; fFiniteBoundType = kInsideOut_BoundsType; break; case kPrev_InvCur_FillCombo: // The only pixels that won't be drawable are inside // this clip's finite bound break; case kPrev_Cur_FillCombo: fFiniteBound.join(prevFinite); break; default: SkDEBUGFAIL("SkClipStack::Rec::CombineBoundsUnion Invalid fill combination"); break; } } // a mirror of CombineBoundsUnion void CombineBoundsIntersection(int combination, const SkRect& prevFinite) { switch (combination) { case kInvPrev_InvCur_FillCombo: // The only pixels that aren't writable in this case // occur in the union of the two finite bounds fFiniteBound.join(prevFinite); fFiniteBoundType = kInsideOut_BoundsType; break; case kInvPrev_Cur_FillCombo: // In this case the only pixels that will remain writeable // are within the current clip break; case kPrev_InvCur_FillCombo: // In this case the only pixels that will remain writeable // are with the previous clip fFiniteBound = prevFinite; fFiniteBoundType = kNormal_BoundsType; break; case kPrev_Cur_FillCombo: if (!fFiniteBound.intersect(prevFinite)) { fFiniteBound.setEmpty(); } break; default: SkDEBUGFAIL("SkClipStack::Rec::CombineBoundsIntersection Invalid fill combination"); break; } } // a mirror of CombineBoundsDiff void CombineBoundsRevDiff(int combination, const SkRect& prevFinite) { switch (combination) { case kInvPrev_InvCur_FillCombo: // The only pixels that can survive are in the // previous bound since the extensions to infinity in // both clips cancel out fFiniteBound = prevFinite; fFiniteBoundType = kNormal_BoundsType; break; case kInvPrev_Cur_FillCombo: if (!fFiniteBound.intersect(prevFinite)) { fFiniteBound.setEmpty(); } fFiniteBoundType = kNormal_BoundsType; break; case kPrev_InvCur_FillCombo: fFiniteBound.join(prevFinite); fFiniteBoundType = kInsideOut_BoundsType; break; case kPrev_Cur_FillCombo: // Fall through - as with the kDifference_Op case, the // most conservative result bound is the bound of the // current clip. The prior clip could reduce the size of this // bound (as in the kDifference_Op case) but we are ignoring // those cases. break; default: SkDEBUGFAIL("SkClipStack::Rec::CombineBoundsRevDiff Invalid fill combination"); break; } } void updateBound(const Rec* prior) { // First, optimistically update the current Rec's bound information // with the current clip's bound fIsIntersectionOfRects = false; if (kRect_State == fState) { fFiniteBound = fRect; fFiniteBoundType = kNormal_BoundsType; if (SkRegion::kReplace_Op == fOp || (SkRegion::kIntersect_Op == fOp && NULL == prior) || (SkRegion::kIntersect_Op == fOp && prior->fIsIntersectionOfRects && prior->rectRectIntersectAllowed(fRect, fDoAA))) { fIsIntersectionOfRects = true; } } else { fFiniteBound = fPath.getBounds(); if (fPath.isInverseFillType()) { fFiniteBoundType = kInsideOut_BoundsType; } else { fFiniteBoundType = kNormal_BoundsType; } } if (!fDoAA) { // Here we mimic a non-anti-aliased scanline system. If there is // no anti-aliasing we can integerize the bounding box to exclude // fractional parts that won't be rendered. // Note: the left edge is handled slightly differently below. We // are a bit more generous in the rounding since we don't want to // risk missing the left pixels when fLeft is very close to .5 fFiniteBound.set(SkIntToScalar(SkScalarFloorToInt(fFiniteBound.fLeft+0.45f)), SkIntToScalar(SkScalarRound(fFiniteBound.fTop)), SkIntToScalar(SkScalarRound(fFiniteBound.fRight)), SkIntToScalar(SkScalarRound(fFiniteBound.fBottom))); } // Now set up the previous Rec's bound information taking into // account that there may be no previous clip SkRect prevFinite; SkClipStack::BoundsType prevType; if (NULL == prior) { // no prior clip means the entire plane is writable prevFinite.setEmpty(); // there are no pixels that cannot be drawn to prevType = kInsideOut_BoundsType; } else { prevFinite = prior->fFiniteBound; prevType = prior->fFiniteBoundType; } FillCombo combination = kPrev_Cur_FillCombo; if (kInsideOut_BoundsType == fFiniteBoundType) { combination = (FillCombo) (combination | 0x01); } if (kInsideOut_BoundsType == prevType) { combination = (FillCombo) (combination | 0x02); } SkASSERT(kInvPrev_InvCur_FillCombo == combination || kInvPrev_Cur_FillCombo == combination || kPrev_InvCur_FillCombo == combination || kPrev_Cur_FillCombo == combination); // Now integrate with clip with the prior clips switch (fOp) { case SkRegion::kDifference_Op: this->CombineBoundsDiff(combination, prevFinite); break; case SkRegion::kXOR_Op: this->CombineBoundsXOR(combination, prevFinite); break; case SkRegion::kUnion_Op: this->CombineBoundsUnion(combination, prevFinite); break; case SkRegion::kIntersect_Op: this->CombineBoundsIntersection(combination, prevFinite); break; case SkRegion::kReverseDifference_Op: this->CombineBoundsRevDiff(combination, prevFinite); break; case SkRegion::kReplace_Op: // Replace just ignores everything prior // The current clip's bound information is already filled in // so nothing to do break; default: SkDebugf("SkRegion::Op error/n"); SkASSERT(0); break; } } }; SkClipStack::SkClipStack() : fDeque(sizeof(Rec)) { fSaveCount = 0; } SkClipStack::SkClipStack(const SkClipStack& b) : fDeque(sizeof(Rec)) { *this = b; } SkClipStack::SkClipStack(const SkRect& r) : fDeque(sizeof(Rec)) { if (!r.isEmpty()) { this->clipDevRect(r, SkRegion::kReplace_Op, false); } } SkClipStack::SkClipStack(const SkIRect& r) : fDeque(sizeof(Rec)) { if (!r.isEmpty()) { SkRect temp; temp.set(r); this->clipDevRect(temp, SkRegion::kReplace_Op, false); } } SkClipStack::~SkClipStack() { reset(); } SkClipStack& SkClipStack::operator=(const SkClipStack& b) { if (this == &b) { return *this; } reset(); fSaveCount = b.fSaveCount; SkDeque::F2BIter recIter(b.fDeque); for (const Rec* rec = (const Rec*)recIter.next(); rec != NULL; rec = (const Rec*)recIter.next()) { new (fDeque.push_back()) Rec(*rec); } return *this; } bool SkClipStack::operator==(const SkClipStack& b) const { if (fSaveCount != b.fSaveCount || fDeque.count() != b.fDeque.count()) { return false; } SkDeque::F2BIter myIter(fDeque); SkDeque::F2BIter bIter(b.fDeque); const Rec* myRec = (const Rec*)myIter.next(); const Rec* bRec = (const Rec*)bIter.next(); while (myRec != NULL && bRec != NULL) { if (*myRec != *bRec) { return false; } myRec = (const Rec*)myIter.next(); bRec = (const Rec*)bIter.next(); } return myRec == NULL && bRec == NULL; } void SkClipStack::reset() { // We used a placement new for each object in fDeque, so we're responsible // for calling the destructor on each of them as well. while (!fDeque.empty()) { Rec* rec = (Rec*)fDeque.back(); rec->~Rec(); fDeque.pop_back(); } fSaveCount = 0; } void SkClipStack::save() { fSaveCount += 1; } void SkClipStack::restore() { fSaveCount -= 1; while (!fDeque.empty()) { Rec* rec = (Rec*)fDeque.back(); if (rec->fSaveCount <= fSaveCount) { break; } rec->~Rec(); fDeque.pop_back(); } } void SkClipStack::getBounds(SkRect* canvFiniteBound, BoundsType* boundType, bool* isIntersectionOfRects) const { SkASSERT(NULL != canvFiniteBound && NULL != boundType); Rec* rec = (Rec*)fDeque.back(); if (NULL == rec) { // the clip is wide open - the infinite plane w/ no pixels un-writeable canvFiniteBound->setEmpty(); *boundType = kInsideOut_BoundsType; if (NULL != isIntersectionOfRects) { *isIntersectionOfRects = false; } return; } *canvFiniteBound = rec->fFiniteBound; *boundType = rec->fFiniteBoundType; if (NULL != isIntersectionOfRects) { *isIntersectionOfRects = rec->fIsIntersectionOfRects; } } void SkClipStack::clipDevRect(const SkRect& rect, SkRegion::Op op, bool doAA) { SkDeque::Iter iter(fDeque, SkDeque::Iter::kBack_IterStart); Rec* rec = (Rec*) iter.prev(); if (rec && rec->canBeIntersectedInPlace(fSaveCount, op)) { switch (rec->fState) { case Rec::kEmpty_State: SkASSERT(rec->fFiniteBound.isEmpty()); SkASSERT(kNormal_BoundsType == rec->fFiniteBoundType); SkASSERT(!rec->fIsIntersectionOfRects); return; case Rec::kRect_State: if (rec->rectRectIntersectAllowed(rect, doAA)) { if (!rec->fRect.intersect(rect)) { rec->setEmpty(); return; } rec->fDoAA = doAA; Rec* prev = (Rec*) iter.prev(); rec->updateBound(prev); return; } break; case Rec::kPath_State: if (!SkRect::Intersects(rec->fPath.getBounds(), rect)) { rec->setEmpty(); return; } break; } } new (fDeque.push_back()) Rec(fSaveCount, rect, op, doAA); ((Rec*) fDeque.back())->updateBound(rec); } void SkClipStack::clipDevPath(const SkPath& path, SkRegion::Op op, bool doAA) { SkRect alt; if (path.isRect(&alt)) { return this->clipDevRect(alt, op, doAA); } Rec* rec = (Rec*)fDeque.back(); if (rec && rec->canBeIntersectedInPlace(fSaveCount, op)) { const SkRect& pathBounds = path.getBounds(); switch (rec->fState) { case Rec::kEmpty_State: SkASSERT(rec->fFiniteBound.isEmpty()); SkASSERT(kNormal_BoundsType == rec->fFiniteBoundType); SkASSERT(!rec->fIsIntersectionOfRects); return; case Rec::kRect_State: if (!SkRect::Intersects(rec->fRect, pathBounds)) { rec->setEmpty(); return; } break; case Rec::kPath_State: if (!SkRect::Intersects(rec->fPath.getBounds(), pathBounds)) { rec->setEmpty(); return; } break; } } new (fDeque.push_back()) Rec(fSaveCount, path, op, doAA); ((Rec*) fDeque.back())->updateBound(rec); } bool SkClipStack::isWideOpen() const { if (0 == fDeque.count()) { return true; } const Rec* back = (const Rec*) fDeque.back(); return kInsideOut_BoundsType == back->fFiniteBoundType && back->fFiniteBound.isEmpty(); } /////////////////////////////////////////////////////////////////////////////// SkClipStack::Iter::Iter() : fStack(NULL) { } bool operator==(const SkClipStack::Iter::Clip& a, const SkClipStack::Iter::Clip& b) { return a.fOp == b.fOp && a.fDoAA == b.fDoAA && ((a.fRect == NULL && b.fRect == NULL) || (a.fRect != NULL && b.fRect != NULL && *a.fRect == *b.fRect)) && ((a.fPath == NULL && b.fPath == NULL) || (a.fPath != NULL && b.fPath != NULL && *a.fPath == *b.fPath)); } bool operator!=(const SkClipStack::Iter::Clip& a, const SkClipStack::Iter::Clip& b) { return !(a == b); } SkClipStack::Iter::Iter(const SkClipStack& stack, IterStart startLoc) : fStack(&stack) { this->reset(stack, startLoc); } const SkClipStack::Iter::Clip* SkClipStack::Iter::updateClip( const SkClipStack::Rec* rec) { switch (rec->fState) { case SkClipStack::Rec::kEmpty_State: fClip.fRect = NULL; fClip.fPath = NULL; break; case SkClipStack::Rec::kRect_State: fClip.fRect = &rec->fRect; fClip.fPath = NULL; break; case SkClipStack::Rec::kPath_State: fClip.fRect = NULL; fClip.fPath = &rec->fPath; break; } fClip.fOp = rec->fOp; fClip.fDoAA = rec->fDoAA; return &fClip; } const SkClipStack::Iter::Clip* SkClipStack::Iter::next() { const SkClipStack::Rec* rec = (const SkClipStack::Rec*)fIter.next(); if (NULL == rec) { return NULL; } return this->updateClip(rec); } const SkClipStack::Iter::Clip* SkClipStack::Iter::prev() { const SkClipStack::Rec* rec = (const SkClipStack::Rec*)fIter.prev(); if (NULL == rec) { return NULL; } return this->updateClip(rec); } const SkClipStack::Iter::Clip* SkClipStack::Iter::skipToTopmost(SkRegion::Op op) { if (NULL == fStack) { return NULL; } fIter.reset(fStack->fDeque, SkDeque::Iter::kBack_IterStart); const SkClipStack::Rec* rec = NULL; for (rec = (const SkClipStack::Rec*) fIter.prev(); NULL != rec; rec = (const SkClipStack::Rec*) fIter.prev()) { if (op == rec->fOp) { // The Deque's iterator is actually one pace ahead of the // returned value. So while "rec" is the element we want to // return, the iterator is actually pointing at (and will // return on the next "next" or "prev" call) the element // in front of it in the deque. Bump the iterator forward a // step so we get the expected result. if (NULL == fIter.next()) { // The reverse iterator has run off the front of the deque // (i.e., the "op" clip is the first clip) and can't // recover. Reset the iterator to start at the front. fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart); } break; } } if (NULL == rec) { // There were no "op" clips fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart); } return this->next(); } void SkClipStack::Iter::reset(const SkClipStack& stack, IterStart startLoc) { fStack = &stack; fIter.reset(stack.fDeque, static_cast(startLoc)); } // helper method void SkClipStack::getConservativeBounds(int offsetX, int offsetY, int maxWidth, int maxHeight, SkRect* devBounds, bool* isIntersectionOfRects) const { SkASSERT(NULL != devBounds); devBounds->setLTRB(0, 0, SkIntToScalar(maxWidth), SkIntToScalar(maxHeight)); SkRect temp; SkClipStack::BoundsType boundType; // temp starts off in canvas space here this->getBounds(&temp, &boundType, isIntersectionOfRects); if (SkClipStack::kInsideOut_BoundsType == boundType) { return; } // but is converted to device space here temp.offset(SkIntToScalar(offsetX), SkIntToScalar(offsetY)); if (!devBounds->intersect(temp)) { devBounds->setEmpty(); } }