/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkClipStack.h" #include "SkPath.h" #include "SkThread.h" #include // 0-2 are reserved for invalid, empty & wide-open static const int32_t kFirstUnreservedGenID = 3; int32_t SkClipStack::gGenID = kFirstUnreservedGenID; SkClipStack::Element::Element(const Element& that) { switch (that.getType()) { case kEmpty_Type: fPath.reset(); break; case kRect_Type: // Rect uses rrect case kRRect_Type: fPath.reset(); fRRect = that.fRRect; break; case kPath_Type: fPath.set(that.getPath()); break; } fSaveCount = that.fSaveCount; fOp = that.fOp; fType = that.fType; fDoAA = that.fDoAA; fFiniteBoundType = that.fFiniteBoundType; fFiniteBound = that.fFiniteBound; fIsIntersectionOfRects = that.fIsIntersectionOfRects; fGenID = that.fGenID; } bool SkClipStack::Element::operator== (const Element& element) const { if (this == &element) { return true; } if (fOp != element.fOp || fType != element.fType || fDoAA != element.fDoAA || fSaveCount != element.fSaveCount) { return false; } switch (fType) { case kPath_Type: return this->getPath() == element.getPath(); case kRRect_Type: return fRRect == element.fRRect; case kRect_Type: return this->getRect() == element.getRect(); case kEmpty_Type: return true; default: SkDEBUGFAIL("Unexpected type."); return false; } } void SkClipStack::Element::invertShapeFillType() { switch (fType) { case kRect_Type: fPath.init(); fPath.get()->addRect(this->getRect()); fPath.get()->setFillType(SkPath::kInverseEvenOdd_FillType); fType = kPath_Type; break; case kRRect_Type: fPath.init(); fPath.get()->addRRect(fRRect); fPath.get()->setFillType(SkPath::kInverseEvenOdd_FillType); fType = kPath_Type; break; case kPath_Type: fPath.get()->toggleInverseFillType(); break; case kEmpty_Type: // Should this set to an empty, inverse filled path? break; } } void SkClipStack::Element::initPath(int saveCount, const SkPath& path, SkRegion::Op op, bool doAA) { if (!path.isInverseFillType()) { if (SkPath::kNone_PathAsRect != path.asRect()) { this->initRect(saveCount, path.getBounds(), op, doAA); return; } SkRect ovalRect; if (path.isOval(&ovalRect)) { SkRRect rrect; rrect.setOval(ovalRect); this->initRRect(saveCount, rrect, op, doAA); return; } } fPath.set(path); fType = kPath_Type; this->initCommon(saveCount, op, doAA); } void SkClipStack::Element::asPath(SkPath* path) const { switch (fType) { case kEmpty_Type: path->reset(); break; case kRect_Type: path->reset(); path->addRect(this->getRect()); break; case kRRect_Type: path->reset(); path->addRRect(fRRect); break; case kPath_Type: *path = *fPath.get(); break; } } void SkClipStack::Element::setEmpty() { fType = kEmpty_Type; fFiniteBound.setEmpty(); fFiniteBoundType = kNormal_BoundsType; fIsIntersectionOfRects = false; fRRect.setEmpty(); fPath.reset(); fGenID = kEmptyGenID; SkDEBUGCODE(this->checkEmpty();) } void SkClipStack::Element::checkEmpty() const { SkASSERT(fFiniteBound.isEmpty()); SkASSERT(kNormal_BoundsType == fFiniteBoundType); SkASSERT(!fIsIntersectionOfRects); SkASSERT(kEmptyGenID == fGenID); SkASSERT(!fPath.isValid()); } bool SkClipStack::Element::canBeIntersectedInPlace(int saveCount, SkRegion::Op op) const { if (kEmpty_Type == fType && (SkRegion::kDifference_Op == op || SkRegion::kIntersect_Op == op)) { return true; } // Only clips within the same save/restore frame (as captured by // the save count) can be merged return fSaveCount == saveCount && SkRegion::kIntersect_Op == op && (SkRegion::kIntersect_Op == fOp || SkRegion::kReplace_Op == fOp); } bool SkClipStack::Element::rectRectIntersectAllowed(const SkRect& newR, bool newAA) const { SkASSERT(kRect_Type == fType); if (fDoAA == newAA) { // if the AA setting is the same there is no issue return true; } if (!SkRect::Intersects(this->getRect(), newR)) { // The calling code will correctly set the result to the empty clip return true; } if (this->getRect().contains(newR)) { // if the new rect carves out a portion of the old one there is no // issue return true; } // So either the two overlap in some complex manner or newR contains oldR. // In the first, case the edges will require different AA. In the second, // the AA setting that would be carried forward is incorrect (e.g., oldR // is AA while newR is BW but since newR contains oldR, oldR will be // drawn BW) since the new AA setting will predominate. return false; } // a mirror of combineBoundsRevDiff void SkClipStack::Element::combineBoundsDiff(FillCombo combination, const SkRect& prevFinite) { switch (combination) { case kInvPrev_InvCur_FillCombo: // In this case the only pixels that can remain set // are inside the current clip rect since the extensions // to infinity of both clips cancel out and whatever // is outside of the current clip is removed fFiniteBoundType = kNormal_BoundsType; break; case kInvPrev_Cur_FillCombo: // In this case the current op is finite so the only pixels // that aren't set are whatever isn't set in the previous // clip and whatever this clip carves out fFiniteBound.join(prevFinite); fFiniteBoundType = kInsideOut_BoundsType; break; case kPrev_InvCur_FillCombo: // In this case everything outside of this clip's bound // is erased, so the only pixels that can remain set // occur w/in the intersection of the two finite bounds if (!fFiniteBound.intersect(prevFinite)) { this->setEmpty(); } else { fFiniteBoundType = kNormal_BoundsType; } break; case kPrev_Cur_FillCombo: // The most conservative result bound is that of the // prior clip. This could be wildly incorrect if the // second clip either exactly matches the first clip // (which should yield the empty set) or reduces the // size of the prior bound (e.g., if the second clip // exactly matched the bottom half of the prior clip). // We ignore these two possibilities. fFiniteBound = prevFinite; break; default: SkDEBUGFAIL("SkClipStack::Element::combineBoundsDiff Invalid fill combination"); break; } } void SkClipStack::Element::combineBoundsXOR(int combination, const SkRect& prevFinite) { switch (combination) { case kInvPrev_Cur_FillCombo: // fall through case kPrev_InvCur_FillCombo: // With only one of the clips inverted the result will always // extend to infinity. The only pixels that may be un-writeable // lie within the union of the two finite bounds fFiniteBound.join(prevFinite); fFiniteBoundType = kInsideOut_BoundsType; break; case kInvPrev_InvCur_FillCombo: // The only pixels that can survive are within the // union of the two bounding boxes since the extensions // to infinity of both clips cancel out // fall through! case kPrev_Cur_FillCombo: // The most conservative bound for xor is the // union of the two bounds. If the two clips exactly overlapped // the xor could yield the empty set. Similarly the xor // could reduce the size of the original clip's bound (e.g., // if the second clip exactly matched the bottom half of the // first clip). We ignore these two cases. fFiniteBound.join(prevFinite); fFiniteBoundType = kNormal_BoundsType; break; default: SkDEBUGFAIL("SkClipStack::Element::combineBoundsXOR Invalid fill combination"); break; } } // a mirror of combineBoundsIntersection void SkClipStack::Element::combineBoundsUnion(int combination, const SkRect& prevFinite) { switch (combination) { case kInvPrev_InvCur_FillCombo: if (!fFiniteBound.intersect(prevFinite)) { fFiniteBound.setEmpty(); fGenID = kWideOpenGenID; } fFiniteBoundType = kInsideOut_BoundsType; break; case kInvPrev_Cur_FillCombo: // The only pixels that won't be drawable are inside // the prior clip's finite bound fFiniteBound = prevFinite; fFiniteBoundType = kInsideOut_BoundsType; break; case kPrev_InvCur_FillCombo: // The only pixels that won't be drawable are inside // this clip's finite bound break; case kPrev_Cur_FillCombo: fFiniteBound.join(prevFinite); break; default: SkDEBUGFAIL("SkClipStack::Element::combineBoundsUnion Invalid fill combination"); break; } } // a mirror of combineBoundsUnion void SkClipStack::Element::combineBoundsIntersection(int combination, const SkRect& prevFinite) { switch (combination) { case kInvPrev_InvCur_FillCombo: // The only pixels that aren't writable in this case // occur in the union of the two finite bounds fFiniteBound.join(prevFinite); fFiniteBoundType = kInsideOut_BoundsType; break; case kInvPrev_Cur_FillCombo: // In this case the only pixels that will remain writeable // are within the current clip break; case kPrev_InvCur_FillCombo: // In this case the only pixels that will remain writeable // are with the previous clip fFiniteBound = prevFinite; fFiniteBoundType = kNormal_BoundsType; break; case kPrev_Cur_FillCombo: if (!fFiniteBound.intersect(prevFinite)) { this->setEmpty(); } break; default: SkDEBUGFAIL("SkClipStack::Element::combineBoundsIntersection Invalid fill combination"); break; } } // a mirror of combineBoundsDiff void SkClipStack::Element::combineBoundsRevDiff(int combination, const SkRect& prevFinite) { switch (combination) { case kInvPrev_InvCur_FillCombo: // The only pixels that can survive are in the // previous bound since the extensions to infinity in // both clips cancel out fFiniteBound = prevFinite; fFiniteBoundType = kNormal_BoundsType; break; case kInvPrev_Cur_FillCombo: if (!fFiniteBound.intersect(prevFinite)) { this->setEmpty(); } else { fFiniteBoundType = kNormal_BoundsType; } break; case kPrev_InvCur_FillCombo: fFiniteBound.join(prevFinite); fFiniteBoundType = kInsideOut_BoundsType; break; case kPrev_Cur_FillCombo: // Fall through - as with the kDifference_Op case, the // most conservative result bound is the bound of the // current clip. The prior clip could reduce the size of this // bound (as in the kDifference_Op case) but we are ignoring // those cases. break; default: SkDEBUGFAIL("SkClipStack::Element::combineBoundsRevDiff Invalid fill combination"); break; } } void SkClipStack::Element::updateBoundAndGenID(const Element* prior) { // We set this first here but we may overwrite it later if we determine that the clip is // either wide-open or empty. fGenID = GetNextGenID(); // First, optimistically update the current Element's bound information // with the current clip's bound fIsIntersectionOfRects = false; switch (fType) { case kRect_Type: fFiniteBound = this->getRect(); fFiniteBoundType = kNormal_BoundsType; if (SkRegion::kReplace_Op == fOp || (SkRegion::kIntersect_Op == fOp && NULL == prior) || (SkRegion::kIntersect_Op == fOp && prior->fIsIntersectionOfRects && prior->rectRectIntersectAllowed(this->getRect(), fDoAA))) { fIsIntersectionOfRects = true; } break; case kRRect_Type: fFiniteBound = fRRect.getBounds(); fFiniteBoundType = kNormal_BoundsType; break; case kPath_Type: fFiniteBound = fPath.get()->getBounds(); if (fPath.get()->isInverseFillType()) { fFiniteBoundType = kInsideOut_BoundsType; } else { fFiniteBoundType = kNormal_BoundsType; } break; case kEmpty_Type: SkDEBUGFAIL("We shouldn't get here with an empty element."); break; } if (!fDoAA) { // Here we mimic a non-anti-aliased scanline system. If there is // no anti-aliasing we can integerize the bounding box to exclude // fractional parts that won't be rendered. // Note: the left edge is handled slightly differently below. We // are a bit more generous in the rounding since we don't want to // risk missing the left pixels when fLeft is very close to .5 fFiniteBound.set(SkScalarFloorToScalar(fFiniteBound.fLeft+0.45f), SkScalarRoundToScalar(fFiniteBound.fTop), SkScalarRoundToScalar(fFiniteBound.fRight), SkScalarRoundToScalar(fFiniteBound.fBottom)); } // Now determine the previous Element's bound information taking into // account that there may be no previous clip SkRect prevFinite; SkClipStack::BoundsType prevType; if (NULL == prior) { // no prior clip means the entire plane is writable prevFinite.setEmpty(); // there are no pixels that cannot be drawn to prevType = kInsideOut_BoundsType; } else { prevFinite = prior->fFiniteBound; prevType = prior->fFiniteBoundType; } FillCombo combination = kPrev_Cur_FillCombo; if (kInsideOut_BoundsType == fFiniteBoundType) { combination = (FillCombo) (combination | 0x01); } if (kInsideOut_BoundsType == prevType) { combination = (FillCombo) (combination | 0x02); } SkASSERT(kInvPrev_InvCur_FillCombo == combination || kInvPrev_Cur_FillCombo == combination || kPrev_InvCur_FillCombo == combination || kPrev_Cur_FillCombo == combination); // Now integrate with clip with the prior clips switch (fOp) { case SkRegion::kDifference_Op: this->combineBoundsDiff(combination, prevFinite); break; case SkRegion::kXOR_Op: this->combineBoundsXOR(combination, prevFinite); break; case SkRegion::kUnion_Op: this->combineBoundsUnion(combination, prevFinite); break; case SkRegion::kIntersect_Op: this->combineBoundsIntersection(combination, prevFinite); break; case SkRegion::kReverseDifference_Op: this->combineBoundsRevDiff(combination, prevFinite); break; case SkRegion::kReplace_Op: // Replace just ignores everything prior // The current clip's bound information is already filled in // so nothing to do break; default: SkDebugf("SkRegion::Op error\n"); SkASSERT(0); break; } } // This constant determines how many Element's are allocated together as a block in // the deque. As such it needs to balance allocating too much memory vs. // incurring allocation/deallocation thrashing. It should roughly correspond to // the deepest save/restore stack we expect to see. static const int kDefaultElementAllocCnt = 8; SkClipStack::SkClipStack() : fDeque(sizeof(Element), kDefaultElementAllocCnt) , fSaveCount(0) { } SkClipStack::SkClipStack(const SkClipStack& b) : fDeque(sizeof(Element), kDefaultElementAllocCnt) { *this = b; } SkClipStack::SkClipStack(const SkRect& r) : fDeque(sizeof(Element), kDefaultElementAllocCnt) , fSaveCount(0) { if (!r.isEmpty()) { this->clipDevRect(r, SkRegion::kReplace_Op, false); } } SkClipStack::SkClipStack(const SkIRect& r) : fDeque(sizeof(Element), kDefaultElementAllocCnt) , fSaveCount(0) { if (!r.isEmpty()) { SkRect temp; temp.set(r); this->clipDevRect(temp, SkRegion::kReplace_Op, false); } } SkClipStack::~SkClipStack() { reset(); } SkClipStack& SkClipStack::operator=(const SkClipStack& b) { if (this == &b) { return *this; } reset(); fSaveCount = b.fSaveCount; SkDeque::F2BIter recIter(b.fDeque); for (const Element* element = (const Element*)recIter.next(); element != NULL; element = (const Element*)recIter.next()) { new (fDeque.push_back()) Element(*element); } return *this; } bool SkClipStack::operator==(const SkClipStack& b) const { if (this->getTopmostGenID() == b.getTopmostGenID()) { return true; } if (fSaveCount != b.fSaveCount || fDeque.count() != b.fDeque.count()) { return false; } SkDeque::F2BIter myIter(fDeque); SkDeque::F2BIter bIter(b.fDeque); const Element* myElement = (const Element*)myIter.next(); const Element* bElement = (const Element*)bIter.next(); while (myElement != NULL && bElement != NULL) { if (*myElement != *bElement) { return false; } myElement = (const Element*)myIter.next(); bElement = (const Element*)bIter.next(); } return myElement == NULL && bElement == NULL; } void SkClipStack::reset() { // We used a placement new for each object in fDeque, so we're responsible // for calling the destructor on each of them as well. while (!fDeque.empty()) { Element* element = (Element*)fDeque.back(); element->~Element(); fDeque.pop_back(); } fSaveCount = 0; } void SkClipStack::save() { fSaveCount += 1; } void SkClipStack::restore() { fSaveCount -= 1; restoreTo(fSaveCount); } void SkClipStack::restoreTo(int saveCount) { while (!fDeque.empty()) { Element* element = (Element*)fDeque.back(); if (element->fSaveCount <= saveCount) { break; } element->~Element(); fDeque.pop_back(); } } void SkClipStack::getBounds(SkRect* canvFiniteBound, BoundsType* boundType, bool* isIntersectionOfRects) const { SkASSERT(NULL != canvFiniteBound && NULL != boundType); Element* element = (Element*)fDeque.back(); if (NULL == element) { // the clip is wide open - the infinite plane w/ no pixels un-writeable canvFiniteBound->setEmpty(); *boundType = kInsideOut_BoundsType; if (NULL != isIntersectionOfRects) { *isIntersectionOfRects = false; } return; } *canvFiniteBound = element->fFiniteBound; *boundType = element->fFiniteBoundType; if (NULL != isIntersectionOfRects) { *isIntersectionOfRects = element->fIsIntersectionOfRects; } } bool SkClipStack::intersectRectWithClip(SkRect* rect) const { SkASSERT(NULL != rect); SkRect bounds; SkClipStack::BoundsType bt; this->getBounds(&bounds, &bt); if (bt == SkClipStack::kInsideOut_BoundsType) { if (bounds.contains(*rect)) { return false; } else { // If rect's x values are both within bound's x range we // could clip here. Same for y. But we don't bother to check. return true; } } else { return rect->intersect(bounds); } } bool SkClipStack::quickContains(const SkRect& rect) const { Iter iter(*this, Iter::kTop_IterStart); const Element* element = iter.prev(); while (element != NULL) { if (SkRegion::kIntersect_Op != element->getOp() && SkRegion::kReplace_Op != element->getOp()) return false; if (element->isInverseFilled()) { // Part of 'rect' could be trimmed off by the inverse-filled clip element if (SkRect::Intersects(element->getBounds(), rect)) { return false; } } else { if (!element->contains(rect)) { return false; } } if (SkRegion::kReplace_Op == element->getOp()) { break; } element = iter.prev(); } return true; } void SkClipStack::pushElement(const Element& element) { // Use reverse iterator instead of back because Rect path may need previous SkDeque::Iter iter(fDeque, SkDeque::Iter::kBack_IterStart); Element* prior = (Element*) iter.prev(); if (NULL != prior) { if (prior->canBeIntersectedInPlace(fSaveCount, element.getOp())) { switch (prior->fType) { case Element::kEmpty_Type: SkDEBUGCODE(prior->checkEmpty();) return; case Element::kRect_Type: if (Element::kRect_Type == element.getType()) { if (prior->rectRectIntersectAllowed(element.getRect(), element.isAA())) { SkRect isectRect; if (!isectRect.intersect(prior->getRect(), element.getRect())) { prior->setEmpty(); return; } prior->fRRect.setRect(isectRect); prior->fDoAA = element.isAA(); Element* priorPrior = (Element*) iter.prev(); prior->updateBoundAndGenID(priorPrior); return; } break; } // fallthrough default: if (!SkRect::Intersects(prior->getBounds(), element.getBounds())) { prior->setEmpty(); return; } break; } } else if (SkRegion::kReplace_Op == element.getOp()) { this->restoreTo(fSaveCount - 1); prior = (Element*) fDeque.back(); } } Element* newElement = SkNEW_PLACEMENT_ARGS(fDeque.push_back(), Element, (element)); newElement->updateBoundAndGenID(prior); } void SkClipStack::clipDevRRect(const SkRRect& rrect, SkRegion::Op op, bool doAA) { Element element(fSaveCount, rrect, op, doAA); this->pushElement(element); } void SkClipStack::clipDevRect(const SkRect& rect, SkRegion::Op op, bool doAA) { Element element(fSaveCount, rect, op, doAA); this->pushElement(element); } void SkClipStack::clipDevPath(const SkPath& path, SkRegion::Op op, bool doAA) { Element element(fSaveCount, path, op, doAA); this->pushElement(element); } void SkClipStack::clipEmpty() { Element* element = (Element*) fDeque.back(); if (element && element->canBeIntersectedInPlace(fSaveCount, SkRegion::kIntersect_Op)) { element->setEmpty(); } new (fDeque.push_back()) Element(fSaveCount); ((Element*)fDeque.back())->fGenID = kEmptyGenID; } bool SkClipStack::isWideOpen() const { return this->getTopmostGenID() == kWideOpenGenID; } /////////////////////////////////////////////////////////////////////////////// SkClipStack::Iter::Iter() : fStack(NULL) { } SkClipStack::Iter::Iter(const SkClipStack& stack, IterStart startLoc) : fStack(&stack) { this->reset(stack, startLoc); } const SkClipStack::Element* SkClipStack::Iter::next() { return (const SkClipStack::Element*)fIter.next(); } const SkClipStack::Element* SkClipStack::Iter::prev() { return (const SkClipStack::Element*)fIter.prev(); } const SkClipStack::Element* SkClipStack::Iter::skipToTopmost(SkRegion::Op op) { if (NULL == fStack) { return NULL; } fIter.reset(fStack->fDeque, SkDeque::Iter::kBack_IterStart); const SkClipStack::Element* element = NULL; for (element = (const SkClipStack::Element*) fIter.prev(); NULL != element; element = (const SkClipStack::Element*) fIter.prev()) { if (op == element->fOp) { // The Deque's iterator is actually one pace ahead of the // returned value. So while "element" is the element we want to // return, the iterator is actually pointing at (and will // return on the next "next" or "prev" call) the element // in front of it in the deque. Bump the iterator forward a // step so we get the expected result. if (NULL == fIter.next()) { // The reverse iterator has run off the front of the deque // (i.e., the "op" clip is the first clip) and can't // recover. Reset the iterator to start at the front. fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart); } break; } } if (NULL == element) { // There were no "op" clips fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart); } return this->next(); } void SkClipStack::Iter::reset(const SkClipStack& stack, IterStart startLoc) { fStack = &stack; fIter.reset(stack.fDeque, static_cast(startLoc)); } // helper method void SkClipStack::getConservativeBounds(int offsetX, int offsetY, int maxWidth, int maxHeight, SkRect* devBounds, bool* isIntersectionOfRects) const { SkASSERT(NULL != devBounds); devBounds->setLTRB(0, 0, SkIntToScalar(maxWidth), SkIntToScalar(maxHeight)); SkRect temp; SkClipStack::BoundsType boundType; // temp starts off in canvas space here this->getBounds(&temp, &boundType, isIntersectionOfRects); if (SkClipStack::kInsideOut_BoundsType == boundType) { return; } // but is converted to device space here temp.offset(SkIntToScalar(offsetX), SkIntToScalar(offsetY)); if (!devBounds->intersect(temp)) { devBounds->setEmpty(); } } int32_t SkClipStack::GetNextGenID() { // TODO: handle overflow. return sk_atomic_inc(&gGenID); } int32_t SkClipStack::getTopmostGenID() const { if (fDeque.empty()) { return kWideOpenGenID; } const Element* back = static_cast(fDeque.back()); if (kInsideOut_BoundsType == back->fFiniteBoundType && back->fFiniteBound.isEmpty()) { return kWideOpenGenID; } return back->getGenID(); }