/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBlitter.h" #include "SkAntiRun.h" #include "SkColor.h" #include "SkColorFilter.h" #include "SkFilterShader.h" #include "SkFlattenableBuffers.h" #include "SkMask.h" #include "SkMaskFilter.h" #include "SkTemplatesPriv.h" #include "SkTLazy.h" #include "SkUtils.h" #include "SkXfermode.h" #include "SkString.h" SkBlitter::~SkBlitter() {} bool SkBlitter::isNullBlitter() const { return false; } const SkBitmap* SkBlitter::justAnOpaqueColor(uint32_t* value) { return NULL; } void SkBlitter::blitH(int x, int y, int width) { SkDEBUGFAIL("unimplemented"); } void SkBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) { SkDEBUGFAIL("unimplemented"); } void SkBlitter::blitV(int x, int y, int height, SkAlpha alpha) { if (alpha == 255) { this->blitRect(x, y, 1, height); } else { int16_t runs[2]; runs[0] = 1; runs[1] = 0; while (--height >= 0) { this->blitAntiH(x, y++, &alpha, runs); } } } void SkBlitter::blitRect(int x, int y, int width, int height) { SkASSERT(width > 0); while (--height >= 0) { this->blitH(x, y++, width); } } /// Default implementation doesn't check for any easy optimizations /// such as alpha == 0 or 255; also uses blitV(), which some subclasses /// may not support. void SkBlitter::blitAntiRect(int x, int y, int width, int height, SkAlpha leftAlpha, SkAlpha rightAlpha) { this->blitV(x++, y, height, leftAlpha); if (width > 0) { this->blitRect(x, y, width, height); x += width; } this->blitV(x, y, height, rightAlpha); } ////////////////////////////////////////////////////////////////////////////// static inline void bits_to_runs(SkBlitter* blitter, int x, int y, const uint8_t bits[], U8CPU left_mask, int rowBytes, U8CPU right_mask) { int inFill = 0; int pos = 0; while (--rowBytes >= 0) { unsigned b = *bits++ & left_mask; if (rowBytes == 0) { b &= right_mask; } for (unsigned test = 0x80; test != 0; test >>= 1) { if (b & test) { if (!inFill) { pos = x; inFill = true; } } else { if (inFill) { blitter->blitH(pos, y, x - pos); inFill = false; } } x += 1; } left_mask = 0xFF; } // final cleanup if (inFill) { blitter->blitH(pos, y, x - pos); } } void SkBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { SkASSERT(mask.fBounds.contains(clip)); if (mask.fFormat == SkMask::kBW_Format) { int cx = clip.fLeft; int cy = clip.fTop; int maskLeft = mask.fBounds.fLeft; int mask_rowBytes = mask.fRowBytes; int height = clip.height(); const uint8_t* bits = mask.getAddr1(cx, cy); if (cx == maskLeft && clip.fRight == mask.fBounds.fRight) { while (--height >= 0) { bits_to_runs(this, cx, cy, bits, 0xFF, mask_rowBytes, 0xFF); bits += mask_rowBytes; cy += 1; } } else { int left_edge = cx - maskLeft; SkASSERT(left_edge >= 0); int rite_edge = clip.fRight - maskLeft; SkASSERT(rite_edge > left_edge); int left_mask = 0xFF >> (left_edge & 7); int rite_mask = 0xFF << (8 - (rite_edge & 7)); int full_runs = (rite_edge >> 3) - ((left_edge + 7) >> 3); // check for empty right mask, so we don't read off the end (or go slower than we need to) if (rite_mask == 0) { SkASSERT(full_runs >= 0); full_runs -= 1; rite_mask = 0xFF; } if (left_mask == 0xFF) { full_runs -= 1; } // back up manually so we can keep in sync with our byte-aligned src // have cx reflect our actual starting x-coord cx -= left_edge & 7; if (full_runs < 0) { SkASSERT((left_mask & rite_mask) != 0); while (--height >= 0) { bits_to_runs(this, cx, cy, bits, left_mask, 1, rite_mask); bits += mask_rowBytes; cy += 1; } } else { while (--height >= 0) { bits_to_runs(this, cx, cy, bits, left_mask, full_runs + 2, rite_mask); bits += mask_rowBytes; cy += 1; } } } } else { int width = clip.width(); SkAutoSTMalloc<64, int16_t> runStorage(width + 1); int16_t* runs = runStorage.get(); const uint8_t* aa = mask.getAddr8(clip.fLeft, clip.fTop); sk_memset16((uint16_t*)runs, 1, width); runs[width] = 0; int height = clip.height(); int y = clip.fTop; while (--height >= 0) { this->blitAntiH(clip.fLeft, y, aa, runs); aa += mask.fRowBytes; y += 1; } } } /////////////////////// these guys are not virtual, just a helpers void SkBlitter::blitMaskRegion(const SkMask& mask, const SkRegion& clip) { if (clip.quickReject(mask.fBounds)) { return; } SkRegion::Cliperator clipper(clip, mask.fBounds); while (!clipper.done()) { const SkIRect& cr = clipper.rect(); this->blitMask(mask, cr); clipper.next(); } } void SkBlitter::blitRectRegion(const SkIRect& rect, const SkRegion& clip) { SkRegion::Cliperator clipper(clip, rect); while (!clipper.done()) { const SkIRect& cr = clipper.rect(); this->blitRect(cr.fLeft, cr.fTop, cr.width(), cr.height()); clipper.next(); } } void SkBlitter::blitRegion(const SkRegion& clip) { SkRegion::Iterator iter(clip); while (!iter.done()) { const SkIRect& cr = iter.rect(); this->blitRect(cr.fLeft, cr.fTop, cr.width(), cr.height()); iter.next(); } } /////////////////////////////////////////////////////////////////////////////// void SkNullBlitter::blitH(int x, int y, int width) {} void SkNullBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) {} void SkNullBlitter::blitV(int x, int y, int height, SkAlpha alpha) {} void SkNullBlitter::blitRect(int x, int y, int width, int height) {} void SkNullBlitter::blitMask(const SkMask& mask, const SkIRect& clip) {} const SkBitmap* SkNullBlitter::justAnOpaqueColor(uint32_t* value) { return NULL; } bool SkNullBlitter::isNullBlitter() const { return true; } /////////////////////////////////////////////////////////////////////////////// static int compute_anti_width(const int16_t runs[]) { int width = 0; for (;;) { int count = runs[0]; SkASSERT(count >= 0); if (count == 0) { break; } width += count; runs += count; } return width; } static inline bool y_in_rect(int y, const SkIRect& rect) { return (unsigned)(y - rect.fTop) < (unsigned)rect.height(); } static inline bool x_in_rect(int x, const SkIRect& rect) { return (unsigned)(x - rect.fLeft) < (unsigned)rect.width(); } void SkRectClipBlitter::blitH(int left, int y, int width) { SkASSERT(width > 0); if (!y_in_rect(y, fClipRect)) { return; } int right = left + width; if (left < fClipRect.fLeft) { left = fClipRect.fLeft; } if (right > fClipRect.fRight) { right = fClipRect.fRight; } width = right - left; if (width > 0) { fBlitter->blitH(left, y, width); } } void SkRectClipBlitter::blitAntiH(int left, int y, const SkAlpha aa[], const int16_t runs[]) { if (!y_in_rect(y, fClipRect) || left >= fClipRect.fRight) { return; } int x0 = left; int x1 = left + compute_anti_width(runs); if (x1 <= fClipRect.fLeft) { return; } SkASSERT(x0 < x1); if (x0 < fClipRect.fLeft) { int dx = fClipRect.fLeft - x0; SkAlphaRuns::BreakAt((int16_t*)runs, (uint8_t*)aa, dx); runs += dx; aa += dx; x0 = fClipRect.fLeft; } SkASSERT(x0 < x1 && runs[x1 - x0] == 0); if (x1 > fClipRect.fRight) { x1 = fClipRect.fRight; SkAlphaRuns::BreakAt((int16_t*)runs, (uint8_t*)aa, x1 - x0); ((int16_t*)runs)[x1 - x0] = 0; } SkASSERT(x0 < x1 && runs[x1 - x0] == 0); SkASSERT(compute_anti_width(runs) == x1 - x0); fBlitter->blitAntiH(x0, y, aa, runs); } void SkRectClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) { SkASSERT(height > 0); if (!x_in_rect(x, fClipRect)) { return; } int y0 = y; int y1 = y + height; if (y0 < fClipRect.fTop) { y0 = fClipRect.fTop; } if (y1 > fClipRect.fBottom) { y1 = fClipRect.fBottom; } if (y0 < y1) { fBlitter->blitV(x, y0, y1 - y0, alpha); } } void SkRectClipBlitter::blitRect(int left, int y, int width, int height) { SkIRect r; r.set(left, y, left + width, y + height); if (r.intersect(fClipRect)) { fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); } } void SkRectClipBlitter::blitAntiRect(int left, int y, int width, int height, SkAlpha leftAlpha, SkAlpha rightAlpha) { SkIRect r; // The *true* width of the rectangle blitted is width+2: r.set(left, y, left + width + 2, y + height); if (r.intersect(fClipRect)) { if (r.fLeft != left) { SkASSERT(r.fLeft > left); leftAlpha = 255; } if (r.fRight != left + width + 2) { SkASSERT(r.fRight < left + width + 2); rightAlpha = 255; } if (255 == leftAlpha && 255 == rightAlpha) { fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); } else if (1 == r.width()) { if (r.fLeft == left) { fBlitter->blitV(r.fLeft, r.fTop, r.height(), leftAlpha); } else { SkASSERT(r.fLeft == left + width + 1); fBlitter->blitV(r.fLeft, r.fTop, r.height(), rightAlpha); } } else { fBlitter->blitAntiRect(r.fLeft, r.fTop, r.width() - 2, r.height(), leftAlpha, rightAlpha); } } } void SkRectClipBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { SkASSERT(mask.fBounds.contains(clip)); SkIRect r = clip; if (r.intersect(fClipRect)) { fBlitter->blitMask(mask, r); } } const SkBitmap* SkRectClipBlitter::justAnOpaqueColor(uint32_t* value) { return fBlitter->justAnOpaqueColor(value); } /////////////////////////////////////////////////////////////////////////////// void SkRgnClipBlitter::blitH(int x, int y, int width) { SkRegion::Spanerator span(*fRgn, y, x, x + width); int left, right; while (span.next(&left, &right)) { SkASSERT(left < right); fBlitter->blitH(left, y, right - left); } } void SkRgnClipBlitter::blitAntiH(int x, int y, const SkAlpha aa[], const int16_t runs[]) { int width = compute_anti_width(runs); SkRegion::Spanerator span(*fRgn, y, x, x + width); int left, right; SkDEBUGCODE(const SkIRect& bounds = fRgn->getBounds();) int prevRite = x; while (span.next(&left, &right)) { SkASSERT(x <= left); SkASSERT(left < right); SkASSERT(left >= bounds.fLeft && right <= bounds.fRight); SkAlphaRuns::Break((int16_t*)runs, (uint8_t*)aa, left - x, right - left); // now zero before left if (left > prevRite) { int index = prevRite - x; ((uint8_t*)aa)[index] = 0; // skip runs after right ((int16_t*)runs)[index] = SkToS16(left - prevRite); } prevRite = right; } if (prevRite > x) { ((int16_t*)runs)[prevRite - x] = 0; if (x < 0) { int skip = runs[0]; SkASSERT(skip >= -x); aa += skip; runs += skip; x += skip; } fBlitter->blitAntiH(x, y, aa, runs); } } void SkRgnClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) { SkIRect bounds; bounds.set(x, y, x + 1, y + height); SkRegion::Cliperator iter(*fRgn, bounds); while (!iter.done()) { const SkIRect& r = iter.rect(); SkASSERT(bounds.contains(r)); fBlitter->blitV(x, r.fTop, r.height(), alpha); iter.next(); } } void SkRgnClipBlitter::blitRect(int x, int y, int width, int height) { SkIRect bounds; bounds.set(x, y, x + width, y + height); SkRegion::Cliperator iter(*fRgn, bounds); while (!iter.done()) { const SkIRect& r = iter.rect(); SkASSERT(bounds.contains(r)); fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); iter.next(); } } void SkRgnClipBlitter::blitAntiRect(int x, int y, int width, int height, SkAlpha leftAlpha, SkAlpha rightAlpha) { // The *true* width of the rectangle to blit is width + 2 SkIRect bounds; bounds.set(x, y, x + width + 2, y + height); SkRegion::Cliperator iter(*fRgn, bounds); while (!iter.done()) { const SkIRect& r = iter.rect(); SkASSERT(bounds.contains(r)); SkASSERT(r.fLeft >= x); SkASSERT(r.fRight <= x + width + 2); SkAlpha effectiveLeftAlpha = (r.fLeft == x) ? leftAlpha : 255; SkAlpha effectiveRightAlpha = (r.fRight == x + width + 2) ? rightAlpha : 255; if (255 == effectiveLeftAlpha && 255 == effectiveRightAlpha) { fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); } else if (1 == r.width()) { if (r.fLeft == x) { fBlitter->blitV(r.fLeft, r.fTop, r.height(), effectiveLeftAlpha); } else { SkASSERT(r.fLeft == x + width + 1); fBlitter->blitV(r.fLeft, r.fTop, r.height(), effectiveRightAlpha); } } else { fBlitter->blitAntiRect(r.fLeft, r.fTop, r.width() - 2, r.height(), effectiveLeftAlpha, effectiveRightAlpha); } iter.next(); } } void SkRgnClipBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { SkASSERT(mask.fBounds.contains(clip)); SkRegion::Cliperator iter(*fRgn, clip); const SkIRect& r = iter.rect(); SkBlitter* blitter = fBlitter; while (!iter.done()) { blitter->blitMask(mask, r); iter.next(); } } const SkBitmap* SkRgnClipBlitter::justAnOpaqueColor(uint32_t* value) { return fBlitter->justAnOpaqueColor(value); } /////////////////////////////////////////////////////////////////////////////// SkBlitter* SkBlitterClipper::apply(SkBlitter* blitter, const SkRegion* clip, const SkIRect* ir) { if (clip) { const SkIRect& clipR = clip->getBounds(); if (clip->isEmpty() || (ir && !SkIRect::Intersects(clipR, *ir))) { blitter = &fNullBlitter; } else if (clip->isRect()) { if (ir == NULL || !clipR.contains(*ir)) { fRectBlitter.init(blitter, clipR); blitter = &fRectBlitter; } } else { fRgnBlitter.init(blitter, clip); blitter = &fRgnBlitter; } } return blitter; } /////////////////////////////////////////////////////////////////////////////// #include "SkColorShader.h" #include "SkColorPriv.h" class Sk3DShader : public SkShader { public: Sk3DShader(SkShader* proxy) : fProxy(proxy) { SkSafeRef(proxy); fMask = NULL; } virtual ~Sk3DShader() { SkSafeUnref(fProxy); } void setMask(const SkMask* mask) { fMask = mask; } virtual bool setContext(const SkBitmap& device, const SkPaint& paint, const SkMatrix& matrix) SK_OVERRIDE { if (!this->INHERITED::setContext(device, paint, matrix)) { return false; } if (fProxy) { if (!fProxy->setContext(device, paint, matrix)) { // must keep our set/end context calls balanced this->INHERITED::endContext(); return false; } } else { fPMColor = SkPreMultiplyColor(paint.getColor()); } return true; } virtual void endContext() SK_OVERRIDE { if (fProxy) { fProxy->endContext(); } this->INHERITED::endContext(); } virtual void shadeSpan(int x, int y, SkPMColor span[], int count) SK_OVERRIDE { if (fProxy) { fProxy->shadeSpan(x, y, span, count); } if (fMask == NULL) { if (fProxy == NULL) { sk_memset32(span, fPMColor, count); } return; } SkASSERT(fMask->fBounds.contains(x, y)); SkASSERT(fMask->fBounds.contains(x + count - 1, y)); size_t size = fMask->computeImageSize(); const uint8_t* alpha = fMask->getAddr8(x, y); const uint8_t* mulp = alpha + size; const uint8_t* addp = mulp + size; if (fProxy) { for (int i = 0; i < count; i++) { if (alpha[i]) { SkPMColor c = span[i]; if (c) { unsigned a = SkGetPackedA32(c); unsigned r = SkGetPackedR32(c); unsigned g = SkGetPackedG32(c); unsigned b = SkGetPackedB32(c); unsigned mul = SkAlpha255To256(mulp[i]); unsigned add = addp[i]; r = SkFastMin32(SkAlphaMul(r, mul) + add, a); g = SkFastMin32(SkAlphaMul(g, mul) + add, a); b = SkFastMin32(SkAlphaMul(b, mul) + add, a); span[i] = SkPackARGB32(a, r, g, b); } } else { span[i] = 0; } } } else { // color unsigned a = SkGetPackedA32(fPMColor); unsigned r = SkGetPackedR32(fPMColor); unsigned g = SkGetPackedG32(fPMColor); unsigned b = SkGetPackedB32(fPMColor); for (int i = 0; i < count; i++) { if (alpha[i]) { unsigned mul = SkAlpha255To256(mulp[i]); unsigned add = addp[i]; span[i] = SkPackARGB32( a, SkFastMin32(SkAlphaMul(r, mul) + add, a), SkFastMin32(SkAlphaMul(g, mul) + add, a), SkFastMin32(SkAlphaMul(b, mul) + add, a)); } else { span[i] = 0; } } } } #ifdef SK_DEVELOPER virtual void toString(SkString* str) const SK_OVERRIDE { str->append("Sk3DShader: ("); if (NULL != fProxy) { str->append("Proxy: "); fProxy->toString(str); } this->INHERITED::toString(str); str->append(")"); } #endif SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(Sk3DShader) protected: Sk3DShader(SkFlattenableReadBuffer& buffer) : INHERITED(buffer) { fProxy = buffer.readFlattenableT(); fPMColor = buffer.readColor(); fMask = NULL; } virtual void flatten(SkFlattenableWriteBuffer& buffer) const SK_OVERRIDE { this->INHERITED::flatten(buffer); buffer.writeFlattenable(fProxy); buffer.writeColor(fPMColor); } private: SkShader* fProxy; SkPMColor fPMColor; const SkMask* fMask; typedef SkShader INHERITED; }; class Sk3DBlitter : public SkBlitter { public: Sk3DBlitter(SkBlitter* proxy, Sk3DShader* shader, void (*killProc)(void*)) : fProxy(proxy), f3DShader(shader), fKillProc(killProc) { shader->ref(); } virtual ~Sk3DBlitter() { f3DShader->unref(); fKillProc(fProxy); } virtual void blitH(int x, int y, int width) { fProxy->blitH(x, y, width); } virtual void blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) { fProxy->blitAntiH(x, y, antialias, runs); } virtual void blitV(int x, int y, int height, SkAlpha alpha) { fProxy->blitV(x, y, height, alpha); } virtual void blitRect(int x, int y, int width, int height) { fProxy->blitRect(x, y, width, height); } virtual void blitMask(const SkMask& mask, const SkIRect& clip) { if (mask.fFormat == SkMask::k3D_Format) { f3DShader->setMask(&mask); ((SkMask*)&mask)->fFormat = SkMask::kA8_Format; fProxy->blitMask(mask, clip); ((SkMask*)&mask)->fFormat = SkMask::k3D_Format; f3DShader->setMask(NULL); } else { fProxy->blitMask(mask, clip); } } private: SkBlitter* fProxy; Sk3DShader* f3DShader; void (*fKillProc)(void*); }; /////////////////////////////////////////////////////////////////////////////// #include "SkCoreBlitters.h" class SkAutoCallProc { public: typedef void (*Proc)(void*); SkAutoCallProc(void* obj, Proc proc) : fObj(obj), fProc(proc) {} ~SkAutoCallProc() { if (fObj && fProc) { fProc(fObj); } } void* get() const { return fObj; } void* detach() { void* obj = fObj; fObj = NULL; return obj; } private: void* fObj; Proc fProc; }; static void destroy_blitter(void* blitter) { ((SkBlitter*)blitter)->~SkBlitter(); } static void delete_blitter(void* blitter) { SkDELETE((SkBlitter*)blitter); } static bool just_solid_color(const SkPaint& paint) { if (paint.getAlpha() == 0xFF && paint.getColorFilter() == NULL) { SkShader* shader = paint.getShader(); if (NULL == shader || (shader->getFlags() & SkShader::kOpaqueAlpha_Flag)) { return true; } } return false; } /** By analyzing the paint (with an xfermode), we may decide we can take special action. This enum lists our possible actions */ enum XferInterp { kNormal_XferInterp, // no special interpretation, draw normally kSrcOver_XferInterp, // draw as if in srcover mode kSkipDrawing_XferInterp // draw nothing }; static XferInterp interpret_xfermode(const SkPaint& paint, SkXfermode* xfer, SkBitmap::Config deviceConfig) { SkXfermode::Mode mode; if (SkXfermode::AsMode(xfer, &mode)) { switch (mode) { case SkXfermode::kSrc_Mode: if (just_solid_color(paint)) { return kSrcOver_XferInterp; } break; case SkXfermode::kDst_Mode: return kSkipDrawing_XferInterp; case SkXfermode::kSrcOver_Mode: return kSrcOver_XferInterp; case SkXfermode::kDstOver_Mode: if (SkBitmap::kRGB_565_Config == deviceConfig) { return kSkipDrawing_XferInterp; } break; case SkXfermode::kSrcIn_Mode: if (SkBitmap::kRGB_565_Config == deviceConfig && just_solid_color(paint)) { return kSrcOver_XferInterp; } break; case SkXfermode::kDstIn_Mode: if (just_solid_color(paint)) { return kSkipDrawing_XferInterp; } break; default: break; } } return kNormal_XferInterp; } SkBlitter* SkBlitter::Choose(const SkBitmap& device, const SkMatrix& matrix, const SkPaint& origPaint, void* storage, size_t storageSize) { SkASSERT(storageSize == 0 || storage != NULL); SkBlitter* blitter = NULL; // which check, in case we're being called by a client with a dummy device // (e.g. they have a bounder that always aborts the draw) if (SkBitmap::kNo_Config == device.getConfig()) { SK_PLACEMENT_NEW(blitter, SkNullBlitter, storage, storageSize); return blitter; } SkShader* shader = origPaint.getShader(); SkColorFilter* cf = origPaint.getColorFilter(); SkXfermode* mode = origPaint.getXfermode(); Sk3DShader* shader3D = NULL; SkTCopyOnFirstWrite paint(origPaint); if (origPaint.getMaskFilter() != NULL && origPaint.getMaskFilter()->getFormat() == SkMask::k3D_Format) { shader3D = SkNEW_ARGS(Sk3DShader, (shader)); // we know we haven't initialized lazyPaint yet, so just do it paint.writable()->setShader(shader3D)->unref(); shader = shader3D; } if (NULL != mode) { switch (interpret_xfermode(*paint, mode, device.config())) { case kSrcOver_XferInterp: mode = NULL; paint.writable()->setXfermode(NULL); break; case kSkipDrawing_XferInterp: SK_PLACEMENT_NEW(blitter, SkNullBlitter, storage, storageSize); return blitter; default: break; } } /* * If the xfermode is CLEAR, then we can completely ignore the installed * color/shader/colorfilter, and just pretend we're SRC + color==0. This * will fall into our optimizations for SRC mode. */ if (SkXfermode::IsMode(mode, SkXfermode::kClear_Mode)) { SkPaint* p = paint.writable(); shader = p->setShader(NULL); cf = p->setColorFilter(NULL); mode = p->setXfermodeMode(SkXfermode::kSrc_Mode); p->setColor(0); } if (NULL == shader) { if (mode) { // xfermodes (and filters) require shaders for our current blitters shader = SkNEW(SkColorShader); paint.writable()->setShader(shader)->unref(); } else if (cf) { // if no shader && no xfermode, we just apply the colorfilter to // our color and move on. SkPaint* writablePaint = paint.writable(); writablePaint->setColor(cf->filterColor(paint->getColor())); writablePaint->setColorFilter(NULL); cf = NULL; } } if (cf) { SkASSERT(shader); shader = SkNEW_ARGS(SkFilterShader, (shader, cf)); paint.writable()->setShader(shader)->unref(); // blitters should ignore the presence/absence of a filter, since // if there is one, the shader will take care of it. } /* * We need to have balanced calls to the shader: * setContext * endContext * We make the first call here, in case it fails we can abort the draw. * The endContext() call is made by the blitter (assuming setContext did * not fail) in its destructor. */ if (shader && !shader->setContext(device, *paint, matrix)) { SK_PLACEMENT_NEW(blitter, SkNullBlitter, storage, storageSize); return blitter; } switch (device.getConfig()) { case SkBitmap::kA1_Config: SK_PLACEMENT_NEW_ARGS(blitter, SkA1_Blitter, storage, storageSize, (device, *paint)); break; case SkBitmap::kA8_Config: if (shader) { SK_PLACEMENT_NEW_ARGS(blitter, SkA8_Shader_Blitter, storage, storageSize, (device, *paint)); } else { SK_PLACEMENT_NEW_ARGS(blitter, SkA8_Blitter, storage, storageSize, (device, *paint)); } break; case SkBitmap::kARGB_4444_Config: blitter = SkBlitter_ChooseD4444(device, *paint, storage, storageSize); break; case SkBitmap::kRGB_565_Config: blitter = SkBlitter_ChooseD565(device, *paint, storage, storageSize); break; case SkBitmap::kARGB_8888_Config: if (shader) { SK_PLACEMENT_NEW_ARGS(blitter, SkARGB32_Shader_Blitter, storage, storageSize, (device, *paint)); } else if (paint->getColor() == SK_ColorBLACK) { SK_PLACEMENT_NEW_ARGS(blitter, SkARGB32_Black_Blitter, storage, storageSize, (device, *paint)); } else if (paint->getAlpha() == 0xFF) { SK_PLACEMENT_NEW_ARGS(blitter, SkARGB32_Opaque_Blitter, storage, storageSize, (device, *paint)); } else { SK_PLACEMENT_NEW_ARGS(blitter, SkARGB32_Blitter, storage, storageSize, (device, *paint)); } break; default: SkDEBUGFAIL("unsupported device config"); SK_PLACEMENT_NEW(blitter, SkNullBlitter, storage, storageSize); break; } if (shader3D) { void (*proc)(void*) = ((void*)storage == (void*)blitter) ? destroy_blitter : delete_blitter; SkAutoCallProc tmp(blitter, proc); blitter = SkNEW_ARGS(Sk3DBlitter, (blitter, shader3D, proc)); (void)tmp.detach(); } return blitter; } /////////////////////////////////////////////////////////////////////////////// const uint16_t gMask_0F0F = 0xF0F; const uint32_t gMask_00FF00FF = 0xFF00FF; /////////////////////////////////////////////////////////////////////////////// SkShaderBlitter::SkShaderBlitter(const SkBitmap& device, const SkPaint& paint) : INHERITED(device) { fShader = paint.getShader(); SkASSERT(fShader); SkASSERT(fShader->setContextHasBeenCalled()); fShader->ref(); fShaderFlags = fShader->getFlags(); } SkShaderBlitter::~SkShaderBlitter() { SkASSERT(fShader->setContextHasBeenCalled()); fShader->endContext(); fShader->unref(); }