/* * Copyright 2011 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkAutoPixmapStorage.h" #include "SkColorPriv.h" #include "SkGpuBlurUtils.h" #include "SkOpts.h" #include "SkReadBuffer.h" #include "SkSpecialImage.h" #include "SkWriteBuffer.h" #if SK_SUPPORT_GPU #include "GrContext.h" #include "GrTextureProxy.h" #include "SkGr.h" #endif class SkBlurImageFilterImpl : public SkImageFilter { public: SkBlurImageFilterImpl(SkScalar sigmaX, SkScalar sigmaY, sk_sp input, const CropRect* cropRect); SkRect computeFastBounds(const SkRect&) const override; SK_TO_STRING_OVERRIDE() SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkBlurImageFilterImpl) protected: void flatten(SkWriteBuffer&) const override; sk_sp onFilterImage(SkSpecialImage* source, const Context&, SkIPoint* offset) const override; sk_sp onMakeColorSpace(SkColorSpaceXformer*) const override; SkIRect onFilterNodeBounds(const SkIRect& src, const SkMatrix&, MapDirection) const override; private: SkSize fSigma; typedef SkImageFilter INHERITED; friend class SkImageFilter; }; SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkImageFilter) SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkBlurImageFilterImpl) SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END /////////////////////////////////////////////////////////////////////////////// sk_sp SkImageFilter::MakeBlur(SkScalar sigmaX, SkScalar sigmaY, sk_sp input, const CropRect* cropRect) { if (0 == sigmaX && 0 == sigmaY && !cropRect) { return input; } return sk_sp(new SkBlurImageFilterImpl(sigmaX, sigmaY, input, cropRect)); } // This rather arbitrary-looking value results in a maximum box blur kernel size // of 1000 pixels on the raster path, which matches the WebKit and Firefox // implementations. Since the GPU path does not compute a box blur, putting // the limit on sigma ensures consistent behaviour between the GPU and // raster paths. #define MAX_SIGMA SkIntToScalar(532) static SkVector map_sigma(const SkSize& localSigma, const SkMatrix& ctm) { SkVector sigma = SkVector::Make(localSigma.width(), localSigma.height()); ctm.mapVectors(&sigma, 1); sigma.fX = SkMinScalar(SkScalarAbs(sigma.fX), MAX_SIGMA); sigma.fY = SkMinScalar(SkScalarAbs(sigma.fY), MAX_SIGMA); return sigma; } SkBlurImageFilterImpl::SkBlurImageFilterImpl( SkScalar sigmaX, SkScalar sigmaY, sk_sp input, const CropRect* cropRect) : INHERITED(&input, 1, cropRect), fSigma{sigmaX, sigmaY} {} sk_sp SkBlurImageFilterImpl::CreateProc(SkReadBuffer& buffer) { SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 1); SkScalar sigmaX = buffer.readScalar(); SkScalar sigmaY = buffer.readScalar(); return SkImageFilter::MakeBlur(sigmaX, sigmaY, common.getInput(0), &common.cropRect()); } void SkBlurImageFilterImpl::flatten(SkWriteBuffer& buffer) const { this->INHERITED::flatten(buffer); buffer.writeScalar(fSigma.fWidth); buffer.writeScalar(fSigma.fHeight); } static void get_box3_params(SkScalar s, int *kernelSize, int* kernelSize3, int *lowOffset, int *highOffset) { float pi = SkScalarToFloat(SK_ScalarPI); int d = static_cast(floorf(SkScalarToFloat(s) * 3.0f * sqrtf(2.0f * pi) / 4.0f + 0.5f)); *kernelSize = d; if (d % 2 == 1) { *lowOffset = *highOffset = (d - 1) / 2; *kernelSize3 = d; } else { *highOffset = d / 2; *lowOffset = *highOffset - 1; *kernelSize3 = d + 1; } } sk_sp SkBlurImageFilterImpl::onFilterImage(SkSpecialImage* source, const Context& ctx, SkIPoint* offset) const { SkIPoint inputOffset = SkIPoint::Make(0, 0); sk_sp input(this->filterInput(0, source, ctx, &inputOffset)); if (!input) { return nullptr; } SkIRect inputBounds = SkIRect::MakeXYWH(inputOffset.fX, inputOffset.fY, input->width(), input->height()); SkIRect dstBounds; if (!this->applyCropRect(this->mapContext(ctx), inputBounds, &dstBounds)) { return nullptr; } if (!inputBounds.intersect(dstBounds)) { return nullptr; } const SkVector sigma = map_sigma(fSigma, ctx.ctm()); #if SK_SUPPORT_GPU if (source->isTextureBacked()) { GrContext* context = source->getContext(); // Ensure the input is in the destination's gamut. This saves us from having to do the // xform during the filter itself. input = ImageToColorSpace(input.get(), ctx.outputProperties()); sk_sp inputTexture(input->asTextureProxyRef(context)); if (!inputTexture) { return nullptr; } if (0 == sigma.x() && 0 == sigma.y()) { offset->fX = inputBounds.x(); offset->fY = inputBounds.y(); return input->makeSubset(inputBounds.makeOffset(-inputOffset.x(), -inputOffset.y())); } offset->fX = dstBounds.fLeft; offset->fY = dstBounds.fTop; inputBounds.offset(-inputOffset); dstBounds.offset(-inputOffset); // Typically, we would create the RTC with the output's color space (from ctx), but we // always blur in the PixelConfig of the *input*. Those might not be compatible (if they // have different transfer functions). We've already guaranteed that those color spaces // have the same gamut, so in this case, we do everything in the input's color space. sk_sp renderTargetContext(SkGpuBlurUtils::GaussianBlur( context, std::move(inputTexture), sk_ref_sp(input->getColorSpace()), dstBounds, &inputBounds, sigma.x(), sigma.y())); if (!renderTargetContext) { return nullptr; } return SkSpecialImage::MakeDeferredFromGpu(context, SkIRect::MakeWH(dstBounds.width(), dstBounds.height()), kNeedNewImageUniqueID_SpecialImage, renderTargetContext->asTextureProxyRef(), renderTargetContext->refColorSpace(), &source->props()); } #endif int kernelSizeX, kernelSizeX3, lowOffsetX, highOffsetX; int kernelSizeY, kernelSizeY3, lowOffsetY, highOffsetY; get_box3_params(sigma.x(), &kernelSizeX, &kernelSizeX3, &lowOffsetX, &highOffsetX); get_box3_params(sigma.y(), &kernelSizeY, &kernelSizeY3, &lowOffsetY, &highOffsetY); if (kernelSizeX < 0 || kernelSizeY < 0) { return nullptr; } if (kernelSizeX == 0 && kernelSizeY == 0) { offset->fX = inputBounds.x(); offset->fY = inputBounds.y(); return input->makeSubset(inputBounds.makeOffset(-inputOffset.x(), -inputOffset.y())); } SkBitmap inputBM; if (!input->getROPixels(&inputBM)) { return nullptr; } if (inputBM.colorType() != kN32_SkColorType) { return nullptr; } SkImageInfo info = SkImageInfo::Make(dstBounds.width(), dstBounds.height(), inputBM.colorType(), inputBM.alphaType()); SkBitmap tmp, dst; if (!tmp.tryAllocPixels(info) || !dst.tryAllocPixels(info)) { return nullptr; } offset->fX = dstBounds.fLeft; offset->fY = dstBounds.fTop; SkPMColor* t = tmp.getAddr32(0, 0); SkPMColor* d = dst.getAddr32(0, 0); int w = dstBounds.width(), h = dstBounds.height(); const SkPMColor* s = inputBM.getAddr32(inputBounds.x() - inputOffset.x(), inputBounds.y() - inputOffset.y()); inputBounds.offset(-dstBounds.x(), -dstBounds.y()); dstBounds.offset(-dstBounds.x(), -dstBounds.y()); SkIRect inputBoundsT = SkIRect::MakeLTRB(inputBounds.top(), inputBounds.left(), inputBounds.bottom(), inputBounds.right()); SkIRect dstBoundsT = SkIRect::MakeWH(dstBounds.height(), dstBounds.width()); int sw = int(inputBM.rowBytes() >> 2); /** * * In order to make memory accesses cache-friendly, we reorder the passes to * use contiguous memory reads wherever possible. * * For example, the 6 passes of the X-and-Y blur case are rewritten as * follows. Instead of 3 passes in X and 3 passes in Y, we perform * 2 passes in X, 1 pass in X transposed to Y on write, 2 passes in X, * then 1 pass in X transposed to Y on write. * * +----+ +----+ +----+ +---+ +---+ +---+ +----+ * + AB + ----> | AB | ----> | AB | -----> | A | ----> | A | ----> | A | -----> | AB | * +----+ blurX +----+ blurX +----+ blurXY | B | blurX | B | blurX | B | blurXY +----+ * +---+ +---+ +---+ * * In this way, two of the y-blurs become x-blurs applied to transposed * images, and all memory reads are contiguous. */ if (kernelSizeX > 0 && kernelSizeY > 0) { SkOpts::box_blur_xx(s, sw, inputBounds, t, kernelSizeX, lowOffsetX, highOffsetX, w, h); SkOpts::box_blur_xx(t, w, dstBounds, d, kernelSizeX, highOffsetX, lowOffsetX, w, h); SkOpts::box_blur_xy(d, w, dstBounds, t, kernelSizeX3, highOffsetX, highOffsetX, w, h); SkOpts::box_blur_xx(t, h, dstBoundsT, d, kernelSizeY, lowOffsetY, highOffsetY, h, w); SkOpts::box_blur_xx(d, h, dstBoundsT, t, kernelSizeY, highOffsetY, lowOffsetY, h, w); SkOpts::box_blur_xy(t, h, dstBoundsT, d, kernelSizeY3, highOffsetY, highOffsetY, h, w); } else if (kernelSizeX > 0) { SkOpts::box_blur_xx(s, sw, inputBounds, d, kernelSizeX, lowOffsetX, highOffsetX, w, h); SkOpts::box_blur_xx(d, w, dstBounds, t, kernelSizeX, highOffsetX, lowOffsetX, w, h); SkOpts::box_blur_xx(t, w, dstBounds, d, kernelSizeX3, highOffsetX, highOffsetX, w, h); } else if (kernelSizeY > 0) { SkOpts::box_blur_yx(s, sw, inputBoundsT, d, kernelSizeY, lowOffsetY, highOffsetY, h, w); SkOpts::box_blur_xx(d, h, dstBoundsT, t, kernelSizeY, highOffsetY, lowOffsetY, h, w); SkOpts::box_blur_xy(t, h, dstBoundsT, d, kernelSizeY3, highOffsetY, highOffsetY, h, w); } return SkSpecialImage::MakeFromRaster(SkIRect::MakeWH(dstBounds.width(), dstBounds.height()), dst, &source->props()); } sk_sp SkBlurImageFilterImpl::onMakeColorSpace(SkColorSpaceXformer* xformer) const { SkASSERT(1 == this->countInputs()); if (!this->getInput(0)) { return sk_ref_sp(const_cast(this)); } sk_sp input = this->getInput(0)->makeColorSpace(xformer); return SkImageFilter::MakeBlur(fSigma.width(), fSigma.height(), std::move(input), this->getCropRectIfSet()); } SkRect SkBlurImageFilterImpl::computeFastBounds(const SkRect& src) const { SkRect bounds = this->getInput(0) ? this->getInput(0)->computeFastBounds(src) : src; bounds.outset(fSigma.width() * 3, fSigma.height() * 3); return bounds; } SkIRect SkBlurImageFilterImpl::onFilterNodeBounds(const SkIRect& src, const SkMatrix& ctm, MapDirection) const { SkVector sigma = map_sigma(fSigma, ctm); return src.makeOutset(SkScalarCeilToInt(sigma.x() * 3), SkScalarCeilToInt(sigma.y() * 3)); } #ifndef SK_IGNORE_TO_STRING void SkBlurImageFilterImpl::toString(SkString* str) const { str->appendf("SkBlurImageFilterImpl: ("); str->appendf("sigma: (%f, %f) input (", fSigma.fWidth, fSigma.fHeight); if (this->getInput(0)) { this->getInput(0)->toString(str); } str->append("))"); } #endif