/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBlurMask.h" #include "SkBlurPriv.h" #include "SkGpuBlurUtils.h" #include "SkMaskFilterBase.h" #include "SkReadBuffer.h" #include "SkRRectPriv.h" #include "SkWriteBuffer.h" #include "SkMaskFilter.h" #include "SkRRect.h" #include "SkStringUtils.h" #include "SkStrokeRec.h" #include "SkVertices.h" #if SK_SUPPORT_GPU #include "GrClip.h" #include "GrContext.h" #include "GrContextPriv.h" #include "GrFragmentProcessor.h" #include "GrRenderTargetContext.h" #include "GrResourceProvider.h" #include "GrShaderCaps.h" #include "GrStyle.h" #include "GrTextureProxy.h" #include "effects/GrCircleBlurFragmentProcessor.h" #include "effects/GrRectBlurEffect.h" #include "effects/GrRRectBlurEffect.h" #include "effects/GrSimpleTextureEffect.h" #include "effects/GrTextureDomain.h" #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLProgramDataManager.h" #include "glsl/GrGLSLUniformHandler.h" #endif class SkBlurMaskFilterImpl : public SkMaskFilterBase { public: SkBlurMaskFilterImpl(SkScalar sigma, SkBlurStyle, const SkRect& occluder, bool respectCTM); // overrides from SkMaskFilter SkMask::Format getFormat() const override; bool filterMask(SkMask* dst, const SkMask& src, const SkMatrix&, SkIPoint* margin) const override; #if SK_SUPPORT_GPU bool canFilterMaskGPU(const SkRRect& devRRect, const SkIRect& clipBounds, const SkMatrix& ctm, SkRect* maskRect) const override; bool directFilterMaskGPU(GrContext*, GrRenderTargetContext* renderTargetContext, GrPaint&&, const GrClip&, const SkMatrix& viewMatrix, const SkStrokeRec& strokeRec, const SkPath& path) const override; bool directFilterRRectMaskGPU(GrContext*, GrRenderTargetContext* renderTargetContext, GrPaint&&, const GrClip&, const SkMatrix& viewMatrix, const SkStrokeRec& strokeRec, const SkRRect& rrect, const SkRRect& devRRect) const override; sk_sp filterMaskGPU(GrContext*, sk_sp srcProxy, const SkMatrix& ctm, const SkIRect& maskRect) const override; #endif void computeFastBounds(const SkRect&, SkRect*) const override; bool asABlur(BlurRec*) const override; SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkBlurMaskFilterImpl) protected: FilterReturn filterRectsToNine(const SkRect[], int count, const SkMatrix&, const SkIRect& clipBounds, NinePatch*) const override; FilterReturn filterRRectToNine(const SkRRect&, const SkMatrix&, const SkIRect& clipBounds, NinePatch*) const override; bool filterRectMask(SkMask* dstM, const SkRect& r, const SkMatrix& matrix, SkIPoint* margin, SkMask::CreateMode createMode) const; bool filterRRectMask(SkMask* dstM, const SkRRect& r, const SkMatrix& matrix, SkIPoint* margin, SkMask::CreateMode createMode) const; bool ignoreXform() const { return !fRespectCTM; } private: // To avoid unseemly allocation requests (esp. for finite platforms like // handset) we limit the radius so something manageable. (as opposed to // a request like 10,000) static const SkScalar kMAX_BLUR_SIGMA; SkScalar fSigma; SkBlurStyle fBlurStyle; SkRect fOccluder; bool fRespectCTM; SkBlurMaskFilterImpl(SkReadBuffer&); void flatten(SkWriteBuffer&) const override; SkScalar computeXformedSigma(const SkMatrix& ctm) const { SkScalar xformedSigma = this->ignoreXform() ? fSigma : ctm.mapRadius(fSigma); return SkMinScalar(xformedSigma, kMAX_BLUR_SIGMA); } friend class SkBlurMaskFilter; typedef SkMaskFilter INHERITED; friend void sk_register_blur_maskfilter_createproc(); }; const SkScalar SkBlurMaskFilterImpl::kMAX_BLUR_SIGMA = SkIntToScalar(128); // linearly interpolate between y1 & y3 to match x2's position between x1 & x3 static SkScalar interp(SkScalar x1, SkScalar x2, SkScalar x3, SkScalar y1, SkScalar y3) { SkASSERT(x1 <= x2 && x2 <= x3); SkASSERT(y1 <= y3); SkScalar t = (x2 - x1) / (x3 - x1); return y1 + t * (y3 - y1); } // Insert 'lower' and 'higher' into 'array1' and insert a new value at each matching insertion // point in 'array2' that linearly interpolates between the existing values. // Return a bit mask which contains a copy of 'inputMask' for all the cells between the two // insertion points. static uint32_t insert_into_arrays(SkScalar* array1, SkScalar* array2, SkScalar lower, SkScalar higher, int* num, uint32_t inputMask, int maskSize) { SkASSERT(lower < higher); SkASSERT(lower >= array1[0] && higher <= array1[*num-1]); int32_t skipMask = 0x0; int i; for (i = 0; i < *num; ++i) { if (lower >= array1[i] && lower < array1[i+1]) { if (!SkScalarNearlyEqual(lower, array1[i])) { memmove(&array1[i+2], &array1[i+1], (*num-i-1)*sizeof(SkScalar)); array1[i+1] = lower; memmove(&array2[i+2], &array2[i+1], (*num-i-1)*sizeof(SkScalar)); array2[i+1] = interp(array1[i], lower, array1[i+2], array2[i], array2[i+2]); i++; (*num)++; } break; } } for ( ; i < *num; ++i) { skipMask |= inputMask << (i*maskSize); if (higher > array1[i] && higher <= array1[i+1]) { if (!SkScalarNearlyEqual(higher, array1[i+1])) { memmove(&array1[i+2], &array1[i+1], (*num-i-1)*sizeof(SkScalar)); array1[i+1] = higher; memmove(&array2[i+2], &array2[i+1], (*num-i-1)*sizeof(SkScalar)); array2[i+1] = interp(array1[i], higher, array1[i+2], array2[i], array2[i+2]); (*num)++; } break; } } return skipMask; } bool SkComputeBlurredRRectParams(const SkRRect& srcRRect, const SkRRect& devRRect, const SkRect& occluder, SkScalar sigma, SkScalar xformedSigma, SkRRect* rrectToDraw, SkISize* widthHeight, SkScalar rectXs[kSkBlurRRectMaxDivisions], SkScalar rectYs[kSkBlurRRectMaxDivisions], SkScalar texXs[kSkBlurRRectMaxDivisions], SkScalar texYs[kSkBlurRRectMaxDivisions], int* numXs, int* numYs, uint32_t* skipMask) { unsigned int devBlurRadius = 3*SkScalarCeilToInt(xformedSigma-1/6.0f); SkScalar srcBlurRadius = 3.0f * sigma; const SkRect& devOrig = devRRect.getBounds(); const SkVector& devRadiiUL = devRRect.radii(SkRRect::kUpperLeft_Corner); const SkVector& devRadiiUR = devRRect.radii(SkRRect::kUpperRight_Corner); const SkVector& devRadiiLR = devRRect.radii(SkRRect::kLowerRight_Corner); const SkVector& devRadiiLL = devRRect.radii(SkRRect::kLowerLeft_Corner); const int devLeft = SkScalarCeilToInt(SkTMax(devRadiiUL.fX, devRadiiLL.fX)); const int devTop = SkScalarCeilToInt(SkTMax(devRadiiUL.fY, devRadiiUR.fY)); const int devRight = SkScalarCeilToInt(SkTMax(devRadiiUR.fX, devRadiiLR.fX)); const int devBot = SkScalarCeilToInt(SkTMax(devRadiiLL.fY, devRadiiLR.fY)); // This is a conservative check for nine-patchability if (devOrig.fLeft + devLeft + devBlurRadius >= devOrig.fRight - devRight - devBlurRadius || devOrig.fTop + devTop + devBlurRadius >= devOrig.fBottom - devBot - devBlurRadius) { return false; } const SkVector& srcRadiiUL = srcRRect.radii(SkRRect::kUpperLeft_Corner); const SkVector& srcRadiiUR = srcRRect.radii(SkRRect::kUpperRight_Corner); const SkVector& srcRadiiLR = srcRRect.radii(SkRRect::kLowerRight_Corner); const SkVector& srcRadiiLL = srcRRect.radii(SkRRect::kLowerLeft_Corner); const SkScalar srcLeft = SkTMax(srcRadiiUL.fX, srcRadiiLL.fX); const SkScalar srcTop = SkTMax(srcRadiiUL.fY, srcRadiiUR.fY); const SkScalar srcRight = SkTMax(srcRadiiUR.fX, srcRadiiLR.fX); const SkScalar srcBot = SkTMax(srcRadiiLL.fY, srcRadiiLR.fY); int newRRWidth = 2*devBlurRadius + devLeft + devRight + 1; int newRRHeight = 2*devBlurRadius + devTop + devBot + 1; widthHeight->fWidth = newRRWidth + 2 * devBlurRadius; widthHeight->fHeight = newRRHeight + 2 * devBlurRadius; const SkRect srcProxyRect = srcRRect.getBounds().makeOutset(srcBlurRadius, srcBlurRadius); rectXs[0] = srcProxyRect.fLeft; rectXs[1] = srcProxyRect.fLeft + 2*srcBlurRadius + srcLeft; rectXs[2] = srcProxyRect.fRight - 2*srcBlurRadius - srcRight; rectXs[3] = srcProxyRect.fRight; rectYs[0] = srcProxyRect.fTop; rectYs[1] = srcProxyRect.fTop + 2*srcBlurRadius + srcTop; rectYs[2] = srcProxyRect.fBottom - 2*srcBlurRadius - srcBot; rectYs[3] = srcProxyRect.fBottom; texXs[0] = 0.0f; texXs[1] = 2.0f*devBlurRadius + devLeft; texXs[2] = 2.0f*devBlurRadius + devLeft + 1; texXs[3] = SkIntToScalar(widthHeight->fWidth); texYs[0] = 0.0f; texYs[1] = 2.0f*devBlurRadius + devTop; texYs[2] = 2.0f*devBlurRadius + devTop + 1; texYs[3] = SkIntToScalar(widthHeight->fHeight); SkRect temp = occluder; *numXs = 4; *numYs = 4; *skipMask = 0; if (!temp.isEmpty() && (srcProxyRect.contains(temp) || temp.intersect(srcProxyRect))) { *skipMask = insert_into_arrays(rectXs, texXs, temp.fLeft, temp.fRight, numXs, 0x1, 1); *skipMask = insert_into_arrays(rectYs, texYs, temp.fTop, temp.fBottom, numYs, *skipMask, *numXs-1); } const SkRect newRect = SkRect::MakeXYWH(SkIntToScalar(devBlurRadius), SkIntToScalar(devBlurRadius), SkIntToScalar(newRRWidth), SkIntToScalar(newRRHeight)); SkVector newRadii[4]; newRadii[0] = { SkScalarCeilToScalar(devRadiiUL.fX), SkScalarCeilToScalar(devRadiiUL.fY) }; newRadii[1] = { SkScalarCeilToScalar(devRadiiUR.fX), SkScalarCeilToScalar(devRadiiUR.fY) }; newRadii[2] = { SkScalarCeilToScalar(devRadiiLR.fX), SkScalarCeilToScalar(devRadiiLR.fY) }; newRadii[3] = { SkScalarCeilToScalar(devRadiiLL.fX), SkScalarCeilToScalar(devRadiiLL.fY) }; rrectToDraw->setRectRadii(newRect, newRadii); return true; } /////////////////////////////////////////////////////////////////////////////// SkBlurMaskFilterImpl::SkBlurMaskFilterImpl(SkScalar sigma, SkBlurStyle style, const SkRect& occluder, bool respectCTM) : fSigma(sigma) , fBlurStyle(style) , fOccluder(occluder) , fRespectCTM(respectCTM) { SkASSERT(fSigma > 0); SkASSERT((unsigned)style <= kLastEnum_SkBlurStyle); } SkMask::Format SkBlurMaskFilterImpl::getFormat() const { return SkMask::kA8_Format; } bool SkBlurMaskFilterImpl::asABlur(BlurRec* rec) const { if (this->ignoreXform()) { return false; } if (rec) { rec->fSigma = fSigma; rec->fStyle = fBlurStyle; } return true; } bool SkBlurMaskFilterImpl::filterMask(SkMask* dst, const SkMask& src, const SkMatrix& matrix, SkIPoint* margin) const { SkScalar sigma = this->computeXformedSigma(matrix); return SkBlurMask::BoxBlur(dst, src, sigma, fBlurStyle, margin); } bool SkBlurMaskFilterImpl::filterRectMask(SkMask* dst, const SkRect& r, const SkMatrix& matrix, SkIPoint* margin, SkMask::CreateMode createMode) const { SkScalar sigma = computeXformedSigma(matrix); return SkBlurMask::BlurRect(sigma, dst, r, fBlurStyle, margin, createMode); } bool SkBlurMaskFilterImpl::filterRRectMask(SkMask* dst, const SkRRect& r, const SkMatrix& matrix, SkIPoint* margin, SkMask::CreateMode createMode) const { SkScalar sigma = computeXformedSigma(matrix); return SkBlurMask::BlurRRect(sigma, dst, r, fBlurStyle, margin, createMode); } #include "SkCanvas.h" static bool prepare_to_draw_into_mask(const SkRect& bounds, SkMask* mask) { SkASSERT(mask != nullptr); mask->fBounds = bounds.roundOut(); mask->fRowBytes = SkAlign4(mask->fBounds.width()); mask->fFormat = SkMask::kA8_Format; const size_t size = mask->computeImageSize(); mask->fImage = SkMask::AllocImage(size, SkMask::kZeroInit_Alloc); if (nullptr == mask->fImage) { return false; } return true; } static bool draw_rrect_into_mask(const SkRRect rrect, SkMask* mask) { if (!prepare_to_draw_into_mask(rrect.rect(), mask)) { return false; } // FIXME: This code duplicates code in draw_rects_into_mask, below. Is there a // clean way to share more code? SkBitmap bitmap; bitmap.installMaskPixels(*mask); SkCanvas canvas(bitmap); canvas.translate(-SkIntToScalar(mask->fBounds.left()), -SkIntToScalar(mask->fBounds.top())); SkPaint paint; paint.setAntiAlias(true); canvas.drawRRect(rrect, paint); return true; } static bool draw_rects_into_mask(const SkRect rects[], int count, SkMask* mask) { if (!prepare_to_draw_into_mask(rects[0], mask)) { return false; } SkBitmap bitmap; bitmap.installPixels(SkImageInfo::Make(mask->fBounds.width(), mask->fBounds.height(), kAlpha_8_SkColorType, kPremul_SkAlphaType), mask->fImage, mask->fRowBytes); SkCanvas canvas(bitmap); canvas.translate(-SkIntToScalar(mask->fBounds.left()), -SkIntToScalar(mask->fBounds.top())); SkPaint paint; paint.setAntiAlias(true); if (1 == count) { canvas.drawRect(rects[0], paint); } else { // todo: do I need a fast way to do this? SkPath path; path.addRect(rects[0]); path.addRect(rects[1]); path.setFillType(SkPath::kEvenOdd_FillType); canvas.drawPath(path, paint); } return true; } static bool rect_exceeds(const SkRect& r, SkScalar v) { return r.fLeft < -v || r.fTop < -v || r.fRight > v || r.fBottom > v || r.width() > v || r.height() > v; } #include "SkMaskCache.h" static SkCachedData* copy_mask_to_cacheddata(SkMask* mask) { const size_t size = mask->computeTotalImageSize(); SkCachedData* data = SkResourceCache::NewCachedData(size); if (data) { memcpy(data->writable_data(), mask->fImage, size); SkMask::FreeImage(mask->fImage); mask->fImage = (uint8_t*)data->data(); } return data; } static SkCachedData* find_cached_rrect(SkMask* mask, SkScalar sigma, SkBlurStyle style, const SkRRect& rrect) { return SkMaskCache::FindAndRef(sigma, style, rrect, mask); } static SkCachedData* add_cached_rrect(SkMask* mask, SkScalar sigma, SkBlurStyle style, const SkRRect& rrect) { SkCachedData* cache = copy_mask_to_cacheddata(mask); if (cache) { SkMaskCache::Add(sigma, style, rrect, *mask, cache); } return cache; } static SkCachedData* find_cached_rects(SkMask* mask, SkScalar sigma, SkBlurStyle style, const SkRect rects[], int count) { return SkMaskCache::FindAndRef(sigma, style, rects, count, mask); } static SkCachedData* add_cached_rects(SkMask* mask, SkScalar sigma, SkBlurStyle style, const SkRect rects[], int count) { SkCachedData* cache = copy_mask_to_cacheddata(mask); if (cache) { SkMaskCache::Add(sigma, style, rects, count, *mask, cache); } return cache; } #ifdef SK_IGNORE_FAST_RRECT_BLUR // Use the faster analytic blur approach for ninepatch round rects static const bool c_analyticBlurRRect{false}; #else static const bool c_analyticBlurRRect{true}; #endif SkMaskFilterBase::FilterReturn SkBlurMaskFilterImpl::filterRRectToNine(const SkRRect& rrect, const SkMatrix& matrix, const SkIRect& clipBounds, NinePatch* patch) const { SkASSERT(patch != nullptr); switch (rrect.getType()) { case SkRRect::kEmpty_Type: // Nothing to draw. return kFalse_FilterReturn; case SkRRect::kRect_Type: // We should have caught this earlier. SkASSERT(false); // Fall through. case SkRRect::kOval_Type: // The nine patch special case does not handle ovals, and we // already have code for rectangles. return kUnimplemented_FilterReturn; // These three can take advantage of this fast path. case SkRRect::kSimple_Type: case SkRRect::kNinePatch_Type: case SkRRect::kComplex_Type: break; } // TODO: report correct metrics for innerstyle, where we do not grow the // total bounds, but we do need an inset the size of our blur-radius if (kInner_SkBlurStyle == fBlurStyle) { return kUnimplemented_FilterReturn; } // TODO: take clipBounds into account to limit our coordinates up front // for now, just skip too-large src rects (to take the old code path). if (rect_exceeds(rrect.rect(), SkIntToScalar(32767))) { return kUnimplemented_FilterReturn; } SkIPoint margin; SkMask srcM, dstM; srcM.fBounds = rrect.rect().roundOut(); srcM.fFormat = SkMask::kA8_Format; srcM.fRowBytes = 0; bool filterResult = false; if (c_analyticBlurRRect) { // special case for fast round rect blur // don't actually do the blur the first time, just compute the correct size filterResult = this->filterRRectMask(&dstM, rrect, matrix, &margin, SkMask::kJustComputeBounds_CreateMode); } if (!filterResult) { filterResult = this->filterMask(&dstM, srcM, matrix, &margin); } if (!filterResult) { return kFalse_FilterReturn; } // Now figure out the appropriate width and height of the smaller round rectangle // to stretch. It will take into account the larger radius per side as well as double // the margin, to account for inner and outer blur. const SkVector& UL = rrect.radii(SkRRect::kUpperLeft_Corner); const SkVector& UR = rrect.radii(SkRRect::kUpperRight_Corner); const SkVector& LR = rrect.radii(SkRRect::kLowerRight_Corner); const SkVector& LL = rrect.radii(SkRRect::kLowerLeft_Corner); const SkScalar leftUnstretched = SkTMax(UL.fX, LL.fX) + SkIntToScalar(2 * margin.fX); const SkScalar rightUnstretched = SkTMax(UR.fX, LR.fX) + SkIntToScalar(2 * margin.fX); // Extra space in the middle to ensure an unchanging piece for stretching. Use 3 to cover // any fractional space on either side plus 1 for the part to stretch. const SkScalar stretchSize = SkIntToScalar(3); const SkScalar totalSmallWidth = leftUnstretched + rightUnstretched + stretchSize; if (totalSmallWidth >= rrect.rect().width()) { // There is no valid piece to stretch. return kUnimplemented_FilterReturn; } const SkScalar topUnstretched = SkTMax(UL.fY, UR.fY) + SkIntToScalar(2 * margin.fY); const SkScalar bottomUnstretched = SkTMax(LL.fY, LR.fY) + SkIntToScalar(2 * margin.fY); const SkScalar totalSmallHeight = topUnstretched + bottomUnstretched + stretchSize; if (totalSmallHeight >= rrect.rect().height()) { // There is no valid piece to stretch. return kUnimplemented_FilterReturn; } SkRect smallR = SkRect::MakeWH(totalSmallWidth, totalSmallHeight); SkRRect smallRR; SkVector radii[4]; radii[SkRRect::kUpperLeft_Corner] = UL; radii[SkRRect::kUpperRight_Corner] = UR; radii[SkRRect::kLowerRight_Corner] = LR; radii[SkRRect::kLowerLeft_Corner] = LL; smallRR.setRectRadii(smallR, radii); const SkScalar sigma = this->computeXformedSigma(matrix); SkCachedData* cache = find_cached_rrect(&patch->fMask, sigma, fBlurStyle, smallRR); if (!cache) { bool analyticBlurWorked = false; if (c_analyticBlurRRect) { analyticBlurWorked = this->filterRRectMask(&patch->fMask, smallRR, matrix, &margin, SkMask::kComputeBoundsAndRenderImage_CreateMode); } if (!analyticBlurWorked) { if (!draw_rrect_into_mask(smallRR, &srcM)) { return kFalse_FilterReturn; } SkAutoMaskFreeImage amf(srcM.fImage); if (!this->filterMask(&patch->fMask, srcM, matrix, &margin)) { return kFalse_FilterReturn; } } cache = add_cached_rrect(&patch->fMask, sigma, fBlurStyle, smallRR); } patch->fMask.fBounds.offsetTo(0, 0); patch->fOuterRect = dstM.fBounds; patch->fCenter.fX = SkScalarCeilToInt(leftUnstretched) + 1; patch->fCenter.fY = SkScalarCeilToInt(topUnstretched) + 1; SkASSERT(nullptr == patch->fCache); patch->fCache = cache; // transfer ownership to patch return kTrue_FilterReturn; } // Use the faster analytic blur approach for ninepatch rects static const bool c_analyticBlurNinepatch{true}; SkMaskFilterBase::FilterReturn SkBlurMaskFilterImpl::filterRectsToNine(const SkRect rects[], int count, const SkMatrix& matrix, const SkIRect& clipBounds, NinePatch* patch) const { if (count < 1 || count > 2) { return kUnimplemented_FilterReturn; } // TODO: report correct metrics for innerstyle, where we do not grow the // total bounds, but we do need an inset the size of our blur-radius if (kInner_SkBlurStyle == fBlurStyle || kOuter_SkBlurStyle == fBlurStyle) { return kUnimplemented_FilterReturn; } // TODO: take clipBounds into account to limit our coordinates up front // for now, just skip too-large src rects (to take the old code path). if (rect_exceeds(rects[0], SkIntToScalar(32767))) { return kUnimplemented_FilterReturn; } SkIPoint margin; SkMask srcM, dstM; srcM.fBounds = rects[0].roundOut(); srcM.fFormat = SkMask::kA8_Format; srcM.fRowBytes = 0; bool filterResult = false; if (count == 1 && c_analyticBlurNinepatch) { // special case for fast rect blur // don't actually do the blur the first time, just compute the correct size filterResult = this->filterRectMask(&dstM, rects[0], matrix, &margin, SkMask::kJustComputeBounds_CreateMode); } else { filterResult = this->filterMask(&dstM, srcM, matrix, &margin); } if (!filterResult) { return kFalse_FilterReturn; } /* * smallR is the smallest version of 'rect' that will still guarantee that * we get the same blur results on all edges, plus 1 center row/col that is * representative of the extendible/stretchable edges of the ninepatch. * Since our actual edge may be fractional we inset 1 more to be sure we * don't miss any interior blur. * x is an added pixel of blur, and { and } are the (fractional) edge * pixels from the original rect. * * x x { x x .... x x } x x * * Thus, in this case, we inset by a total of 5 (on each side) beginning * with our outer-rect (dstM.fBounds) */ SkRect smallR[2]; SkIPoint center; // +2 is from +1 for each edge (to account for possible fractional edges int smallW = dstM.fBounds.width() - srcM.fBounds.width() + 2; int smallH = dstM.fBounds.height() - srcM.fBounds.height() + 2; SkIRect innerIR; if (1 == count) { innerIR = srcM.fBounds; center.set(smallW, smallH); } else { SkASSERT(2 == count); rects[1].roundIn(&innerIR); center.set(smallW + (innerIR.left() - srcM.fBounds.left()), smallH + (innerIR.top() - srcM.fBounds.top())); } // +1 so we get a clean, stretchable, center row/col smallW += 1; smallH += 1; // we want the inset amounts to be integral, so we don't change any // fractional phase on the fRight or fBottom of our smallR. const SkScalar dx = SkIntToScalar(innerIR.width() - smallW); const SkScalar dy = SkIntToScalar(innerIR.height() - smallH); if (dx < 0 || dy < 0) { // we're too small, relative to our blur, to break into nine-patch, // so we ask to have our normal filterMask() be called. return kUnimplemented_FilterReturn; } smallR[0].set(rects[0].left(), rects[0].top(), rects[0].right() - dx, rects[0].bottom() - dy); if (smallR[0].width() < 2 || smallR[0].height() < 2) { return kUnimplemented_FilterReturn; } if (2 == count) { smallR[1].set(rects[1].left(), rects[1].top(), rects[1].right() - dx, rects[1].bottom() - dy); SkASSERT(!smallR[1].isEmpty()); } const SkScalar sigma = this->computeXformedSigma(matrix); SkCachedData* cache = find_cached_rects(&patch->fMask, sigma, fBlurStyle, smallR, count); if (!cache) { if (count > 1 || !c_analyticBlurNinepatch) { if (!draw_rects_into_mask(smallR, count, &srcM)) { return kFalse_FilterReturn; } SkAutoMaskFreeImage amf(srcM.fImage); if (!this->filterMask(&patch->fMask, srcM, matrix, &margin)) { return kFalse_FilterReturn; } } else { if (!this->filterRectMask(&patch->fMask, smallR[0], matrix, &margin, SkMask::kComputeBoundsAndRenderImage_CreateMode)) { return kFalse_FilterReturn; } } cache = add_cached_rects(&patch->fMask, sigma, fBlurStyle, smallR, count); } patch->fMask.fBounds.offsetTo(0, 0); patch->fOuterRect = dstM.fBounds; patch->fCenter = center; SkASSERT(nullptr == patch->fCache); patch->fCache = cache; // transfer ownership to patch return kTrue_FilterReturn; } void SkBlurMaskFilterImpl::computeFastBounds(const SkRect& src, SkRect* dst) const { SkScalar pad = 3.0f * fSigma; dst->set(src.fLeft - pad, src.fTop - pad, src.fRight + pad, src.fBottom + pad); } sk_sp SkBlurMaskFilterImpl::CreateProc(SkReadBuffer& buffer) { const SkScalar sigma = buffer.readScalar(); SkBlurStyle style = buffer.read32LE(kLastEnum_SkBlurStyle); uint32_t flags = buffer.read32LE(0x3); // historically we only recorded 2 bits bool respectCTM = !(flags & 1); // historically we stored ignoreCTM in low bit SkRect occluder; buffer.readRect(&occluder); return SkMaskFilter::MakeBlur((SkBlurStyle)style, sigma, occluder, respectCTM); } void SkBlurMaskFilterImpl::flatten(SkWriteBuffer& buffer) const { buffer.writeScalar(fSigma); buffer.writeUInt(fBlurStyle); buffer.writeUInt(!fRespectCTM); // historically we recorded ignoreCTM buffer.writeRect(fOccluder); } #if SK_SUPPORT_GPU bool SkBlurMaskFilterImpl::directFilterMaskGPU(GrContext* context, GrRenderTargetContext* renderTargetContext, GrPaint&& paint, const GrClip& clip, const SkMatrix& viewMatrix, const SkStrokeRec& strokeRec, const SkPath& path) const { SkASSERT(renderTargetContext); if (fBlurStyle != kNormal_SkBlurStyle) { return false; } // TODO: we could handle blurred stroked circles if (!strokeRec.isFillStyle()) { return false; } SkScalar xformedSigma = this->computeXformedSigma(viewMatrix); GrProxyProvider* proxyProvider = context->contextPriv().proxyProvider(); std::unique_ptr fp; SkRect rect; if (path.isRect(&rect)) { SkScalar pad = 3.0f * xformedSigma; rect.outset(pad, pad); fp = GrRectBlurEffect::Make(proxyProvider, *context->contextPriv().caps()->shaderCaps(), rect, xformedSigma); } else if (path.isOval(&rect) && SkScalarNearlyEqual(rect.width(), rect.height())) { fp = GrCircleBlurFragmentProcessor::Make(proxyProvider, rect, xformedSigma); // expand the rect for the coverage geometry int pad = SkScalarCeilToInt(6*xformedSigma)/2; rect.outset(SkIntToScalar(pad), SkIntToScalar(pad)); } else { return false; } if (!fp) { return false; } SkMatrix inverse; if (!viewMatrix.invert(&inverse)) { return false; } paint.addCoverageFragmentProcessor(std::move(fp)); renderTargetContext->fillRectWithLocalMatrix(clip, std::move(paint), GrAA::kNo, SkMatrix::I(), rect, inverse); return true; } bool SkBlurMaskFilterImpl::directFilterRRectMaskGPU(GrContext* context, GrRenderTargetContext* renderTargetContext, GrPaint&& paint, const GrClip& clip, const SkMatrix& viewMatrix, const SkStrokeRec& strokeRec, const SkRRect& srcRRect, const SkRRect& devRRect) const { SkASSERT(renderTargetContext); if (fBlurStyle != kNormal_SkBlurStyle) { return false; } if (!strokeRec.isFillStyle()) { return false; } GrProxyProvider* proxyProvider = context->contextPriv().proxyProvider(); SkScalar xformedSigma = this->computeXformedSigma(viewMatrix); if (devRRect.isRect() || SkRRectPriv::IsCircle(devRRect)) { std::unique_ptr fp; if (devRRect.isRect()) { SkScalar pad = 3.0f * xformedSigma; const SkRect dstCoverageRect = devRRect.rect().makeOutset(pad, pad); fp = GrRectBlurEffect::Make(proxyProvider, *context->contextPriv().caps()->shaderCaps(), dstCoverageRect, xformedSigma); } else { fp = GrCircleBlurFragmentProcessor::Make(proxyProvider, devRRect.rect(), xformedSigma); } if (!fp) { return false; } paint.addCoverageFragmentProcessor(std::move(fp)); SkRect srcProxyRect = srcRRect.rect(); SkScalar outsetX = 3.0f*fSigma; SkScalar outsetY = 3.0f*fSigma; if (this->ignoreXform()) { // When we're ignoring the CTM the padding added to the source rect also needs to ignore // the CTM. The matrix passed in here is guaranteed to be just scale and translate so we // can just grab the X and Y scales off the matrix and pre-undo the scale. outsetX /= viewMatrix.getScaleX(); outsetY /= viewMatrix.getScaleY(); } srcProxyRect.outset(outsetX, outsetY); renderTargetContext->drawRect(clip, std::move(paint), GrAA::kNo, viewMatrix, srcProxyRect); return true; } auto fp = GrRRectBlurEffect::Make(context, fSigma, xformedSigma, srcRRect, devRRect); if (!fp) { return false; } if (!this->ignoreXform()) { SkRect srcProxyRect = srcRRect.rect(); srcProxyRect.outset(3.0f*fSigma, 3.0f*fSigma); sk_sp vertices = nullptr; SkRect temp = fOccluder; if (!temp.isEmpty() && (srcProxyRect.contains(temp) || temp.intersect(srcProxyRect))) { SkVertices::Builder builder(SkVertices::kTriangles_VertexMode, 8, 24, 0); srcProxyRect.toQuad(builder.positions()); temp.toQuad(builder.positions() + 4); static const uint16_t ringI[24] = { 0, 1, 5, 5, 4, 0, 1, 2, 6, 6, 5, 1, 2, 3, 7, 7, 6, 2, 3, 0, 4, 4, 7, 3 }; memcpy(builder.indices(), ringI, sizeof(ringI)); vertices = builder.detach(); } else { // full rect case SkVertices::Builder builder(SkVertices::kTriangles_VertexMode, 4, 6, 0); srcProxyRect.toQuad(builder.positions()); static const uint16_t fullI[6] = { 0, 1, 2, 0, 2, 3 }; memcpy(builder.indices(), fullI, sizeof(fullI)); vertices = builder.detach(); } paint.addCoverageFragmentProcessor(std::move(fp)); renderTargetContext->drawVertices(clip, std::move(paint), viewMatrix, std::move(vertices), nullptr, 0); } else { SkMatrix inverse; if (!viewMatrix.invert(&inverse)) { return false; } float extra=3.f*SkScalarCeilToScalar(xformedSigma-1/6.0f); SkRect proxyRect = devRRect.rect(); proxyRect.outset(extra, extra); paint.addCoverageFragmentProcessor(std::move(fp)); renderTargetContext->fillRectWithLocalMatrix(clip, std::move(paint), GrAA::kNo, SkMatrix::I(), proxyRect, inverse); } return true; } bool SkBlurMaskFilterImpl::canFilterMaskGPU(const SkRRect& devRRect, const SkIRect& clipBounds, const SkMatrix& ctm, SkRect* maskRect) const { SkScalar xformedSigma = this->computeXformedSigma(ctm); if (xformedSigma <= 0) { return false; } // We always do circles and simple circular rrects on the GPU if (!SkRRectPriv::IsCircle(devRRect) && !SkRRectPriv::IsSimpleCircular(devRRect)) { static const SkScalar kMIN_GPU_BLUR_SIZE = SkIntToScalar(64); static const SkScalar kMIN_GPU_BLUR_SIGMA = SkIntToScalar(32); if (devRRect.width() <= kMIN_GPU_BLUR_SIZE && devRRect.height() <= kMIN_GPU_BLUR_SIZE && xformedSigma <= kMIN_GPU_BLUR_SIGMA) { // We prefer to blur small rects with small radii on the CPU. return false; } } if (nullptr == maskRect) { // don't need to compute maskRect return true; } float sigma3 = 3 * SkScalarToFloat(xformedSigma); SkRect clipRect = SkRect::Make(clipBounds); SkRect srcRect(devRRect.rect()); // Outset srcRect and clipRect by 3 * sigma, to compute affected blur area. srcRect.outset(sigma3, sigma3); clipRect.outset(sigma3, sigma3); if (!srcRect.intersect(clipRect)) { srcRect.setEmpty(); } *maskRect = srcRect; return true; } sk_sp SkBlurMaskFilterImpl::filterMaskGPU(GrContext* context, sk_sp srcProxy, const SkMatrix& ctm, const SkIRect& maskRect) const { // 'maskRect' isn't snapped to the UL corner but the mask in 'src' is. const SkIRect clipRect = SkIRect::MakeWH(maskRect.width(), maskRect.height()); SkScalar xformedSigma = this->computeXformedSigma(ctm); SkASSERT(xformedSigma > 0); // If we're doing a normal blur, we can clobber the pathTexture in the // gaussianBlur. Otherwise, we need to save it for later compositing. bool isNormalBlur = (kNormal_SkBlurStyle == fBlurStyle); sk_sp renderTargetContext( SkGpuBlurUtils::GaussianBlur(context, srcProxy, nullptr, clipRect, SkIRect::EmptyIRect(), xformedSigma, xformedSigma, GrTextureDomain::kIgnore_Mode, kPremul_SkAlphaType)); if (!renderTargetContext) { return nullptr; } if (!isNormalBlur) { GrPaint paint; // Blend pathTexture over blurTexture. paint.addCoverageFragmentProcessor(GrSimpleTextureEffect::Make(std::move(srcProxy), SkMatrix::I())); if (kInner_SkBlurStyle == fBlurStyle) { // inner: dst = dst * src paint.setCoverageSetOpXPFactory(SkRegion::kIntersect_Op); } else if (kSolid_SkBlurStyle == fBlurStyle) { // solid: dst = src + dst - src * dst // = src + (1 - src) * dst paint.setCoverageSetOpXPFactory(SkRegion::kUnion_Op); } else if (kOuter_SkBlurStyle == fBlurStyle) { // outer: dst = dst * (1 - src) // = 0 * src + (1 - src) * dst paint.setCoverageSetOpXPFactory(SkRegion::kDifference_Op); } else { paint.setCoverageSetOpXPFactory(SkRegion::kReplace_Op); } renderTargetContext->drawRect(GrNoClip(), std::move(paint), GrAA::kNo, SkMatrix::I(), SkRect::Make(clipRect)); } return renderTargetContext->asTextureProxyRef(); } #endif // SK_SUPPORT_GPU void sk_register_blur_maskfilter_createproc() { SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkBlurMaskFilterImpl) } sk_sp SkMaskFilter::MakeBlur(SkBlurStyle style, SkScalar sigma, const SkRect& occluder, bool respectCTM) { if (SkScalarIsFinite(sigma) && sigma > 0) { return sk_sp(new SkBlurMaskFilterImpl(sigma, style, occluder, respectCTM)); } return nullptr; } sk_sp SkMaskFilter::MakeBlur(SkBlurStyle style, SkScalar sigma, bool respectCTM) { return MakeBlur(style, sigma, SkRect::MakeEmpty(), respectCTM); }