/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBlurMask.h" #include "SkTo.h" #include "SkColorPriv.h" #include "SkMaskBlurFilter.h" #include "SkMath.h" #include "SkTemplates.h" #include "SkEndian.h" // This constant approximates the scaling done in the software path's // "high quality" mode, in SkBlurMask::Blur() (1 / sqrt(3)). // IMHO, it actually should be 1: we blur "less" than we should do // according to the CSS and canvas specs, simply because Safari does the same. // Firefox used to do the same too, until 4.0 where they fixed it. So at some // point we should probably get rid of these scaling constants and rebaseline // all the blur tests. static const SkScalar kBLUR_SIGMA_SCALE = 0.57735f; SkScalar SkBlurMask::ConvertRadiusToSigma(SkScalar radius) { return radius > 0 ? kBLUR_SIGMA_SCALE * radius + 0.5f : 0.0f; } SkScalar SkBlurMask::ConvertSigmaToRadius(SkScalar sigma) { return sigma > 0.5f ? (sigma - 0.5f) / kBLUR_SIGMA_SCALE : 0.0f; } template static void merge_src_with_blur(uint8_t dst[], int dstRB, AlphaIter src, int srcRB, const uint8_t blur[], int blurRB, int sw, int sh) { dstRB -= sw; blurRB -= sw; while (--sh >= 0) { AlphaIter rowSrc(src); for (int x = sw - 1; x >= 0; --x) { *dst = SkToU8(SkAlphaMul(*blur, SkAlpha255To256(*rowSrc))); ++dst; ++rowSrc; ++blur; } dst += dstRB; src >>= srcRB; blur += blurRB; } } template static void clamp_solid_with_orig(uint8_t dst[], int dstRowBytes, AlphaIter src, int srcRowBytes, int sw, int sh) { int x; while (--sh >= 0) { AlphaIter rowSrc(src); for (x = sw - 1; x >= 0; --x) { int s = *rowSrc; int d = *dst; *dst = SkToU8(s + d - SkMulDiv255Round(s, d)); ++dst; ++rowSrc; } dst += dstRowBytes - sw; src >>= srcRowBytes; } } template static void clamp_outer_with_orig(uint8_t dst[], int dstRowBytes, AlphaIter src, int srcRowBytes, int sw, int sh) { int x; while (--sh >= 0) { AlphaIter rowSrc(src); for (x = sw - 1; x >= 0; --x) { int srcValue = *rowSrc; if (srcValue) { *dst = SkToU8(SkAlphaMul(*dst, SkAlpha255To256(255 - srcValue))); } ++dst; ++rowSrc; } dst += dstRowBytes - sw; src >>= srcRowBytes; } } /////////////////////////////////////////////////////////////////////////////// // we use a local function to wrap the class static method to work around // a bug in gcc98 void SkMask_FreeImage(uint8_t* image); void SkMask_FreeImage(uint8_t* image) { SkMask::FreeImage(image); } bool SkBlurMask::BoxBlur(SkMask* dst, const SkMask& src, SkScalar sigma, SkBlurStyle style, SkIPoint* margin) { if (src.fFormat != SkMask::kBW_Format && src.fFormat != SkMask::kA8_Format && src.fFormat != SkMask::kARGB32_Format && src.fFormat != SkMask::kLCD16_Format) { return false; } SkMaskBlurFilter blurFilter{sigma, sigma}; if (blurFilter.hasNoBlur()) { // If there is no effective blur most styles will just produce the original mask. // However, kOuter_SkBlurStyle will produce an empty mask. if (style == kOuter_SkBlurStyle) { dst->fImage = nullptr; dst->fBounds = SkIRect::MakeEmpty(); dst->fRowBytes = dst->fBounds.width(); dst->fFormat = SkMask::kA8_Format; if (margin != nullptr) { // This filter will disregard the src.fImage completely. // The margin is actually {-(src.fBounds.width() / 2), -(src.fBounds.height() / 2)} // but it is not clear if callers will fall over with negative margins. *margin = SkIPoint{0,0}; } return true; } return false; } const SkIPoint border = blurFilter.blur(src, dst); // If src.fImage is null, then this call is only to calculate the border. if (src.fImage != nullptr && dst->fImage == nullptr) { return false; } if (margin != nullptr) { *margin = border; } if (src.fImage == nullptr) { if (style == kInner_SkBlurStyle) { dst->fBounds = src.fBounds; // restore trimmed bounds dst->fRowBytes = dst->fBounds.width(); } return true; } switch (style) { case kNormal_SkBlurStyle: break; case kSolid_SkBlurStyle: { auto dstStart = &dst->fImage[border.x() + border.y() * dst->fRowBytes]; switch (src.fFormat) { case SkMask::kBW_Format: clamp_solid_with_orig( dstStart, dst->fRowBytes, SkMask::AlphaIter(src.fImage, 0), src.fRowBytes, src.fBounds.width(), src.fBounds.height()); break; case SkMask::kA8_Format: clamp_solid_with_orig( dstStart, dst->fRowBytes, SkMask::AlphaIter(src.fImage), src.fRowBytes, src.fBounds.width(), src.fBounds.height()); break; case SkMask::kARGB32_Format: { uint32_t* srcARGB = reinterpret_cast(src.fImage); clamp_solid_with_orig( dstStart, dst->fRowBytes, SkMask::AlphaIter(srcARGB), src.fRowBytes, src.fBounds.width(), src.fBounds.height()); } break; case SkMask::kLCD16_Format: { uint16_t* srcLCD = reinterpret_cast(src.fImage); clamp_solid_with_orig( dstStart, dst->fRowBytes, SkMask::AlphaIter(srcLCD), src.fRowBytes, src.fBounds.width(), src.fBounds.height()); } break; default: SK_ABORT("Unhandled format."); }; } break; case kOuter_SkBlurStyle: { auto dstStart = &dst->fImage[border.x() + border.y() * dst->fRowBytes]; switch (src.fFormat) { case SkMask::kBW_Format: clamp_outer_with_orig( dstStart, dst->fRowBytes, SkMask::AlphaIter(src.fImage, 0), src.fRowBytes, src.fBounds.width(), src.fBounds.height()); break; case SkMask::kA8_Format: clamp_outer_with_orig( dstStart, dst->fRowBytes, SkMask::AlphaIter(src.fImage), src.fRowBytes, src.fBounds.width(), src.fBounds.height()); break; case SkMask::kARGB32_Format: { uint32_t* srcARGB = reinterpret_cast(src.fImage); clamp_outer_with_orig( dstStart, dst->fRowBytes, SkMask::AlphaIter(srcARGB), src.fRowBytes, src.fBounds.width(), src.fBounds.height()); } break; case SkMask::kLCD16_Format: { uint16_t* srcLCD = reinterpret_cast(src.fImage); clamp_outer_with_orig( dstStart, dst->fRowBytes, SkMask::AlphaIter(srcLCD), src.fRowBytes, src.fBounds.width(), src.fBounds.height()); } break; default: SK_ABORT("Unhandled format."); }; } break; case kInner_SkBlurStyle: { // now we allocate the "real" dst, mirror the size of src SkMask blur = *dst; SkAutoMaskFreeImage autoFreeBlurMask(blur.fImage); dst->fBounds = src.fBounds; dst->fRowBytes = dst->fBounds.width(); size_t dstSize = dst->computeImageSize(); if (0 == dstSize) { return false; // too big to allocate, abort } dst->fImage = SkMask::AllocImage(dstSize); auto blurStart = &blur.fImage[border.x() + border.y() * blur.fRowBytes]; switch (src.fFormat) { case SkMask::kBW_Format: merge_src_with_blur( dst->fImage, dst->fRowBytes, SkMask::AlphaIter(src.fImage, 0), src.fRowBytes, blurStart, blur.fRowBytes, src.fBounds.width(), src.fBounds.height()); break; case SkMask::kA8_Format: merge_src_with_blur( dst->fImage, dst->fRowBytes, SkMask::AlphaIter(src.fImage), src.fRowBytes, blurStart, blur.fRowBytes, src.fBounds.width(), src.fBounds.height()); break; case SkMask::kARGB32_Format: { uint32_t* srcARGB = reinterpret_cast(src.fImage); merge_src_with_blur( dst->fImage, dst->fRowBytes, SkMask::AlphaIter(srcARGB), src.fRowBytes, blurStart, blur.fRowBytes, src.fBounds.width(), src.fBounds.height()); } break; case SkMask::kLCD16_Format: { uint16_t* srcLCD = reinterpret_cast(src.fImage); merge_src_with_blur( dst->fImage, dst->fRowBytes, SkMask::AlphaIter(srcLCD), src.fRowBytes, blurStart, blur.fRowBytes, src.fBounds.width(), src.fBounds.height()); } break; default: SK_ABORT("Unhandled format."); }; } break; } return true; } /* Convolving a box with itself three times results in a piecewise quadratic function: 0 x <= -1.5 9/8 + 3/2 x + 1/2 x^2 -1.5 < x <= -.5 3/4 - x^2 -.5 < x <= .5 9/8 - 3/2 x + 1/2 x^2 0.5 < x <= 1.5 0 1.5 < x Mathematica: g[x_] := Piecewise [ { {9/8 + 3/2 x + 1/2 x^2 , -1.5 < x <= -.5}, {3/4 - x^2 , -.5 < x <= .5}, {9/8 - 3/2 x + 1/2 x^2 , 0.5 < x <= 1.5} }, 0] To get the profile curve of the blurred step function at the rectangle edge, we evaluate the indefinite integral, which is piecewise cubic: 0 x <= -1.5 9/16 + 9/8 x + 3/4 x^2 + 1/6 x^3 -1.5 < x <= -0.5 1/2 + 3/4 x - 1/3 x^3 -.5 < x <= .5 7/16 + 9/8 x - 3/4 x^2 + 1/6 x^3 .5 < x <= 1.5 1 1.5 < x in Mathematica code: gi[x_] := Piecewise[ { { 0 , x <= -1.5 }, { 9/16 + 9/8 x + 3/4 x^2 + 1/6 x^3, -1.5 < x <= -0.5 }, { 1/2 + 3/4 x - 1/3 x^3 , -.5 < x <= .5}, { 7/16 + 9/8 x - 3/4 x^2 + 1/6 x^3, .5 < x <= 1.5} },1] */ static float gaussianIntegral(float x) { if (x > 1.5f) { return 0.0f; } if (x < -1.5f) { return 1.0f; } float x2 = x*x; float x3 = x2*x; if ( x > 0.5f ) { return 0.5625f - (x3 / 6.0f - 3.0f * x2 * 0.25f + 1.125f * x); } if ( x > -0.5f ) { return 0.5f - (0.75f * x - x3 / 3.0f); } return 0.4375f + (-x3 / 6.0f - 3.0f * x2 * 0.25f - 1.125f * x); } /* ComputeBlurProfile fills in an array of floating point values between 0 and 255 for the profile signature of a blurred half-plane with the given blur radius. Since we're going to be doing screened multiplications (i.e., 1 - (1-x)(1-y)) all the time, we actually fill in the profile pre-inverted (already done 255-x). */ void SkBlurMask::ComputeBlurProfile(uint8_t* profile, int size, SkScalar sigma) { SkASSERT(SkScalarCeilToInt(6*sigma) == size); int center = size >> 1; float invr = 1.f/(2*sigma); profile[0] = 255; for (int x = 1 ; x < size ; ++x) { float scaled_x = (center - x - .5f) * invr; float gi = gaussianIntegral(scaled_x); profile[x] = 255 - (uint8_t) (255.f * gi); } } // TODO MAYBE: Maintain a profile cache to avoid recomputing this for // commonly used radii. Consider baking some of the most common blur radii // directly in as static data? // Implementation adapted from Michael Herf's approach: // http://stereopsis.com/shadowrect/ uint8_t SkBlurMask::ProfileLookup(const uint8_t *profile, int loc, int blurredWidth, int sharpWidth) { // how far are we from the original edge? int dx = SkAbs32(((loc << 1) + 1) - blurredWidth) - sharpWidth; int ox = dx >> 1; if (ox < 0) { ox = 0; } return profile[ox]; } void SkBlurMask::ComputeBlurredScanline(uint8_t *pixels, const uint8_t *profile, unsigned int width, SkScalar sigma) { unsigned int profile_size = SkScalarCeilToInt(6*sigma); SkAutoTMalloc horizontalScanline(width); unsigned int sw = width - profile_size; // nearest odd number less than the profile size represents the center // of the (2x scaled) profile int center = ( profile_size & ~1 ) - 1; int w = sw - center; for (unsigned int x = 0 ; x < width ; ++x) { if (profile_size <= sw) { pixels[x] = ProfileLookup(profile, x, width, w); } else { float span = float(sw)/(2*sigma); float giX = 1.5f - (x+.5f)/(2*sigma); pixels[x] = (uint8_t) (255 * (gaussianIntegral(giX) - gaussianIntegral(giX + span))); } } } bool SkBlurMask::BlurRect(SkScalar sigma, SkMask *dst, const SkRect &src, SkBlurStyle style, SkIPoint *margin, SkMask::CreateMode createMode) { int profileSize = SkScalarCeilToInt(6*sigma); if (profileSize <= 0) { return false; // no blur to compute } int pad = profileSize/2; if (margin) { margin->set( pad, pad ); } dst->fBounds.set(SkScalarRoundToInt(src.fLeft - pad), SkScalarRoundToInt(src.fTop - pad), SkScalarRoundToInt(src.fRight + pad), SkScalarRoundToInt(src.fBottom + pad)); dst->fRowBytes = dst->fBounds.width(); dst->fFormat = SkMask::kA8_Format; dst->fImage = nullptr; int sw = SkScalarFloorToInt(src.width()); int sh = SkScalarFloorToInt(src.height()); if (createMode == SkMask::kJustComputeBounds_CreateMode) { if (style == kInner_SkBlurStyle) { dst->fBounds.set(SkScalarRoundToInt(src.fLeft), SkScalarRoundToInt(src.fTop), SkScalarRoundToInt(src.fRight), SkScalarRoundToInt(src.fBottom)); // restore trimmed bounds dst->fRowBytes = sw; } return true; } SkAutoTMalloc profile(profileSize); ComputeBlurProfile(profile, profileSize, sigma); size_t dstSize = dst->computeImageSize(); if (0 == dstSize) { return false; // too big to allocate, abort } uint8_t* dp = SkMask::AllocImage(dstSize); dst->fImage = dp; int dstHeight = dst->fBounds.height(); int dstWidth = dst->fBounds.width(); uint8_t *outptr = dp; SkAutoTMalloc horizontalScanline(dstWidth); SkAutoTMalloc verticalScanline(dstHeight); ComputeBlurredScanline(horizontalScanline, profile, dstWidth, sigma); ComputeBlurredScanline(verticalScanline, profile, dstHeight, sigma); for (int y = 0 ; y < dstHeight ; ++y) { for (int x = 0 ; x < dstWidth ; x++) { unsigned int maskval = SkMulDiv255Round(horizontalScanline[x], verticalScanline[y]); *(outptr++) = maskval; } } if (style == kInner_SkBlurStyle) { // now we allocate the "real" dst, mirror the size of src size_t srcSize = (size_t)(src.width() * src.height()); if (0 == srcSize) { return false; // too big to allocate, abort } dst->fImage = SkMask::AllocImage(srcSize); for (int y = 0 ; y < sh ; y++) { uint8_t *blur_scanline = dp + (y+pad)*dstWidth + pad; uint8_t *inner_scanline = dst->fImage + y*sw; memcpy(inner_scanline, blur_scanline, sw); } SkMask::FreeImage(dp); dst->fBounds.set(SkScalarRoundToInt(src.fLeft), SkScalarRoundToInt(src.fTop), SkScalarRoundToInt(src.fRight), SkScalarRoundToInt(src.fBottom)); // restore trimmed bounds dst->fRowBytes = sw; } else if (style == kOuter_SkBlurStyle) { for (int y = pad ; y < dstHeight-pad ; y++) { uint8_t *dst_scanline = dp + y*dstWidth + pad; memset(dst_scanline, 0, sw); } } else if (style == kSolid_SkBlurStyle) { for (int y = pad ; y < dstHeight-pad ; y++) { uint8_t *dst_scanline = dp + y*dstWidth + pad; memset(dst_scanline, 0xff, sw); } } // normal and solid styles are the same for analytic rect blurs, so don't // need to handle solid specially. return true; } bool SkBlurMask::BlurRRect(SkScalar sigma, SkMask *dst, const SkRRect &src, SkBlurStyle style, SkIPoint *margin, SkMask::CreateMode createMode) { // Temporary for now -- always fail, should cause caller to fall back // to old path. Plumbing just to land API and parallelize effort. return false; } // The "simple" blur is a direct implementation of separable convolution with a discrete // gaussian kernel. It's "ground truth" in a sense; too slow to be used, but very // useful for correctness comparisons. bool SkBlurMask::BlurGroundTruth(SkScalar sigma, SkMask* dst, const SkMask& src, SkBlurStyle style, SkIPoint* margin) { if (src.fFormat != SkMask::kA8_Format) { return false; } float variance = sigma * sigma; int windowSize = SkScalarCeilToInt(sigma*6); // round window size up to nearest odd number windowSize |= 1; SkAutoTMalloc gaussWindow(windowSize); int halfWindow = windowSize >> 1; gaussWindow[halfWindow] = 1; float windowSum = 1; for (int x = 1 ; x <= halfWindow ; ++x) { float gaussian = expf(-x*x / (2*variance)); gaussWindow[halfWindow + x] = gaussWindow[halfWindow-x] = gaussian; windowSum += 2*gaussian; } // leave the filter un-normalized for now; we will divide by the normalization // sum later; int pad = halfWindow; if (margin) { margin->set( pad, pad ); } dst->fBounds = src.fBounds; dst->fBounds.outset(pad, pad); dst->fRowBytes = dst->fBounds.width(); dst->fFormat = SkMask::kA8_Format; dst->fImage = nullptr; if (src.fImage) { size_t dstSize = dst->computeImageSize(); if (0 == dstSize) { return false; // too big to allocate, abort } int srcWidth = src.fBounds.width(); int srcHeight = src.fBounds.height(); int dstWidth = dst->fBounds.width(); const uint8_t* srcPixels = src.fImage; uint8_t* dstPixels = SkMask::AllocImage(dstSize); SkAutoMaskFreeImage autoFreeDstPixels(dstPixels); // do the actual blur. First, make a padded copy of the source. // use double pad so we never have to check if we're outside anything int padWidth = srcWidth + 4*pad; int padHeight = srcHeight; int padSize = padWidth * padHeight; SkAutoTMalloc padPixels(padSize); memset(padPixels, 0, padSize); for (int y = 0 ; y < srcHeight; ++y) { uint8_t* padptr = padPixels + y * padWidth + 2*pad; const uint8_t* srcptr = srcPixels + y * srcWidth; memcpy(padptr, srcptr, srcWidth); } // blur in X, transposing the result into a temporary floating point buffer. // also double-pad the intermediate result so that the second blur doesn't // have to do extra conditionals. int tmpWidth = padHeight + 4*pad; int tmpHeight = padWidth - 2*pad; int tmpSize = tmpWidth * tmpHeight; SkAutoTMalloc tmpImage(tmpSize); memset(tmpImage, 0, tmpSize*sizeof(tmpImage[0])); for (int y = 0 ; y < padHeight ; ++y) { uint8_t *srcScanline = padPixels + y*padWidth; for (int x = pad ; x < padWidth - pad ; ++x) { float *outPixel = tmpImage + (x-pad)*tmpWidth + y + 2*pad; // transposed output uint8_t *windowCenter = srcScanline + x; for (int i = -pad ; i <= pad ; ++i) { *outPixel += gaussWindow[pad+i]*windowCenter[i]; } *outPixel /= windowSum; } } // blur in Y; now filling in the actual desired destination. We have to do // the transpose again; these transposes guarantee that we read memory in // linear order. for (int y = 0 ; y < tmpHeight ; ++y) { float *srcScanline = tmpImage + y*tmpWidth; for (int x = pad ; x < tmpWidth - pad ; ++x) { float *windowCenter = srcScanline + x; float finalValue = 0; for (int i = -pad ; i <= pad ; ++i) { finalValue += gaussWindow[pad+i]*windowCenter[i]; } finalValue /= windowSum; uint8_t *outPixel = dstPixels + (x-pad)*dstWidth + y; // transposed output int integerPixel = int(finalValue + 0.5f); *outPixel = SkClampMax( SkClampPos(integerPixel), 255 ); } } dst->fImage = dstPixels; switch (style) { case kNormal_SkBlurStyle: break; case kSolid_SkBlurStyle: { clamp_solid_with_orig( dstPixels + pad*dst->fRowBytes + pad, dst->fRowBytes, SkMask::AlphaIter(srcPixels), src.fRowBytes, srcWidth, srcHeight); } break; case kOuter_SkBlurStyle: { clamp_outer_with_orig( dstPixels + pad*dst->fRowBytes + pad, dst->fRowBytes, SkMask::AlphaIter(srcPixels), src.fRowBytes, srcWidth, srcHeight); } break; case kInner_SkBlurStyle: { // now we allocate the "real" dst, mirror the size of src size_t srcSize = src.computeImageSize(); if (0 == srcSize) { return false; // too big to allocate, abort } dst->fImage = SkMask::AllocImage(srcSize); merge_src_with_blur(dst->fImage, src.fRowBytes, SkMask::AlphaIter(srcPixels), src.fRowBytes, dstPixels + pad*dst->fRowBytes + pad, dst->fRowBytes, srcWidth, srcHeight); SkMask::FreeImage(dstPixels); } break; }; autoFreeDstPixels.release(); } if (style == kInner_SkBlurStyle) { dst->fBounds = src.fBounds; // restore trimmed bounds dst->fRowBytes = src.fRowBytes; } return true; }