/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBitmapProcState.h" #include "SkColorPriv.h" #include "SkFilterProc.h" #include "SkPaint.h" #include "SkShader.h" // for tilemodes #include "SkUtilsArm.h" #if !SK_ARM_NEON_IS_NONE // These are defined in src/opts/SkBitmapProcState_arm_neon.cpp extern const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[]; extern const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[]; extern void S16_D16_filter_DX_neon(const SkBitmapProcState&, const uint32_t*, int, uint16_t*); extern void Clamp_S16_D16_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint16_t*, int); extern void Repeat_S16_D16_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint16_t*, int); extern void SI8_opaque_D32_filter_DX_neon(const SkBitmapProcState&, const uint32_t*, int, SkPMColor*); extern void SI8_opaque_D32_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint32_t*, int); extern void Clamp_SI8_opaque_D32_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint32_t*, int); #endif #define NAME_WRAP(x) x #include "SkBitmapProcState_filter.h" #include "SkBitmapProcState_procs.h" /////////////////////////////////////////////////////////////////////////////// // true iff the matrix contains, at most, scale and translate elements static bool matrix_only_scale_translate(const SkMatrix& m) { return m.getType() <= (SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask); } /** * For the purposes of drawing bitmaps, if a matrix is "almost" translate * go ahead and treat it as if it were, so that subsequent code can go fast. */ static bool just_trans_clamp(const SkMatrix& matrix, const SkBitmap& bitmap) { SkASSERT(matrix_only_scale_translate(matrix)); if (matrix.getType() & SkMatrix::kScale_Mask) { SkRect src, dst; bitmap.getBounds(&src); // Can't call mapRect(), since that will fix up inverted rectangles, // e.g. when scale is negative, and we don't want to return true for // those. matrix.mapPoints(SkTCast(&dst), SkTCast(&src), 2); // Now round all 4 edges to device space, and then compare the device // width/height to the original. Note: we must map all 4 and subtract // rather than map the "width" and compare, since we care about the // phase (in pixel space) that any translate in the matrix might impart. SkIRect idst; dst.round(&idst); return idst.width() == bitmap.width() && idst.height() == bitmap.height(); } // if we got here, we're either kTranslate_Mask or identity return true; } static bool just_trans_general(const SkMatrix& matrix) { SkASSERT(matrix_only_scale_translate(matrix)); if (matrix.getType() & SkMatrix::kScale_Mask) { const SkScalar tol = SK_Scalar1 / 32768; if (!SkScalarNearlyZero(matrix[SkMatrix::kMScaleX] - SK_Scalar1, tol)) { return false; } if (!SkScalarNearlyZero(matrix[SkMatrix::kMScaleY] - SK_Scalar1, tol)) { return false; } } // if we got here, treat us as either kTranslate_Mask or identity return true; } /////////////////////////////////////////////////////////////////////////////// static bool valid_for_filtering(unsigned dimension) { // for filtering, width and height must fit in 14bits, since we use steal // 2 bits from each to store our 4bit subpixel data return (dimension & ~0x3FFF) == 0; } bool SkBitmapProcState::chooseProcs(const SkMatrix& inv, const SkPaint& paint) { if (fOrigBitmap.width() == 0 || fOrigBitmap.height() == 0) { return false; } const SkMatrix* m; bool trivial_matrix = (inv.getType() & ~SkMatrix::kTranslate_Mask) == 0; bool clamp_clamp = SkShader::kClamp_TileMode == fTileModeX && SkShader::kClamp_TileMode == fTileModeY; if (clamp_clamp || trivial_matrix) { m = &inv; } else { fUnitInvMatrix = inv; fUnitInvMatrix.postIDiv(fOrigBitmap.width(), fOrigBitmap.height()); m = &fUnitInvMatrix; } fBitmap = &fOrigBitmap; if (fOrigBitmap.hasMipMap()) { int shift = fOrigBitmap.extractMipLevel(&fMipBitmap, SkScalarToFixed(m->getScaleX()), SkScalarToFixed(m->getSkewY())); if (shift > 0) { if (m != &fUnitInvMatrix) { fUnitInvMatrix = *m; m = &fUnitInvMatrix; } SkScalar scale = SkFixedToScalar(SK_Fixed1 >> shift); fUnitInvMatrix.postScale(scale, scale); // now point here instead of fOrigBitmap fBitmap = &fMipBitmap; } } // wack our matrix to exactly no-scale, if we're really close to begin with if (matrix_only_scale_translate(*m)) { SkMatrix forward; if (m->invert(&forward)) { if (clamp_clamp ? just_trans_clamp(forward, *fBitmap) : just_trans_general(forward)) { SkScalar tx = -SkScalarRoundToScalar(forward.getTranslateX()); SkScalar ty = -SkScalarRoundToScalar(forward.getTranslateY()); fUnitInvMatrix.setTranslate(tx, ty); m = &fUnitInvMatrix; // now the following code will sniff m, and decide to take the // fast case (since m is purely translate). } } } // Below this point, we should never refer to the inv parameter, since we // may be using a munged version for "our" inverse. fInvMatrix = m; fInvProc = m->getMapXYProc(); fInvType = m->getType(); fInvSx = SkScalarToFixed(m->getScaleX()); fInvSxFractionalInt = SkScalarToFractionalInt(m->getScaleX()); fInvKy = SkScalarToFixed(m->getSkewY()); fInvKyFractionalInt = SkScalarToFractionalInt(m->getSkewY()); fAlphaScale = SkAlpha255To256(paint.getAlpha()); // pick-up filtering from the paint, but only if the matrix is // more complex than identity/translate (i.e. no need to pay the cost // of filtering if we're not scaled etc.). // note: we explicitly check inv, since m might be scaled due to unitinv // trickery, but we don't want to see that for this test fDoFilter = paint.isFilterBitmap() && (fInvType > SkMatrix::kTranslate_Mask && valid_for_filtering(fBitmap->width() | fBitmap->height())); fShaderProc32 = NULL; fShaderProc16 = NULL; fSampleProc32 = NULL; fSampleProc16 = NULL; fMatrixProc = this->chooseMatrixProc(trivial_matrix); if (NULL == fMatrixProc) { return false; } /////////////////////////////////////////////////////////////////////// int index = 0; if (fAlphaScale < 256) { // note: this distinction is not used for D16 index |= 1; } if (fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) { index |= 2; } if (fDoFilter) { index |= 4; } // bits 3,4,5 encoding the source bitmap format switch (fBitmap->config()) { case SkBitmap::kARGB_8888_Config: index |= 0; break; case SkBitmap::kRGB_565_Config: index |= 8; break; case SkBitmap::kIndex8_Config: index |= 16; break; case SkBitmap::kARGB_4444_Config: index |= 24; break; case SkBitmap::kA8_Config: index |= 32; fPaintPMColor = SkPreMultiplyColor(paint.getColor()); break; default: return false; } #if !SK_ARM_NEON_IS_ALWAYS static const SampleProc32 gSkBitmapProcStateSample32[] = { S32_opaque_D32_nofilter_DXDY, S32_alpha_D32_nofilter_DXDY, S32_opaque_D32_nofilter_DX, S32_alpha_D32_nofilter_DX, S32_opaque_D32_filter_DXDY, S32_alpha_D32_filter_DXDY, S32_opaque_D32_filter_DX, S32_alpha_D32_filter_DX, S16_opaque_D32_nofilter_DXDY, S16_alpha_D32_nofilter_DXDY, S16_opaque_D32_nofilter_DX, S16_alpha_D32_nofilter_DX, S16_opaque_D32_filter_DXDY, S16_alpha_D32_filter_DXDY, S16_opaque_D32_filter_DX, S16_alpha_D32_filter_DX, SI8_opaque_D32_nofilter_DXDY, SI8_alpha_D32_nofilter_DXDY, SI8_opaque_D32_nofilter_DX, SI8_alpha_D32_nofilter_DX, SI8_opaque_D32_filter_DXDY, SI8_alpha_D32_filter_DXDY, SI8_opaque_D32_filter_DX, SI8_alpha_D32_filter_DX, S4444_opaque_D32_nofilter_DXDY, S4444_alpha_D32_nofilter_DXDY, S4444_opaque_D32_nofilter_DX, S4444_alpha_D32_nofilter_DX, S4444_opaque_D32_filter_DXDY, S4444_alpha_D32_filter_DXDY, S4444_opaque_D32_filter_DX, S4444_alpha_D32_filter_DX, // A8 treats alpha/opaque the same (equally efficient) SA8_alpha_D32_nofilter_DXDY, SA8_alpha_D32_nofilter_DXDY, SA8_alpha_D32_nofilter_DX, SA8_alpha_D32_nofilter_DX, SA8_alpha_D32_filter_DXDY, SA8_alpha_D32_filter_DXDY, SA8_alpha_D32_filter_DX, SA8_alpha_D32_filter_DX }; static const SampleProc16 gSkBitmapProcStateSample16[] = { S32_D16_nofilter_DXDY, S32_D16_nofilter_DX, S32_D16_filter_DXDY, S32_D16_filter_DX, S16_D16_nofilter_DXDY, S16_D16_nofilter_DX, S16_D16_filter_DXDY, S16_D16_filter_DX, SI8_D16_nofilter_DXDY, SI8_D16_nofilter_DX, SI8_D16_filter_DXDY, SI8_D16_filter_DX, // Don't support 4444 -> 565 NULL, NULL, NULL, NULL, // Don't support A8 -> 565 NULL, NULL, NULL, NULL }; #endif fSampleProc32 = SK_ARM_NEON_WRAP(gSkBitmapProcStateSample32)[index]; index >>= 1; // shift away any opaque/alpha distinction fSampleProc16 = SK_ARM_NEON_WRAP(gSkBitmapProcStateSample16)[index]; // our special-case shaderprocs if (SK_ARM_NEON_WRAP(S16_D16_filter_DX) == fSampleProc16) { if (clamp_clamp) { fShaderProc16 = SK_ARM_NEON_WRAP(Clamp_S16_D16_filter_DX_shaderproc); } else if (SkShader::kRepeat_TileMode == fTileModeX && SkShader::kRepeat_TileMode == fTileModeY) { fShaderProc16 = SK_ARM_NEON_WRAP(Repeat_S16_D16_filter_DX_shaderproc); } } else if (SK_ARM_NEON_WRAP(SI8_opaque_D32_filter_DX) == fSampleProc32 && clamp_clamp) { fShaderProc32 = SK_ARM_NEON_WRAP(Clamp_SI8_opaque_D32_filter_DX_shaderproc); } if (NULL == fShaderProc32) { fShaderProc32 = this->chooseShaderProc32(); } // see if our platform has any accelerated overrides this->platformProcs(); return true; } static void Clamp_S32_D32_nofilter_trans_shaderproc(const SkBitmapProcState& s, int x, int y, SkPMColor* SK_RESTRICT colors, int count) { SkASSERT(((s.fInvType & ~SkMatrix::kTranslate_Mask)) == 0); SkASSERT(s.fInvKy == 0); SkASSERT(count > 0 && colors != NULL); SkASSERT(!s.fDoFilter); const int maxX = s.fBitmap->width() - 1; const int maxY = s.fBitmap->height() - 1; int ix = s.fFilterOneX + x; int iy = SkClampMax(s.fFilterOneY + y, maxY); #ifdef SK_DEBUG { SkPoint pt; s.fInvProc(*s.fInvMatrix, SkIntToScalar(x) + SK_ScalarHalf, SkIntToScalar(y) + SK_ScalarHalf, &pt); int iy2 = SkClampMax(SkScalarFloorToInt(pt.fY), maxY); int ix2 = SkScalarFloorToInt(pt.fX); SkASSERT(iy == iy2); SkASSERT(ix == ix2); } #endif const SkPMColor* row = s.fBitmap->getAddr32(0, iy); // clamp to the left if (ix < 0) { int n = SkMin32(-ix, count); sk_memset32(colors, row[0], n); count -= n; if (0 == count) { return; } colors += n; SkASSERT(-ix == n); ix = 0; } // copy the middle if (ix <= maxX) { int n = SkMin32(maxX - ix + 1, count); memcpy(colors, row + ix, n * sizeof(SkPMColor)); count -= n; if (0 == count) { return; } colors += n; } SkASSERT(count > 0); // clamp to the right sk_memset32(colors, row[maxX], count); } static inline int sk_int_mod(int x, int n) { SkASSERT(n > 0); if ((unsigned)x >= (unsigned)n) { if (x < 0) { x = n + ~(~x % n); } else { x = x % n; } } return x; } static inline int sk_int_mirror(int x, int n) { x = sk_int_mod(x, 2 * n); if (x >= n) { x = n + ~(x - n); } return x; } static void Repeat_S32_D32_nofilter_trans_shaderproc(const SkBitmapProcState& s, int x, int y, SkPMColor* SK_RESTRICT colors, int count) { SkASSERT(((s.fInvType & ~SkMatrix::kTranslate_Mask)) == 0); SkASSERT(s.fInvKy == 0); SkASSERT(count > 0 && colors != NULL); SkASSERT(!s.fDoFilter); const int stopX = s.fBitmap->width(); const int stopY = s.fBitmap->height(); int ix = s.fFilterOneX + x; int iy = sk_int_mod(s.fFilterOneY + y, stopY); #ifdef SK_DEBUG { SkPoint pt; s.fInvProc(*s.fInvMatrix, SkIntToScalar(x) + SK_ScalarHalf, SkIntToScalar(y) + SK_ScalarHalf, &pt); int iy2 = sk_int_mod(SkScalarFloorToInt(pt.fY), stopY); int ix2 = SkScalarFloorToInt(pt.fX); SkASSERT(iy == iy2); SkASSERT(ix == ix2); } #endif const SkPMColor* row = s.fBitmap->getAddr32(0, iy); ix = sk_int_mod(ix, stopX); for (;;) { int n = SkMin32(stopX - ix, count); memcpy(colors, row + ix, n * sizeof(SkPMColor)); count -= n; if (0 == count) { return; } colors += n; ix = 0; } } static void S32_D32_constX_shaderproc(const SkBitmapProcState& s, int x, int y, SkPMColor* SK_RESTRICT colors, int count) { SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) == 0); SkASSERT(s.fInvKy == 0); SkASSERT(count > 0 && colors != NULL); SkASSERT(1 == s.fBitmap->width()); int iY0; int iY1 SK_INIT_TO_AVOID_WARNING; int iSubY SK_INIT_TO_AVOID_WARNING; if (s.fDoFilter) { SkBitmapProcState::MatrixProc mproc = s.getMatrixProc(); uint32_t xy[2]; mproc(s, xy, 1, x, y); iY0 = xy[0] >> 18; iY1 = xy[0] & 0x3FFF; iSubY = (xy[0] >> 14) & 0xF; } else { int yTemp; if (s.fInvType > SkMatrix::kTranslate_Mask) { SkPoint pt; s.fInvProc(*s.fInvMatrix, SkIntToScalar(x) + SK_ScalarHalf, SkIntToScalar(y) + SK_ScalarHalf, &pt); // When the matrix has a scale component the setup code in // chooseProcs multiples the inverse matrix by the inverse of the // bitmap's width and height. Since this method is going to do // its own tiling and sampling we need to undo that here. if (SkShader::kClamp_TileMode != s.fTileModeX || SkShader::kClamp_TileMode != s.fTileModeY) { yTemp = SkScalarFloorToInt(pt.fY * s.fBitmap->height()); } else { yTemp = SkScalarFloorToInt(pt.fY); } } else { yTemp = s.fFilterOneY + y; } const int stopY = s.fBitmap->height(); switch (s.fTileModeY) { case SkShader::kClamp_TileMode: iY0 = SkClampMax(yTemp, stopY-1); break; case SkShader::kRepeat_TileMode: iY0 = sk_int_mod(yTemp, stopY); break; case SkShader::kMirror_TileMode: default: iY0 = sk_int_mirror(yTemp, stopY); break; } #ifdef SK_DEBUG { SkPoint pt; s.fInvProc(*s.fInvMatrix, SkIntToScalar(x) + SK_ScalarHalf, SkIntToScalar(y) + SK_ScalarHalf, &pt); if (s.fInvType > SkMatrix::kTranslate_Mask && (SkShader::kClamp_TileMode != s.fTileModeX || SkShader::kClamp_TileMode != s.fTileModeY)) { pt.fY *= s.fBitmap->height(); } int iY2; switch (s.fTileModeY) { case SkShader::kClamp_TileMode: iY2 = SkClampMax(SkScalarFloorToInt(pt.fY), stopY-1); break; case SkShader::kRepeat_TileMode: iY2 = sk_int_mod(SkScalarFloorToInt(pt.fY), stopY); break; case SkShader::kMirror_TileMode: default: iY2 = sk_int_mirror(SkScalarFloorToInt(pt.fY), stopY); break; } SkASSERT(iY0 == iY2); } #endif } const SkPMColor* row0 = s.fBitmap->getAddr32(0, iY0); SkPMColor color; if (s.fDoFilter) { const SkPMColor* row1 = s.fBitmap->getAddr32(0, iY1); if (s.fAlphaScale < 256) { Filter_32_alpha(iSubY, *row0, *row1, &color, s.fAlphaScale); } else { Filter_32_opaque(iSubY, *row0, *row1, &color); } } else { if (s.fAlphaScale < 256) { color = SkAlphaMulQ(*row0, s.fAlphaScale); } else { color = *row0; } } sk_memset32(colors, color, count); } static void DoNothing_shaderproc(const SkBitmapProcState&, int x, int y, SkPMColor* SK_RESTRICT colors, int count) { // if we get called, the matrix is too tricky, so we just draw nothing sk_memset32(colors, 0, count); } bool SkBitmapProcState::setupForTranslate() { SkPoint pt; fInvProc(*fInvMatrix, SK_ScalarHalf, SK_ScalarHalf, &pt); /* * if the translate is larger than our ints, we can get random results, or * worse, we might get 0x80000000, which wreaks havoc on us, since we can't * negate it. */ const SkScalar too_big = SkIntToScalar(1 << 30); if (SkScalarAbs(pt.fX) > too_big || SkScalarAbs(pt.fY) > too_big) { return false; } // Since we know we're not filtered, we re-purpose these fields allow // us to go from device -> src coordinates w/ just an integer add, // rather than running through the inverse-matrix fFilterOneX = SkScalarFloorToInt(pt.fX); fFilterOneY = SkScalarFloorToInt(pt.fY); return true; } SkBitmapProcState::ShaderProc32 SkBitmapProcState::chooseShaderProc32() { if (SkBitmap::kARGB_8888_Config != fBitmap->config()) { return NULL; } static const unsigned kMask = SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask; if (1 == fBitmap->width() && 0 == (fInvType & ~kMask)) { if (!fDoFilter && fInvType <= SkMatrix::kTranslate_Mask && !this->setupForTranslate()) { return DoNothing_shaderproc; } return S32_D32_constX_shaderproc; } if (fAlphaScale < 256) { return NULL; } if (fInvType > SkMatrix::kTranslate_Mask) { return NULL; } if (fDoFilter) { return NULL; } SkShader::TileMode tx = (SkShader::TileMode)fTileModeX; SkShader::TileMode ty = (SkShader::TileMode)fTileModeY; if (SkShader::kClamp_TileMode == tx && SkShader::kClamp_TileMode == ty) { if (this->setupForTranslate()) { return Clamp_S32_D32_nofilter_trans_shaderproc; } return DoNothing_shaderproc; } if (SkShader::kRepeat_TileMode == tx && SkShader::kRepeat_TileMode == ty) { if (this->setupForTranslate()) { return Repeat_S32_D32_nofilter_trans_shaderproc; } return DoNothing_shaderproc; } return NULL; } /////////////////////////////////////////////////////////////////////////////// #ifdef SK_DEBUG static void check_scale_nofilter(uint32_t bitmapXY[], int count, unsigned mx, unsigned my) { unsigned y = *bitmapXY++; SkASSERT(y < my); const uint16_t* xptr = reinterpret_cast(bitmapXY); for (int i = 0; i < count; ++i) { SkASSERT(xptr[i] < mx); } } static void check_scale_filter(uint32_t bitmapXY[], int count, unsigned mx, unsigned my) { uint32_t YY = *bitmapXY++; unsigned y0 = YY >> 18; unsigned y1 = YY & 0x3FFF; SkASSERT(y0 < my); SkASSERT(y1 < my); for (int i = 0; i < count; ++i) { uint32_t XX = bitmapXY[i]; unsigned x0 = XX >> 18; unsigned x1 = XX & 0x3FFF; SkASSERT(x0 < mx); SkASSERT(x1 < mx); } } static void check_affine_nofilter(uint32_t bitmapXY[], int count, unsigned mx, unsigned my) { for (int i = 0; i < count; ++i) { uint32_t XY = bitmapXY[i]; unsigned x = XY & 0xFFFF; unsigned y = XY >> 16; SkASSERT(x < mx); SkASSERT(y < my); } } static void check_affine_filter(uint32_t bitmapXY[], int count, unsigned mx, unsigned my) { for (int i = 0; i < count; ++i) { uint32_t YY = *bitmapXY++; unsigned y0 = YY >> 18; unsigned y1 = YY & 0x3FFF; SkASSERT(y0 < my); SkASSERT(y1 < my); uint32_t XX = *bitmapXY++; unsigned x0 = XX >> 18; unsigned x1 = XX & 0x3FFF; SkASSERT(x0 < mx); SkASSERT(x1 < mx); } } void SkBitmapProcState::DebugMatrixProc(const SkBitmapProcState& state, uint32_t bitmapXY[], int count, int x, int y) { SkASSERT(bitmapXY); SkASSERT(count > 0); state.fMatrixProc(state, bitmapXY, count, x, y); void (*proc)(uint32_t bitmapXY[], int count, unsigned mx, unsigned my); // There are four formats possible: // scale -vs- affine // filter -vs- nofilter if (state.fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) { proc = state.fDoFilter ? check_scale_filter : check_scale_nofilter; } else { proc = state.fDoFilter ? check_affine_filter : check_affine_nofilter; } proc(bitmapXY, count, state.fBitmap->width(), state.fBitmap->height()); } SkBitmapProcState::MatrixProc SkBitmapProcState::getMatrixProc() const { return DebugMatrixProc; } #endif /////////////////////////////////////////////////////////////////////////////// /* The storage requirements for the different matrix procs are as follows, where each X or Y is 2 bytes, and N is the number of pixels/elements: scale/translate nofilter Y(4bytes) + N * X affine/perspective nofilter N * (X Y) scale/translate filter Y Y + N * (X X) affine/perspective filter N * (Y Y X X) */ int SkBitmapProcState::maxCountForBufferSize(size_t bufferSize) const { int32_t size = static_cast(bufferSize); size &= ~3; // only care about 4-byte aligned chunks if (fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) { size -= 4; // the shared Y (or YY) coordinate if (size < 0) { size = 0; } size >>= 1; } else { size >>= 2; } if (fDoFilter) { size >>= 1; } return size; }