/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBlitRow.h" #include "SkCoreBlitters.h" #include "SkColorPriv.h" #include "SkDither.h" #include "SkShader.h" #include "SkTemplatesPriv.h" #include "SkUtils.h" #include "SkXfermode.h" #if defined(__ARM_HAVE_NEON) && defined(SK_CPU_LENDIAN) #define SK_USE_NEON #include #else // if we don't have neon, then our black blitter is worth the extra code #define USE_BLACK_BLITTER #endif void sk_dither_memset16(uint16_t dst[], uint16_t value, uint16_t other, int count) { if (count > 0) { // see if we need to write one short before we can cast to an 4byte ptr // (we do this subtract rather than (unsigned)dst so we don't get warnings // on 64bit machines) if (((char*)dst - (char*)0) & 2) { *dst++ = value; count -= 1; SkTSwap(value, other); } // fast way to set [value,other] pairs #ifdef SK_CPU_BENDIAN sk_memset32((uint32_t*)dst, (value << 16) | other, count >> 1); #else sk_memset32((uint32_t*)dst, (other << 16) | value, count >> 1); #endif if (count & 1) { dst[count - 1] = value; } } } /////////////////////////////////////////////////////////////////////////////// class SkRGB16_Blitter : public SkRasterBlitter { public: SkRGB16_Blitter(const SkBitmap& device, const SkPaint& paint); virtual void blitH(int x, int y, int width); virtual void blitAntiH(int x, int y, const SkAlpha* antialias, const int16_t* runs); virtual void blitV(int x, int y, int height, SkAlpha alpha); virtual void blitRect(int x, int y, int width, int height); virtual void blitMask(const SkMask&, const SkIRect&); virtual const SkBitmap* justAnOpaqueColor(uint32_t*); protected: SkPMColor fSrcColor32; uint32_t fExpandedRaw16; unsigned fScale; uint16_t fColor16; // already scaled by fScale uint16_t fRawColor16; // unscaled uint16_t fRawDither16; // unscaled SkBool8 fDoDither; // illegal SkRGB16_Blitter& operator=(const SkRGB16_Blitter&); typedef SkRasterBlitter INHERITED; }; class SkRGB16_Opaque_Blitter : public SkRGB16_Blitter { public: SkRGB16_Opaque_Blitter(const SkBitmap& device, const SkPaint& paint); virtual void blitH(int x, int y, int width); virtual void blitAntiH(int x, int y, const SkAlpha* antialias, const int16_t* runs); virtual void blitV(int x, int y, int height, SkAlpha alpha); virtual void blitRect(int x, int y, int width, int height); virtual void blitMask(const SkMask&, const SkIRect&); private: typedef SkRGB16_Blitter INHERITED; }; #ifdef USE_BLACK_BLITTER class SkRGB16_Black_Blitter : public SkRGB16_Opaque_Blitter { public: SkRGB16_Black_Blitter(const SkBitmap& device, const SkPaint& paint); virtual void blitMask(const SkMask&, const SkIRect&); virtual void blitAntiH(int x, int y, const SkAlpha* antialias, const int16_t* runs); private: typedef SkRGB16_Opaque_Blitter INHERITED; }; #endif class SkRGB16_Shader_Blitter : public SkShaderBlitter { public: SkRGB16_Shader_Blitter(const SkBitmap& device, const SkPaint& paint); virtual ~SkRGB16_Shader_Blitter(); virtual void blitH(int x, int y, int width); virtual void blitAntiH(int x, int y, const SkAlpha* antialias, const int16_t* runs); virtual void blitRect(int x, int y, int width, int height); protected: SkPMColor* fBuffer; SkBlitRow::Proc fOpaqueProc; SkBlitRow::Proc fAlphaProc; private: // illegal SkRGB16_Shader_Blitter& operator=(const SkRGB16_Shader_Blitter&); typedef SkShaderBlitter INHERITED; }; // used only if the shader can perform shadSpan16 class SkRGB16_Shader16_Blitter : public SkRGB16_Shader_Blitter { public: SkRGB16_Shader16_Blitter(const SkBitmap& device, const SkPaint& paint); virtual void blitH(int x, int y, int width); virtual void blitAntiH(int x, int y, const SkAlpha* antialias, const int16_t* runs); virtual void blitRect(int x, int y, int width, int height); private: typedef SkRGB16_Shader_Blitter INHERITED; }; class SkRGB16_Shader_Xfermode_Blitter : public SkShaderBlitter { public: SkRGB16_Shader_Xfermode_Blitter(const SkBitmap& device, const SkPaint& paint); virtual ~SkRGB16_Shader_Xfermode_Blitter(); virtual void blitH(int x, int y, int width); virtual void blitAntiH(int x, int y, const SkAlpha* antialias, const int16_t* runs); private: SkXfermode* fXfermode; SkPMColor* fBuffer; uint8_t* fAAExpand; // illegal SkRGB16_Shader_Xfermode_Blitter& operator=(const SkRGB16_Shader_Xfermode_Blitter&); typedef SkShaderBlitter INHERITED; }; /////////////////////////////////////////////////////////////////////////////// #ifdef USE_BLACK_BLITTER SkRGB16_Black_Blitter::SkRGB16_Black_Blitter(const SkBitmap& device, const SkPaint& paint) : INHERITED(device, paint) { SkASSERT(paint.getShader() == NULL); SkASSERT(paint.getColorFilter() == NULL); SkASSERT(paint.getXfermode() == NULL); SkASSERT(paint.getColor() == SK_ColorBLACK); } #if 1 #define black_8_pixels(mask, dst) \ do { \ if (mask & 0x80) dst[0] = 0; \ if (mask & 0x40) dst[1] = 0; \ if (mask & 0x20) dst[2] = 0; \ if (mask & 0x10) dst[3] = 0; \ if (mask & 0x08) dst[4] = 0; \ if (mask & 0x04) dst[5] = 0; \ if (mask & 0x02) dst[6] = 0; \ if (mask & 0x01) dst[7] = 0; \ } while (0) #else static inline black_8_pixels(U8CPU mask, uint16_t dst[]) { if (mask & 0x80) dst[0] = 0; if (mask & 0x40) dst[1] = 0; if (mask & 0x20) dst[2] = 0; if (mask & 0x10) dst[3] = 0; if (mask & 0x08) dst[4] = 0; if (mask & 0x04) dst[5] = 0; if (mask & 0x02) dst[6] = 0; if (mask & 0x01) dst[7] = 0; } #endif #define SK_BLITBWMASK_NAME SkRGB16_Black_BlitBW #define SK_BLITBWMASK_ARGS #define SK_BLITBWMASK_BLIT8(mask, dst) black_8_pixels(mask, dst) #define SK_BLITBWMASK_GETADDR getAddr16 #define SK_BLITBWMASK_DEVTYPE uint16_t #include "SkBlitBWMaskTemplate.h" void SkRGB16_Black_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) { if (mask.fFormat == SkMask::kBW_Format) { SkRGB16_Black_BlitBW(fDevice, mask, clip); } else { uint16_t* SK_RESTRICT device = fDevice.getAddr16(clip.fLeft, clip.fTop); const uint8_t* SK_RESTRICT alpha = mask.getAddr8(clip.fLeft, clip.fTop); unsigned width = clip.width(); unsigned height = clip.height(); unsigned deviceRB = fDevice.rowBytes() - (width << 1); unsigned maskRB = mask.fRowBytes - width; SkASSERT((int)height > 0); SkASSERT((int)width > 0); SkASSERT((int)deviceRB >= 0); SkASSERT((int)maskRB >= 0); do { unsigned w = width; do { unsigned aa = *alpha++; *device = SkAlphaMulRGB16(*device, SkAlpha255To256(255 - aa)); device += 1; } while (--w != 0); device = (uint16_t*)((char*)device + deviceRB); alpha += maskRB; } while (--height != 0); } } void SkRGB16_Black_Blitter::blitAntiH(int x, int y, const SkAlpha* SK_RESTRICT antialias, const int16_t* SK_RESTRICT runs) { uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y); for (;;) { int count = runs[0]; SkASSERT(count >= 0); if (count <= 0) { return; } runs += count; unsigned aa = antialias[0]; antialias += count; if (aa) { if (aa == 255) { memset(device, 0, count << 1); } else { aa = SkAlpha255To256(255 - aa); do { *device = SkAlphaMulRGB16(*device, aa); device += 1; } while (--count != 0); continue; } } device += count; } } #endif /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// SkRGB16_Opaque_Blitter::SkRGB16_Opaque_Blitter(const SkBitmap& device, const SkPaint& paint) : INHERITED(device, paint) {} void SkRGB16_Opaque_Blitter::blitH(int x, int y, int width) { SkASSERT(width > 0); SkASSERT(x + width <= fDevice.width()); uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y); uint16_t srcColor = fColor16; SkASSERT(fRawColor16 == srcColor); if (fDoDither) { uint16_t ditherColor = fRawDither16; if ((x ^ y) & 1) { SkTSwap(ditherColor, srcColor); } sk_dither_memset16(device, srcColor, ditherColor, width); } else { sk_memset16(device, srcColor, width); } } // return 1 or 0 from a bool static inline int Bool2Int(int value) { return !!value; } void SkRGB16_Opaque_Blitter::blitAntiH(int x, int y, const SkAlpha* SK_RESTRICT antialias, const int16_t* SK_RESTRICT runs) { uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y); uint16_t srcColor = fRawColor16; uint32_t srcExpanded = fExpandedRaw16; int ditherInt = Bool2Int(fDoDither); uint16_t ditherColor = fRawDither16; // if we have no dithering, this will always fail if ((x ^ y) & ditherInt) { SkTSwap(ditherColor, srcColor); } for (;;) { int count = runs[0]; SkASSERT(count >= 0); if (count <= 0) { return; } runs += count; unsigned aa = antialias[0]; antialias += count; if (aa) { if (aa == 255) { if (ditherInt) { sk_dither_memset16(device, srcColor, ditherColor, count); } else { sk_memset16(device, srcColor, count); } } else { // TODO: respect fDoDither unsigned scale5 = SkAlpha255To256(aa) >> 3; uint32_t src32 = srcExpanded * scale5; scale5 = 32 - scale5; // now we can use it on the device int n = count; do { uint32_t dst32 = SkExpand_rgb_16(*device) * scale5; *device++ = SkCompact_rgb_16((src32 + dst32) >> 5); } while (--n != 0); goto DONE; } } device += count; DONE: // if we have no dithering, this will always fail if (count & ditherInt) { SkTSwap(ditherColor, srcColor); } } } #define solid_8_pixels(mask, dst, color) \ do { \ if (mask & 0x80) dst[0] = color; \ if (mask & 0x40) dst[1] = color; \ if (mask & 0x20) dst[2] = color; \ if (mask & 0x10) dst[3] = color; \ if (mask & 0x08) dst[4] = color; \ if (mask & 0x04) dst[5] = color; \ if (mask & 0x02) dst[6] = color; \ if (mask & 0x01) dst[7] = color; \ } while (0) #define SK_BLITBWMASK_NAME SkRGB16_BlitBW #define SK_BLITBWMASK_ARGS , uint16_t color #define SK_BLITBWMASK_BLIT8(mask, dst) solid_8_pixels(mask, dst, color) #define SK_BLITBWMASK_GETADDR getAddr16 #define SK_BLITBWMASK_DEVTYPE uint16_t #include "SkBlitBWMaskTemplate.h" static U16CPU blend_compact(uint32_t src32, uint32_t dst32, unsigned scale5) { return SkCompact_rgb_16(dst32 + ((src32 - dst32) * scale5 >> 5)); } void SkRGB16_Opaque_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) { if (mask.fFormat == SkMask::kBW_Format) { SkRGB16_BlitBW(fDevice, mask, clip, fColor16); return; } uint16_t* SK_RESTRICT device = fDevice.getAddr16(clip.fLeft, clip.fTop); const uint8_t* SK_RESTRICT alpha = mask.getAddr8(clip.fLeft, clip.fTop); int width = clip.width(); int height = clip.height(); unsigned deviceRB = fDevice.rowBytes() - (width << 1); unsigned maskRB = mask.fRowBytes - width; uint32_t expanded32 = fExpandedRaw16; #ifdef SK_USE_NEON #define UNROLL 8 do { int w = width; if (w >= UNROLL) { uint32x4_t color; /* can use same one */ uint32x4_t dev_lo, dev_hi; uint32x4_t t1, t2; uint32x4_t wn1, wn2; uint16x4_t odev_lo, odev_hi; uint16x4_t alpha_lo, alpha_hi; uint16x8_t alpha_full; color = vdupq_n_u32(expanded32); do { /* alpha is 8x8, widen and split to get pair of 16x4's */ alpha_full = vmovl_u8(vld1_u8(alpha)); alpha_full = vaddq_u16(alpha_full, vshrq_n_u16(alpha_full,7)); alpha_full = vshrq_n_u16(alpha_full, 3); alpha_lo = vget_low_u16(alpha_full); alpha_hi = vget_high_u16(alpha_full); dev_lo = vmovl_u16(vld1_u16(device)); dev_hi = vmovl_u16(vld1_u16(device+4)); /* unpack in 32 bits */ dev_lo = vorrq_u32( vandq_u32(dev_lo, vdupq_n_u32(0x0000F81F)), vshlq_n_u32(vandq_u32(dev_lo, vdupq_n_u32(0x000007E0)), 16) ); dev_hi = vorrq_u32( vandq_u32(dev_hi, vdupq_n_u32(0x0000F81F)), vshlq_n_u32(vandq_u32(dev_hi, vdupq_n_u32(0x000007E0)), 16) ); /* blend the two */ t1 = vmulq_u32(vsubq_u32(color, dev_lo), vmovl_u16(alpha_lo)); t1 = vshrq_n_u32(t1, 5); dev_lo = vaddq_u32(dev_lo, t1); t1 = vmulq_u32(vsubq_u32(color, dev_hi), vmovl_u16(alpha_hi)); t1 = vshrq_n_u32(t1, 5); dev_hi = vaddq_u32(dev_hi, t1); /* re-compact and store */ wn1 = vandq_u32(dev_lo, vdupq_n_u32(0x0000F81F)), wn2 = vshrq_n_u32(dev_lo, 16); wn2 = vandq_u32(wn2, vdupq_n_u32(0x000007E0)); odev_lo = vmovn_u32(vorrq_u32(wn1, wn2)); wn1 = vandq_u32(dev_hi, vdupq_n_u32(0x0000F81F)), wn2 = vshrq_n_u32(dev_hi, 16); wn2 = vandq_u32(wn2, vdupq_n_u32(0x000007E0)); odev_hi = vmovn_u32(vorrq_u32(wn1, wn2)); vst1_u16(device, odev_lo); vst1_u16(device+4, odev_hi); device += UNROLL; alpha += UNROLL; w -= UNROLL; } while (w >= UNROLL); } /* residuals (which is everything if we have no neon) */ while (w > 0) { *device = blend_compact(expanded32, SkExpand_rgb_16(*device), SkAlpha255To256(*alpha++) >> 3); device += 1; --w; } device = (uint16_t*)((char*)device + deviceRB); alpha += maskRB; } while (--height != 0); #undef UNROLL #else // non-neon code do { int w = width; do { *device = blend_compact(expanded32, SkExpand_rgb_16(*device), SkAlpha255To256(*alpha++) >> 3); device += 1; } while (--w != 0); device = (uint16_t*)((char*)device + deviceRB); alpha += maskRB; } while (--height != 0); #endif } void SkRGB16_Opaque_Blitter::blitV(int x, int y, int height, SkAlpha alpha) { uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y); unsigned deviceRB = fDevice.rowBytes(); // TODO: respect fDoDither unsigned scale5 = SkAlpha255To256(alpha) >> 3; uint32_t src32 = fExpandedRaw16 * scale5; scale5 = 32 - scale5; do { uint32_t dst32 = SkExpand_rgb_16(*device) * scale5; *device = SkCompact_rgb_16((src32 + dst32) >> 5); device = (uint16_t*)((char*)device + deviceRB); } while (--height != 0); } void SkRGB16_Opaque_Blitter::blitRect(int x, int y, int width, int height) { SkASSERT(x + width <= fDevice.width() && y + height <= fDevice.height()); uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y); unsigned deviceRB = fDevice.rowBytes(); uint16_t color16 = fColor16; if (fDoDither) { uint16_t ditherColor = fRawDither16; if ((x ^ y) & 1) { SkTSwap(ditherColor, color16); } while (--height >= 0) { sk_dither_memset16(device, color16, ditherColor, width); SkTSwap(ditherColor, color16); device = (uint16_t*)((char*)device + deviceRB); } } else { // no dither while (--height >= 0) { sk_memset16(device, color16, width); device = (uint16_t*)((char*)device + deviceRB); } } } /////////////////////////////////////////////////////////////////////////////// SkRGB16_Blitter::SkRGB16_Blitter(const SkBitmap& device, const SkPaint& paint) : INHERITED(device) { SkColor color = paint.getColor(); fSrcColor32 = SkPreMultiplyColor(color); fScale = SkAlpha255To256(SkColorGetA(color)); int r = SkColorGetR(color); int g = SkColorGetG(color); int b = SkColorGetB(color); fRawColor16 = fRawDither16 = SkPack888ToRGB16(r, g, b); // if we're dithered, use fRawDither16 to hold that. if ((fDoDither = paint.isDither()) != false) { fRawDither16 = SkDitherPack888ToRGB16(r, g, b); } fExpandedRaw16 = SkExpand_rgb_16(fRawColor16); fColor16 = SkPackRGB16( SkAlphaMul(r, fScale) >> (8 - SK_R16_BITS), SkAlphaMul(g, fScale) >> (8 - SK_G16_BITS), SkAlphaMul(b, fScale) >> (8 - SK_B16_BITS)); } const SkBitmap* SkRGB16_Blitter::justAnOpaqueColor(uint32_t* value) { if (!fDoDither && 256 == fScale) { *value = fRawColor16; return &fDevice; } return NULL; } static uint32_t pmcolor_to_expand16(SkPMColor c) { unsigned r = SkGetPackedR32(c); unsigned g = SkGetPackedG32(c); unsigned b = SkGetPackedB32(c); return (g << 24) | (r << 13) | (b << 2); } static inline void blend32_16_row(SkPMColor src, uint16_t dst[], int count) { SkASSERT(count > 0); uint32_t src_expand = pmcolor_to_expand16(src); unsigned scale = SkAlpha255To256(0xFF - SkGetPackedA32(src)) >> 3; do { uint32_t dst_expand = SkExpand_rgb_16(*dst) * scale; *dst = SkCompact_rgb_16((src_expand + dst_expand) >> 5); dst += 1; } while (--count != 0); } void SkRGB16_Blitter::blitH(int x, int y, int width) { SkASSERT(width > 0); SkASSERT(x + width <= fDevice.width()); uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y); // TODO: respect fDoDither blend32_16_row(fSrcColor32, device, width); } void SkRGB16_Blitter::blitAntiH(int x, int y, const SkAlpha* SK_RESTRICT antialias, const int16_t* SK_RESTRICT runs) { uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y); uint32_t srcExpanded = fExpandedRaw16; unsigned scale = fScale; // TODO: respect fDoDither for (;;) { int count = runs[0]; SkASSERT(count >= 0); if (count <= 0) { return; } runs += count; unsigned aa = antialias[0]; antialias += count; if (aa) { unsigned scale5 = SkAlpha255To256(aa) * scale >> (8 + 3); uint32_t src32 = srcExpanded * scale5; scale5 = 32 - scale5; do { uint32_t dst32 = SkExpand_rgb_16(*device) * scale5; *device++ = SkCompact_rgb_16((src32 + dst32) >> 5); } while (--count != 0); continue; } device += count; } } static inline void blend_8_pixels(U8CPU bw, uint16_t dst[], unsigned dst_scale, U16CPU srcColor) { if (bw & 0x80) dst[0] = srcColor + SkAlphaMulRGB16(dst[0], dst_scale); if (bw & 0x40) dst[1] = srcColor + SkAlphaMulRGB16(dst[1], dst_scale); if (bw & 0x20) dst[2] = srcColor + SkAlphaMulRGB16(dst[2], dst_scale); if (bw & 0x10) dst[3] = srcColor + SkAlphaMulRGB16(dst[3], dst_scale); if (bw & 0x08) dst[4] = srcColor + SkAlphaMulRGB16(dst[4], dst_scale); if (bw & 0x04) dst[5] = srcColor + SkAlphaMulRGB16(dst[5], dst_scale); if (bw & 0x02) dst[6] = srcColor + SkAlphaMulRGB16(dst[6], dst_scale); if (bw & 0x01) dst[7] = srcColor + SkAlphaMulRGB16(dst[7], dst_scale); } #define SK_BLITBWMASK_NAME SkRGB16_BlendBW #define SK_BLITBWMASK_ARGS , unsigned dst_scale, U16CPU src_color #define SK_BLITBWMASK_BLIT8(mask, dst) blend_8_pixels(mask, dst, dst_scale, src_color) #define SK_BLITBWMASK_GETADDR getAddr16 #define SK_BLITBWMASK_DEVTYPE uint16_t #include "SkBlitBWMaskTemplate.h" void SkRGB16_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) { if (mask.fFormat == SkMask::kBW_Format) { SkRGB16_BlendBW(fDevice, mask, clip, 256 - fScale, fColor16); return; } uint16_t* SK_RESTRICT device = fDevice.getAddr16(clip.fLeft, clip.fTop); const uint8_t* SK_RESTRICT alpha = mask.getAddr8(clip.fLeft, clip.fTop); int width = clip.width(); int height = clip.height(); unsigned deviceRB = fDevice.rowBytes() - (width << 1); unsigned maskRB = mask.fRowBytes - width; uint32_t color32 = fExpandedRaw16; unsigned scale256 = fScale; do { int w = width; do { unsigned aa = *alpha++; unsigned scale = SkAlpha255To256(aa) * scale256 >> (8 + 3); uint32_t src32 = color32 * scale; uint32_t dst32 = SkExpand_rgb_16(*device) * (32 - scale); *device++ = SkCompact_rgb_16((src32 + dst32) >> 5); } while (--w != 0); device = (uint16_t*)((char*)device + deviceRB); alpha += maskRB; } while (--height != 0); } void SkRGB16_Blitter::blitV(int x, int y, int height, SkAlpha alpha) { uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y); unsigned deviceRB = fDevice.rowBytes(); // TODO: respect fDoDither unsigned scale5 = SkAlpha255To256(alpha) * fScale >> (8 + 3); uint32_t src32 = fExpandedRaw16 * scale5; scale5 = 32 - scale5; do { uint32_t dst32 = SkExpand_rgb_16(*device) * scale5; *device = SkCompact_rgb_16((src32 + dst32) >> 5); device = (uint16_t*)((char*)device + deviceRB); } while (--height != 0); } void SkRGB16_Blitter::blitRect(int x, int y, int width, int height) { SkASSERT(x + width <= fDevice.width() && y + height <= fDevice.height()); uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y); unsigned deviceRB = fDevice.rowBytes(); SkPMColor src32 = fSrcColor32; while (--height >= 0) { blend32_16_row(src32, device, width); device = (uint16_t*)((char*)device + deviceRB); } } /////////////////////////////////////////////////////////////////////////////// SkRGB16_Shader16_Blitter::SkRGB16_Shader16_Blitter(const SkBitmap& device, const SkPaint& paint) : SkRGB16_Shader_Blitter(device, paint) { SkASSERT(SkShader::CanCallShadeSpan16(fShaderFlags)); } void SkRGB16_Shader16_Blitter::blitH(int x, int y, int width) { SkASSERT(x + width <= fDevice.width()); uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y); SkShader* shader = fShader; int alpha = shader->getSpan16Alpha(); if (0xFF == alpha) { shader->shadeSpan16(x, y, device, width); } else { uint16_t* span16 = (uint16_t*)fBuffer; shader->shadeSpan16(x, y, span16, width); SkBlendRGB16(span16, device, SkAlpha255To256(alpha), width); } } void SkRGB16_Shader16_Blitter::blitRect(int x, int y, int width, int height) { SkShader* shader = fShader; uint16_t* dst = fDevice.getAddr16(x, y); size_t dstRB = fDevice.rowBytes(); int alpha = shader->getSpan16Alpha(); if (0xFF == alpha) { if (fShaderFlags & SkShader::kConstInY16_Flag) { // have the shader blit directly into the device the first time shader->shadeSpan16(x, y, dst, width); // and now just memcpy that line on the subsequent lines if (--height > 0) { const uint16_t* orig = dst; do { dst = (uint16_t*)((char*)dst + dstRB); memcpy(dst, orig, width << 1); } while (--height); } } else { // need to call shadeSpan16 for every line do { shader->shadeSpan16(x, y, dst, width); y += 1; dst = (uint16_t*)((char*)dst + dstRB); } while (--height); } } else { int scale = SkAlpha255To256(alpha); uint16_t* span16 = (uint16_t*)fBuffer; if (fShaderFlags & SkShader::kConstInY16_Flag) { shader->shadeSpan16(x, y, span16, width); do { SkBlendRGB16(span16, dst, scale, width); dst = (uint16_t*)((char*)dst + dstRB); } while (--height); } else { do { shader->shadeSpan16(x, y, span16, width); SkBlendRGB16(span16, dst, scale, width); y += 1; dst = (uint16_t*)((char*)dst + dstRB); } while (--height); } } } void SkRGB16_Shader16_Blitter::blitAntiH(int x, int y, const SkAlpha* SK_RESTRICT antialias, const int16_t* SK_RESTRICT runs) { SkShader* shader = fShader; SkPMColor* SK_RESTRICT span = fBuffer; uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y); int alpha = shader->getSpan16Alpha(); uint16_t* span16 = (uint16_t*)span; if (0xFF == alpha) { for (;;) { int count = *runs; if (count <= 0) { break; } SkASSERT(count <= fDevice.width()); // don't overrun fBuffer int aa = *antialias; if (aa == 255) { // go direct to the device! shader->shadeSpan16(x, y, device, count); } else if (aa) { shader->shadeSpan16(x, y, span16, count); SkBlendRGB16(span16, device, SkAlpha255To256(aa), count); } device += count; runs += count; antialias += count; x += count; } } else { // span alpha is < 255 alpha = SkAlpha255To256(alpha); for (;;) { int count = *runs; if (count <= 0) { break; } SkASSERT(count <= fDevice.width()); // don't overrun fBuffer int aa = SkAlphaMul(*antialias, alpha); if (aa) { shader->shadeSpan16(x, y, span16, count); SkBlendRGB16(span16, device, SkAlpha255To256(aa), count); } device += count; runs += count; antialias += count; x += count; } } } /////////////////////////////////////////////////////////////////////////////// SkRGB16_Shader_Blitter::SkRGB16_Shader_Blitter(const SkBitmap& device, const SkPaint& paint) : INHERITED(device, paint) { SkASSERT(paint.getXfermode() == NULL); fBuffer = (SkPMColor*)sk_malloc_throw(device.width() * sizeof(SkPMColor)); // compute SkBlitRow::Procs unsigned flags = 0; uint32_t shaderFlags = fShaderFlags; // shaders take care of global alpha, so we never set it in SkBlitRow if (!(shaderFlags & SkShader::kOpaqueAlpha_Flag)) { flags |= SkBlitRow::kSrcPixelAlpha_Flag; } // don't dither if the shader is really 16bit if (paint.isDither() && !(shaderFlags & SkShader::kIntrinsicly16_Flag)) { flags |= SkBlitRow::kDither_Flag; } // used when we know our global alpha is 0xFF fOpaqueProc = SkBlitRow::Factory(flags, SkBitmap::kRGB_565_Config); // used when we know our global alpha is < 0xFF fAlphaProc = SkBlitRow::Factory(flags | SkBlitRow::kGlobalAlpha_Flag, SkBitmap::kRGB_565_Config); } SkRGB16_Shader_Blitter::~SkRGB16_Shader_Blitter() { sk_free(fBuffer); } void SkRGB16_Shader_Blitter::blitH(int x, int y, int width) { SkASSERT(x + width <= fDevice.width()); fShader->shadeSpan(x, y, fBuffer, width); // shaders take care of global alpha, so we pass 0xFF (should be ignored) fOpaqueProc(fDevice.getAddr16(x, y), fBuffer, width, 0xFF, x, y); } void SkRGB16_Shader_Blitter::blitRect(int x, int y, int width, int height) { SkShader* shader = fShader; SkBlitRow::Proc proc = fOpaqueProc; SkPMColor* buffer = fBuffer; uint16_t* dst = fDevice.getAddr16(x, y); size_t dstRB = fDevice.rowBytes(); if (fShaderFlags & SkShader::kConstInY32_Flag) { shader->shadeSpan(x, y, buffer, width); do { proc(dst, buffer, width, 0xFF, x, y); y += 1; dst = (uint16_t*)((char*)dst + dstRB); } while (--height); } else { do { shader->shadeSpan(x, y, buffer, width); proc(dst, buffer, width, 0xFF, x, y); y += 1; dst = (uint16_t*)((char*)dst + dstRB); } while (--height); } } static inline int count_nonzero_span(const int16_t runs[], const SkAlpha aa[]) { int count = 0; for (;;) { int n = *runs; if (n == 0 || *aa == 0) { break; } runs += n; aa += n; count += n; } return count; } void SkRGB16_Shader_Blitter::blitAntiH(int x, int y, const SkAlpha* SK_RESTRICT antialias, const int16_t* SK_RESTRICT runs) { SkShader* shader = fShader; SkPMColor* SK_RESTRICT span = fBuffer; uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y); for (;;) { int count = *runs; if (count <= 0) { break; } int aa = *antialias; if (0 == aa) { device += count; runs += count; antialias += count; x += count; continue; } int nonZeroCount = count + count_nonzero_span(runs + count, antialias + count); SkASSERT(nonZeroCount <= fDevice.width()); // don't overrun fBuffer shader->shadeSpan(x, y, span, nonZeroCount); SkPMColor* localSpan = span; for (;;) { SkBlitRow::Proc proc = (aa == 0xFF) ? fOpaqueProc : fAlphaProc; proc(device, localSpan, count, aa, x, y); x += count; device += count; runs += count; antialias += count; nonZeroCount -= count; if (nonZeroCount == 0) { break; } localSpan += count; SkASSERT(nonZeroCount > 0); count = *runs; SkASSERT(count > 0); aa = *antialias; } } } /////////////////////////////////////////////////////////////////////// SkRGB16_Shader_Xfermode_Blitter::SkRGB16_Shader_Xfermode_Blitter( const SkBitmap& device, const SkPaint& paint) : INHERITED(device, paint) { fXfermode = paint.getXfermode(); SkASSERT(fXfermode); fXfermode->ref(); int width = device.width(); fBuffer = (SkPMColor*)sk_malloc_throw((width + (SkAlign4(width) >> 2)) * sizeof(SkPMColor)); fAAExpand = (uint8_t*)(fBuffer + width); } SkRGB16_Shader_Xfermode_Blitter::~SkRGB16_Shader_Xfermode_Blitter() { fXfermode->unref(); sk_free(fBuffer); } void SkRGB16_Shader_Xfermode_Blitter::blitH(int x, int y, int width) { SkASSERT(x + width <= fDevice.width()); uint16_t* device = fDevice.getAddr16(x, y); SkPMColor* span = fBuffer; fShader->shadeSpan(x, y, span, width); fXfermode->xfer16(device, span, width, NULL); } void SkRGB16_Shader_Xfermode_Blitter::blitAntiH(int x, int y, const SkAlpha* SK_RESTRICT antialias, const int16_t* SK_RESTRICT runs) { SkShader* shader = fShader; SkXfermode* mode = fXfermode; SkPMColor* SK_RESTRICT span = fBuffer; uint8_t* SK_RESTRICT aaExpand = fAAExpand; uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y); for (;;) { int count = *runs; if (count <= 0) { break; } int aa = *antialias; if (0 == aa) { device += count; runs += count; antialias += count; x += count; continue; } int nonZeroCount = count + count_nonzero_span(runs + count, antialias + count); SkASSERT(nonZeroCount <= fDevice.width()); // don't overrun fBuffer shader->shadeSpan(x, y, span, nonZeroCount); x += nonZeroCount; SkPMColor* localSpan = span; for (;;) { if (aa == 0xFF) { mode->xfer16(device, localSpan, count, NULL); } else { SkASSERT(aa); memset(aaExpand, aa, count); mode->xfer16(device, localSpan, count, aaExpand); } device += count; runs += count; antialias += count; nonZeroCount -= count; if (nonZeroCount == 0) { break; } localSpan += count; SkASSERT(nonZeroCount > 0); count = *runs; SkASSERT(count > 0); aa = *antialias; } } } /////////////////////////////////////////////////////////////////////////////// SkBlitter* SkBlitter_ChooseD565(const SkBitmap& device, const SkPaint& paint, void* storage, size_t storageSize) { SkBlitter* blitter; SkShader* shader = paint.getShader(); SkXfermode* mode = paint.getXfermode(); // we require a shader if there is an xfermode, handled by our caller SkASSERT(NULL == mode || NULL != shader); if (shader) { if (mode) { SK_PLACEMENT_NEW_ARGS(blitter, SkRGB16_Shader_Xfermode_Blitter, storage, storageSize, (device, paint)); } else if (shader->canCallShadeSpan16()) { SK_PLACEMENT_NEW_ARGS(blitter, SkRGB16_Shader16_Blitter, storage, storageSize, (device, paint)); } else { SK_PLACEMENT_NEW_ARGS(blitter, SkRGB16_Shader_Blitter, storage, storageSize, (device, paint)); } } else { // no shader, no xfermode, (and we always ignore colorfilter) SkColor color = paint.getColor(); if (0 == SkColorGetA(color)) { SK_PLACEMENT_NEW(blitter, SkNullBlitter, storage, storageSize); #ifdef USE_BLACK_BLITTER } else if (SK_ColorBLACK == color) { SK_PLACEMENT_NEW_ARGS(blitter, SkRGB16_Black_Blitter, storage, storageSize, (device, paint)); #endif } else if (0xFF == SkColorGetA(color)) { SK_PLACEMENT_NEW_ARGS(blitter, SkRGB16_Opaque_Blitter, storage, storageSize, (device, paint)); } else { SK_PLACEMENT_NEW_ARGS(blitter, SkRGB16_Blitter, storage, storageSize, (device, paint)); } } return blitter; }