/* libs/graphics/sgl/SkBlitter_ARGB32.cpp ** ** Copyright 2006, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #include "SkCoreBlitters.h" #include "SkColorPriv.h" #include "SkShader.h" #include "SkUtils.h" #include "SkXfermode.h" /////////////////////////////////////////////////////////////////////////////// static inline int upscale31To32(int value) { SkASSERT((unsigned)value <= 31); return value + (value >> 4); } static inline int blend32(int src, int dst, int scale) { SkASSERT((unsigned)src <= 0xFF); SkASSERT((unsigned)dst <= 0xFF); SkASSERT((unsigned)scale <= 32); return dst + ((src - dst) * scale >> 5); } static void blit_lcd16_opaque(SkPMColor dst[], const uint16_t src[], SkPMColor color, int width) { int srcR = SkGetPackedR32(color); int srcG = SkGetPackedG32(color); int srcB = SkGetPackedB32(color); for (int i = 0; i < width; i++) { uint16_t mask = src[i]; if (0 == mask) { continue; } SkPMColor d = dst[i]; /* We want all of these in 5bits, hence the shifts in case one of them * (green) is 6bits. */ int maskR = SkGetPackedR16(mask) >> (SK_R16_BITS - 5); int maskG = SkGetPackedG16(mask) >> (SK_G16_BITS - 5); int maskB = SkGetPackedB16(mask) >> (SK_B16_BITS - 5); // Now upscale them to 0..256, so we can use SkAlphaBlend maskR = upscale31To32(maskR); maskG = upscale31To32(maskG); maskB = upscale31To32(maskB); int maskA = SkMax32(SkMax32(maskR, maskG), maskB); int dstA = SkGetPackedA32(d); int dstR = SkGetPackedR32(d); int dstG = SkGetPackedG32(d); int dstB = SkGetPackedB32(d); dst[i] = SkPackARGB32(blend32(0xFF, dstA, maskA), blend32(srcR, dstR, maskR), blend32(srcG, dstG, maskG), blend32(srcB, dstB, maskB)); } } static void blit_lcd32_opaque(SkPMColor dst[], const uint32_t src[], SkPMColor color, int width) { int srcR = SkGetPackedR32(color); int srcG = SkGetPackedG32(color); int srcB = SkGetPackedB32(color); for (int i = 0; i < width; i++) { uint32_t mask = src[i]; if (0 == mask) { continue; } SkPMColor d = dst[i]; int maskR = SkGetPackedR32(mask); int maskG = SkGetPackedG32(mask); int maskB = SkGetPackedB32(mask); // Now upscale them to 0..256, so we can use SkAlphaBlend maskR = SkAlpha255To256(maskR); maskG = SkAlpha255To256(maskG); maskB = SkAlpha255To256(maskB); int maskA = SkMax32(SkMax32(maskR, maskG), maskB); int dstA = SkGetPackedA32(d); int dstR = SkGetPackedR32(d); int dstG = SkGetPackedG32(d); int dstB = SkGetPackedB32(d); dst[i] = SkPackARGB32(SkAlphaBlend(0xFF, dstA, maskA), SkAlphaBlend(srcR, dstR, maskR), SkAlphaBlend(srcG, dstG, maskG), SkAlphaBlend(srcB, dstB, maskB)); } } static void blitmask_lcd16(const SkBitmap& device, const SkMask& mask, const SkIRect& clip, SkPMColor srcColor) { int x = clip.fLeft; int y = clip.fTop; int width = clip.width(); int height = clip.height(); SkPMColor* dstRow = device.getAddr32(x, y); const uint16_t* srcRow = mask.getAddrLCD16(x, y); do { blit_lcd16_opaque(dstRow, srcRow, srcColor, width); dstRow = (SkPMColor*)((char*)dstRow + device.rowBytes()); srcRow = (const uint16_t*)((const char*)srcRow + mask.fRowBytes); } while (--height != 0); } static void blitmask_lcd32(const SkBitmap& device, const SkMask& mask, const SkIRect& clip, SkPMColor srcColor) { int x = clip.fLeft; int y = clip.fTop; int width = clip.width(); int height = clip.height(); SkPMColor* dstRow = device.getAddr32(x, y); const uint32_t* srcRow = mask.getAddrLCD32(x, y); do { blit_lcd32_opaque(dstRow, srcRow, srcColor, width); dstRow = (SkPMColor*)((char*)dstRow + device.rowBytes()); srcRow = (const uint32_t*)((const char*)srcRow + mask.fRowBytes); } while (--height != 0); } ////////////////////////////////////////////////////////////////////////////////////// static void SkARGB32_Blit32(const SkBitmap& device, const SkMask& mask, const SkIRect& clip, SkPMColor srcColor) { U8CPU alpha = SkGetPackedA32(srcColor); unsigned flags = SkBlitRow::kSrcPixelAlpha_Flag32; if (alpha != 255) { flags |= SkBlitRow::kGlobalAlpha_Flag32; } SkBlitRow::Proc32 proc = SkBlitRow::Factory32(flags); int x = clip.fLeft; int y = clip.fTop; int width = clip.width(); int height = clip.height(); SkPMColor* dstRow = device.getAddr32(x, y); const SkPMColor* srcRow = reinterpret_cast(mask.getAddr(x, y)); do { proc(dstRow, srcRow, width, alpha); dstRow = (SkPMColor*)((char*)dstRow + device.rowBytes()); srcRow = (const SkPMColor*)((const char*)srcRow + mask.fRowBytes); } while (--height != 0); } ////////////////////////////////////////////////////////////////////////////////////// SkARGB32_Blitter::SkARGB32_Blitter(const SkBitmap& device, const SkPaint& paint) : INHERITED(device) { SkColor color = paint.getColor(); fColor = color; fSrcA = SkColorGetA(color); unsigned scale = SkAlpha255To256(fSrcA); fSrcR = SkAlphaMul(SkColorGetR(color), scale); fSrcG = SkAlphaMul(SkColorGetG(color), scale); fSrcB = SkAlphaMul(SkColorGetB(color), scale); fPMColor = SkPackARGB32(fSrcA, fSrcR, fSrcG, fSrcB); fColor32Proc = SkBlitRow::ColorProcFactory(); // init the pro for blitmask fBlitMaskProc = SkBlitMask::Factory(SkBitmap::kARGB_8888_Config, color); } const SkBitmap* SkARGB32_Blitter::justAnOpaqueColor(uint32_t* value) { if (255 == fSrcA) { *value = fPMColor; return &fDevice; } return NULL; } #if defined _WIN32 && _MSC_VER >= 1300 // disable warning : local variable used without having been initialized #pragma warning ( push ) #pragma warning ( disable : 4701 ) #endif void SkARGB32_Blitter::blitH(int x, int y, int width) { SkASSERT(x >= 0 && y >= 0 && x + width <= fDevice.width()); uint32_t* device = fDevice.getAddr32(x, y); fColor32Proc(device, device, width, fPMColor); } void SkARGB32_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) { if (fSrcA == 0) { return; } uint32_t color = fPMColor; uint32_t* device = fDevice.getAddr32(x, y); unsigned opaqueMask = fSrcA; // if fSrcA is 0xFF, then we will catch the fast opaque case for (;;) { int count = runs[0]; SkASSERT(count >= 0); if (count <= 0) { return; } unsigned aa = antialias[0]; if (aa) { if ((opaqueMask & aa) == 255) { sk_memset32(device, color, count); } else { uint32_t sc = SkAlphaMulQ(color, SkAlpha255To256(aa)); fColor32Proc(device, device, count, sc); } } runs += count; antialias += count; device += count; } } ////////////////////////////////////////////////////////////////////////////////////// #define solid_8_pixels(mask, dst, color) \ do { \ if (mask & 0x80) dst[0] = color; \ if (mask & 0x40) dst[1] = color; \ if (mask & 0x20) dst[2] = color; \ if (mask & 0x10) dst[3] = color; \ if (mask & 0x08) dst[4] = color; \ if (mask & 0x04) dst[5] = color; \ if (mask & 0x02) dst[6] = color; \ if (mask & 0x01) dst[7] = color; \ } while (0) #define SK_BLITBWMASK_NAME SkARGB32_BlitBW #define SK_BLITBWMASK_ARGS , SkPMColor color #define SK_BLITBWMASK_BLIT8(mask, dst) solid_8_pixels(mask, dst, color) #define SK_BLITBWMASK_GETADDR getAddr32 #define SK_BLITBWMASK_DEVTYPE uint32_t #include "SkBlitBWMaskTemplate.h" #define blend_8_pixels(mask, dst, sc, dst_scale) \ do { \ if (mask & 0x80) { dst[0] = sc + SkAlphaMulQ(dst[0], dst_scale); } \ if (mask & 0x40) { dst[1] = sc + SkAlphaMulQ(dst[1], dst_scale); } \ if (mask & 0x20) { dst[2] = sc + SkAlphaMulQ(dst[2], dst_scale); } \ if (mask & 0x10) { dst[3] = sc + SkAlphaMulQ(dst[3], dst_scale); } \ if (mask & 0x08) { dst[4] = sc + SkAlphaMulQ(dst[4], dst_scale); } \ if (mask & 0x04) { dst[5] = sc + SkAlphaMulQ(dst[5], dst_scale); } \ if (mask & 0x02) { dst[6] = sc + SkAlphaMulQ(dst[6], dst_scale); } \ if (mask & 0x01) { dst[7] = sc + SkAlphaMulQ(dst[7], dst_scale); } \ } while (0) #define SK_BLITBWMASK_NAME SkARGB32_BlendBW #define SK_BLITBWMASK_ARGS , uint32_t sc, unsigned dst_scale #define SK_BLITBWMASK_BLIT8(mask, dst) blend_8_pixels(mask, dst, sc, dst_scale) #define SK_BLITBWMASK_GETADDR getAddr32 #define SK_BLITBWMASK_DEVTYPE uint32_t #include "SkBlitBWMaskTemplate.h" void SkARGB32_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) { SkASSERT(mask.fBounds.contains(clip)); SkASSERT(fSrcA != 0xFF); if (fSrcA == 0) { return; } if (mask.fFormat == SkMask::kBW_Format) { SkARGB32_BlendBW(fDevice, mask, clip, fPMColor, SkAlpha255To256(255 - fSrcA)); return; } else if (SkMask::kARGB32_Format == mask.fFormat) { SkARGB32_Blit32(fDevice, mask, clip, fPMColor); return; } else if (SkMask::kLCD16_Format == mask.fFormat) { blitmask_lcd16(fDevice, mask, clip, fPMColor); return; } else if (SkMask::kLCD32_Format == mask.fFormat) { blitmask_lcd32(fDevice, mask, clip, fPMColor); return; } int x = clip.fLeft; int y = clip.fTop; fBlitMaskProc(fDevice.getAddr32(x, y), fDevice.rowBytes(), SkBitmap::kARGB_8888_Config, mask.getAddr(x, y), mask.fRowBytes, fColor, clip.width(), clip.height()); } void SkARGB32_Opaque_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) { SkASSERT(mask.fBounds.contains(clip)); if (mask.fFormat == SkMask::kBW_Format) { SkARGB32_BlitBW(fDevice, mask, clip, fPMColor); return; } else if (SkMask::kARGB32_Format == mask.fFormat) { SkARGB32_Blit32(fDevice, mask, clip, fPMColor); return; } else if (SkMask::kLCD16_Format == mask.fFormat) { blitmask_lcd16(fDevice, mask, clip, fPMColor); return; } else if (SkMask::kLCD32_Format == mask.fFormat) { blitmask_lcd32(fDevice, mask, clip, fPMColor); return; } int x = clip.fLeft; int y = clip.fTop; int width = clip.width(); int height = clip.height(); fBlitMaskProc(fDevice.getAddr32(x, y), fDevice.rowBytes(), SkBitmap::kARGB_8888_Config, mask.getAddr(x, y), mask.fRowBytes, fColor, width, height); } ////////////////////////////////////////////////////////////////////////////////////// void SkARGB32_Blitter::blitV(int x, int y, int height, SkAlpha alpha) { if (alpha == 0 || fSrcA == 0) { return; } uint32_t* device = fDevice.getAddr32(x, y); uint32_t color = fPMColor; if (alpha != 255) { color = SkAlphaMulQ(color, SkAlpha255To256(alpha)); } unsigned dst_scale = 255 - SkGetPackedA32(color); uint32_t prevDst = ~device[0]; uint32_t result SK_INIT_TO_AVOID_WARNING; uint32_t rowBytes = fDevice.rowBytes(); while (--height >= 0) { uint32_t dst = device[0]; if (dst != prevDst) { result = color + SkAlphaMulQ(dst, dst_scale); prevDst = dst; } device[0] = result; device = (uint32_t*)((char*)device + rowBytes); } } void SkARGB32_Blitter::blitRect(int x, int y, int width, int height) { SkASSERT(x >= 0 && y >= 0 && x + width <= fDevice.width() && y + height <= fDevice.height()); if (fSrcA == 0) { return; } uint32_t* device = fDevice.getAddr32(x, y); uint32_t color = fPMColor; size_t rowBytes = fDevice.rowBytes(); while (--height >= 0) { fColor32Proc(device, device, width, color); device = (uint32_t*)((char*)device + rowBytes); } } #if defined _WIN32 && _MSC_VER >= 1300 #pragma warning ( pop ) #endif /////////////////////////////////////////////////////////////////////// void SkARGB32_Black_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) { SkASSERT(mask.fBounds.contains(clip)); SkPMColor black = (SkPMColor)(SK_A32_MASK << SK_A32_SHIFT); if (mask.fFormat == SkMask::kBW_Format) { SkARGB32_BlitBW(fDevice, mask, clip, black); } else if (SkMask::kARGB32_Format == mask.fFormat) { SkARGB32_Blit32(fDevice, mask, clip, fPMColor); } else if (SkMask::kLCD16_Format == mask.fFormat) { blitmask_lcd16(fDevice, mask, clip, fPMColor); } else if (SkMask::kLCD32_Format == mask.fFormat) { blitmask_lcd32(fDevice, mask, clip, fPMColor); } else { fBlitMaskProc(fDevice.getAddr32(clip.fLeft, clip.fTop), fDevice.rowBytes(), SkBitmap::kARGB_8888_Config, mask.getAddr(clip.fLeft, clip.fTop), mask.fRowBytes, black, clip.width(), clip.height()); } } void SkARGB32_Black_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) { uint32_t* device = fDevice.getAddr32(x, y); SkPMColor black = (SkPMColor)(SK_A32_MASK << SK_A32_SHIFT); for (;;) { int count = runs[0]; SkASSERT(count >= 0); if (count <= 0) { return; } unsigned aa = antialias[0]; if (aa) { if (aa == 255) { sk_memset32(device, black, count); } else { SkPMColor src = aa << SK_A32_SHIFT; unsigned dst_scale = 256 - aa; int n = count; do { --n; device[n] = src + SkAlphaMulQ(device[n], dst_scale); } while (n > 0); } } runs += count; antialias += count; device += count; } } ////////////////////////////////////////////////////////////////////////////////////////// SkARGB32_Shader_Blitter::SkARGB32_Shader_Blitter(const SkBitmap& device, const SkPaint& paint) : INHERITED(device, paint) { fBuffer = (SkPMColor*)sk_malloc_throw(device.width() * (sizeof(SkPMColor))); fXfermode = paint.getXfermode(); SkSafeRef(fXfermode); int flags = 0; if (!(fShader->getFlags() & SkShader::kOpaqueAlpha_Flag)) { flags |= SkBlitRow::kSrcPixelAlpha_Flag32; } // we call this on the output from the shader fProc32 = SkBlitRow::Factory32(flags); // we call this on the output from the shader + alpha from the aa buffer fProc32Blend = SkBlitRow::Factory32(flags | SkBlitRow::kGlobalAlpha_Flag32); } SkARGB32_Shader_Blitter::~SkARGB32_Shader_Blitter() { SkSafeUnref(fXfermode); sk_free(fBuffer); } void SkARGB32_Shader_Blitter::blitH(int x, int y, int width) { SkASSERT(x >= 0 && y >= 0 && x + width <= fDevice.width()); uint32_t* device = fDevice.getAddr32(x, y); if (fXfermode == NULL && (fShader->getFlags() & SkShader::kOpaqueAlpha_Flag)) { fShader->shadeSpan(x, y, device, width); } else { SkPMColor* span = fBuffer; fShader->shadeSpan(x, y, span, width); if (fXfermode) { fXfermode->xfer32(device, span, width, NULL); } else { fProc32(device, span, width, 255); } } } /////////////////////////////////////////////////////////////////////////////////////////////// void SkARGB32_Shader_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) { SkPMColor* span = fBuffer; uint32_t* device = fDevice.getAddr32(x, y); SkShader* shader = fShader; if (fXfermode) { for (;;) { SkXfermode* xfer = fXfermode; int count = *runs; if (count <= 0) break; int aa = *antialias; if (aa) { shader->shadeSpan(x, y, span, count); if (aa == 255) { xfer->xfer32(device, span, count, NULL); } else { // count is almost always 1 for (int i = count - 1; i >= 0; --i) { xfer->xfer32(&device[i], &span[i], 1, antialias); } } } device += count; runs += count; antialias += count; x += count; } } else if (fShader->getFlags() & SkShader::kOpaqueAlpha_Flag) { for (;;) { int count = *runs; if (count <= 0) { break; } int aa = *antialias; if (aa) { if (aa == 255) { // cool, have the shader draw right into the device shader->shadeSpan(x, y, device, count); } else { shader->shadeSpan(x, y, span, count); fProc32Blend(device, span, count, aa); } } device += count; runs += count; antialias += count; x += count; } } else { // no xfermode but the shader not opaque for (;;) { int count = *runs; if (count <= 0) { break; } int aa = *antialias; if (aa) { fShader->shadeSpan(x, y, span, count); if (aa == 255) { fProc32(device, span, count, 255); } else { fProc32Blend(device, span, count, aa); } } device += count; runs += count; antialias += count; x += count; } } }