/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBitmapProcState.h" #include "SkColorPriv.h" #include "SkFilterProc.h" #include "SkPaint.h" #include "SkShader.h" // for tilemodes #include "SkUtilsArm.h" #include "SkBitmapScaler.h" #include "SkMipMap.h" #include "SkScaledImageCache.h" #if !SK_ARM_NEON_IS_NONE // These are defined in src/opts/SkBitmapProcState_arm_neon.cpp extern const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[]; extern const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[]; extern void S16_D16_filter_DX_neon(const SkBitmapProcState&, const uint32_t*, int, uint16_t*); extern void Clamp_S16_D16_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint16_t*, int); extern void Repeat_S16_D16_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint16_t*, int); extern void SI8_opaque_D32_filter_DX_neon(const SkBitmapProcState&, const uint32_t*, int, SkPMColor*); extern void SI8_opaque_D32_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint32_t*, int); extern void Clamp_SI8_opaque_D32_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint32_t*, int); #endif #define NAME_WRAP(x) x #include "SkBitmapProcState_filter.h" #include "SkBitmapProcState_procs.h" /////////////////////////////////////////////////////////////////////////////// // true iff the matrix contains, at most, scale and translate elements static bool matrix_only_scale_translate(const SkMatrix& m) { return m.getType() <= (SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask); } /** * For the purposes of drawing bitmaps, if a matrix is "almost" translate * go ahead and treat it as if it were, so that subsequent code can go fast. */ static bool just_trans_clamp(const SkMatrix& matrix, const SkBitmap& bitmap) { SkASSERT(matrix_only_scale_translate(matrix)); if (matrix.getType() & SkMatrix::kScale_Mask) { SkRect src, dst; bitmap.getBounds(&src); // Can't call mapRect(), since that will fix up inverted rectangles, // e.g. when scale is negative, and we don't want to return true for // those. matrix.mapPoints(SkTCast(&dst), SkTCast(&src), 2); // Now round all 4 edges to device space, and then compare the device // width/height to the original. Note: we must map all 4 and subtract // rather than map the "width" and compare, since we care about the // phase (in pixel space) that any translate in the matrix might impart. SkIRect idst; dst.round(&idst); return idst.width() == bitmap.width() && idst.height() == bitmap.height(); } // if we got here, we're either kTranslate_Mask or identity return true; } static bool just_trans_general(const SkMatrix& matrix) { SkASSERT(matrix_only_scale_translate(matrix)); if (matrix.getType() & SkMatrix::kScale_Mask) { const SkScalar tol = SK_Scalar1 / 32768; if (!SkScalarNearlyZero(matrix[SkMatrix::kMScaleX] - SK_Scalar1, tol)) { return false; } if (!SkScalarNearlyZero(matrix[SkMatrix::kMScaleY] - SK_Scalar1, tol)) { return false; } } // if we got here, treat us as either kTranslate_Mask or identity return true; } /////////////////////////////////////////////////////////////////////////////// static bool valid_for_filtering(unsigned dimension) { // for filtering, width and height must fit in 14bits, since we use steal // 2 bits from each to store our 4bit subpixel data return (dimension & ~0x3FFF) == 0; } static SkScalar effective_matrix_scale_sqrd(const SkMatrix& mat) { SkPoint v1, v2; v1.fX = mat.getScaleX(); v1.fY = mat.getSkewY(); v2.fX = mat.getSkewX(); v2.fY = mat.getScaleY(); return SkMaxScalar(v1.lengthSqd(), v2.lengthSqd()); } // TODO -- we may want to pass the clip into this function so we only scale // the portion of the image that we're going to need. This will complicate // the interface to the cache, but might be well worth it. void SkBitmapProcState::possiblyScaleImage() { if (fFilterLevel <= SkPaint::kLow_FilterLevel) { // none or low (bilerp) does not need to look any further return; } // see if our platform has any specialized convolution code. // Set up a pointer to a local (instead of storing the structure in the // proc state) to avoid introducing a header dependency; this makes // recompiles a lot less painful. SkConvolutionProcs simd; fConvolutionProcs = &simd; fConvolutionProcs->fExtraHorizontalReads = 0; fConvolutionProcs->fConvolveVertically = NULL; fConvolutionProcs->fConvolve4RowsHorizontally = NULL; fConvolutionProcs->fConvolveHorizontally = NULL; fConvolutionProcs->fApplySIMDPadding = NULL; this->platformConvolutionProcs(); // STEP 1: Highest quality direct scale? // Check to see if the transformation matrix is simple, and if we're // doing high quality scaling. If so, do the bitmap scale here and // remove the scaling component from the matrix. if (SkPaint::kHigh_FilterLevel == fFilterLevel && fInvMatrix.getType() <= (SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask) && fOrigBitmap.config() == SkBitmap::kARGB_8888_Config) { SkScalar invScaleX = fInvMatrix.getScaleX(); SkScalar invScaleY = fInvMatrix.getScaleY(); SkASSERT(NULL == fScaledCacheID); fScaledCacheID = SkScaledImageCache::FindAndLock(fOrigBitmap, invScaleX, invScaleY, &fScaledBitmap); if (NULL == fScaledCacheID) { int dest_width = SkScalarCeilToInt(fOrigBitmap.width() / invScaleX); int dest_height = SkScalarCeilToInt(fOrigBitmap.height() / invScaleY); // All the criteria are met; let's make a new bitmap. if (!SkBitmapScaler::Resize(&fScaledBitmap, fOrigBitmap, SkBitmapScaler::RESIZE_BEST, dest_width, dest_height, fConvolutionProcs)) { // we failed to create fScaledBitmap, so just return and let // the scanline proc handle it. return; } fScaledCacheID = SkScaledImageCache::AddAndLock(fOrigBitmap, invScaleX, invScaleY, fScaledBitmap); } fScaledBitmap.lockPixels(); fBitmap = &fScaledBitmap; // set the inv matrix type to translate-only; fInvMatrix.setTranslate( 1/fInvMatrix.getScaleX() * fInvMatrix.getTranslateX(), 1/fInvMatrix.getScaleY() * fInvMatrix.getTranslateY() ); // no need for any further filtering; we just did it! fFilterLevel = SkPaint::kNone_FilterLevel; return; } /* * If we get here, the caller has requested either Med or High filter-level * * If High, then our special-case for scale-only did not take, and so we * have to make a choice: * 1. fall back on mipmaps + bilerp * 2. fall back on scanline bicubic filter * For now, we compute the "scale" value from the matrix, and have a * threshold to decide when bicubic is better, and when mips are better. * No doubt a fancier decision tree could be used uere. * * If Medium, then we just try to build a mipmap and select a level, * setting the filter-level to kLow to signal that we just need bilerp * to process the selected level. */ SkScalar scaleSqd = effective_matrix_scale_sqrd(fInvMatrix); if (SkPaint::kHigh_FilterLevel == fFilterLevel) { // Set the limit at 0.25 for the CTM... if the CTM is scaling smaller // than this, then the mipmaps quality may be greater (certainly faster) // so we only keep High quality if the scale is greater than this. // // Since we're dealing with the inverse, we compare against its inverse. const SkScalar bicubicLimit = SkFloatToScalar(4.0f); const SkScalar bicubicLimitSqd = bicubicLimit * bicubicLimit; if (scaleSqd < bicubicLimitSqd) { // use bicubic scanline return; } // else set the filter-level to Medium, since we're scaling down and // want to reqeust mipmaps fFilterLevel = SkPaint::kMedium_FilterLevel; } SkASSERT(SkPaint::kMedium_FilterLevel == fFilterLevel); /** * Medium quality means use a mipmap for down-scaling, and just bilper * for upscaling. Since we're examining the inverse matrix, we look for * a scale > 1 to indicate down scaling by the CTM. */ if (scaleSqd > SK_Scalar1) { const SkMipMap* mip = NULL; SkASSERT(NULL == fScaledCacheID); fScaledCacheID = SkScaledImageCache::FindAndLockMip(fOrigBitmap, &mip); if (!fScaledCacheID) { SkASSERT(NULL == mip); mip = SkMipMap::Build(fOrigBitmap); if (mip) { fScaledCacheID = SkScaledImageCache::AddAndLockMip(fOrigBitmap, mip); mip->unref(); // the cache took a ref SkASSERT(fScaledCacheID); } } else { SkASSERT(mip); } if (mip) { SkScalar levelScale = SkScalarInvert(SkScalarSqrt(scaleSqd)); SkMipMap::Level level; if (mip->extractLevel(levelScale, &level)) { SkScalar invScaleFixup = level.fScale; fInvMatrix.postScale(invScaleFixup, invScaleFixup); fScaledBitmap.setConfig(fOrigBitmap.config(), level.fWidth, level.fHeight, level.fRowBytes); fScaledBitmap.setPixels(level.fPixels); fBitmap = &fScaledBitmap; } } } /* * At this point, we may or may not have built a mipmap. Regardless, we * now fall back on Low so will bilerp whatever fBitmap now points at. */ fFilterLevel = SkPaint::kLow_FilterLevel; } void SkBitmapProcState::endContext() { SkDELETE(fBitmapFilter); fBitmapFilter = NULL; fScaledBitmap.reset(); if (fScaledCacheID) { SkScaledImageCache::Unlock(fScaledCacheID); fScaledCacheID = NULL; } } SkBitmapProcState::~SkBitmapProcState() { if (fScaledCacheID) { SkScaledImageCache::Unlock(fScaledCacheID); } SkDELETE(fBitmapFilter); } bool SkBitmapProcState::chooseProcs(const SkMatrix& inv, const SkPaint& paint) { if (fOrigBitmap.width() == 0 || fOrigBitmap.height() == 0) { return false; } bool trivialMatrix = (inv.getType() & ~SkMatrix::kTranslate_Mask) == 0; bool clampClamp = SkShader::kClamp_TileMode == fTileModeX && SkShader::kClamp_TileMode == fTileModeY; fInvMatrix = inv; if (!(clampClamp || trivialMatrix)) { fInvMatrix.postIDiv(fOrigBitmap.width(), fOrigBitmap.height()); } fBitmap = &fOrigBitmap; // initialize our filter quality to the one requested by the caller. // We may downgrade it later if we determine that we either don't need // or can't provide as high a quality filtering as the user requested. fFilterLevel = paint.getFilterLevel(); #ifndef SK_IGNORE_IMAGE_PRESCALE // possiblyScaleImage will look to see if it can rescale the image as a // preprocess; either by scaling up to the target size, or by selecting // a nearby mipmap level. If it does, it will adjust the working // matrix as well as the working bitmap. It may also adjust the filter // quality to avoid re-filtering an already perfectly scaled image. this->possiblyScaleImage(); #endif // Now that all possible changes to the matrix have taken place, check // to see if we're really close to a no-scale matrix. If so, explicitly // set it to be so. Subsequent code may inspect this matrix to choose // a faster path in this case. // This code will only execute if the matrix has some scale component; // if it's already pure translate then we won't do this inversion. if (matrix_only_scale_translate(fInvMatrix)) { SkMatrix forward; if (fInvMatrix.invert(&forward)) { if (clampClamp ? just_trans_clamp(forward, *fBitmap) : just_trans_general(forward)) { SkScalar tx = -SkScalarRoundToScalar(forward.getTranslateX()); SkScalar ty = -SkScalarRoundToScalar(forward.getTranslateY()); fInvMatrix.setTranslate(tx, ty); } } } fInvProc = fInvMatrix.getMapXYProc(); fInvType = fInvMatrix.getType(); fInvSx = SkScalarToFixed(fInvMatrix.getScaleX()); fInvSxFractionalInt = SkScalarToFractionalInt(fInvMatrix.getScaleX()); fInvKy = SkScalarToFixed(fInvMatrix.getSkewY()); fInvKyFractionalInt = SkScalarToFractionalInt(fInvMatrix.getSkewY()); fAlphaScale = SkAlpha255To256(paint.getAlpha()); fShaderProc32 = NULL; fShaderProc16 = NULL; fSampleProc32 = NULL; fSampleProc16 = NULL; // recompute the triviality of the matrix here because we may have // changed it! trivialMatrix = (fInvMatrix.getType() & ~SkMatrix::kTranslate_Mask) == 0; if (SkPaint::kHigh_FilterLevel == fFilterLevel) { // If this is still set, that means we wanted HQ sampling // but couldn't do it as a preprocess. Let's try to install // the scanline version of the HQ sampler. If that process fails, // downgrade to bilerp. // NOTE: Might need to be careful here in the future when we want // to have the platform proc have a shot at this; it's possible that // the chooseBitmapFilterProc will fail to install a shader but a // platform-specific one might succeed, so it might be premature here // to fall back to bilerp. This needs thought. SkASSERT(fInvType > SkMatrix::kTranslate_Mask); if (!this->setBitmapFilterProcs()) { fFilterLevel = SkPaint::kLow_FilterLevel; } } if (SkPaint::kLow_FilterLevel == fFilterLevel) { // Only try bilerp if the matrix is "interesting" and // the image has a suitable size. if (fInvType <= SkMatrix::kTranslate_Mask || !valid_for_filtering(fBitmap->width() | fBitmap->height())) { fFilterLevel = SkPaint::kNone_FilterLevel; } } // At this point, we know exactly what kind of sampling the per-scanline // shader will perform. fMatrixProc = this->chooseMatrixProc(trivialMatrix); if (NULL == fMatrixProc) { return false; } /////////////////////////////////////////////////////////////////////// // No need to do this if we're doing HQ sampling; if filter quality is // still set to HQ by the time we get here, then we must have installed // the shader procs above and can skip all this. if (fFilterLevel < SkPaint::kHigh_FilterLevel) { int index = 0; if (fAlphaScale < 256) { // note: this distinction is not used for D16 index |= 1; } if (fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) { index |= 2; } if (fFilterLevel > SkPaint::kNone_FilterLevel) { index |= 4; } // bits 3,4,5 encoding the source bitmap format switch (fBitmap->config()) { case SkBitmap::kARGB_8888_Config: index |= 0; break; case SkBitmap::kRGB_565_Config: index |= 8; break; case SkBitmap::kIndex8_Config: index |= 16; break; case SkBitmap::kARGB_4444_Config: index |= 24; break; case SkBitmap::kA8_Config: index |= 32; fPaintPMColor = SkPreMultiplyColor(paint.getColor()); break; default: return false; } #if !SK_ARM_NEON_IS_ALWAYS static const SampleProc32 gSkBitmapProcStateSample32[] = { S32_opaque_D32_nofilter_DXDY, S32_alpha_D32_nofilter_DXDY, S32_opaque_D32_nofilter_DX, S32_alpha_D32_nofilter_DX, S32_opaque_D32_filter_DXDY, S32_alpha_D32_filter_DXDY, S32_opaque_D32_filter_DX, S32_alpha_D32_filter_DX, S16_opaque_D32_nofilter_DXDY, S16_alpha_D32_nofilter_DXDY, S16_opaque_D32_nofilter_DX, S16_alpha_D32_nofilter_DX, S16_opaque_D32_filter_DXDY, S16_alpha_D32_filter_DXDY, S16_opaque_D32_filter_DX, S16_alpha_D32_filter_DX, SI8_opaque_D32_nofilter_DXDY, SI8_alpha_D32_nofilter_DXDY, SI8_opaque_D32_nofilter_DX, SI8_alpha_D32_nofilter_DX, SI8_opaque_D32_filter_DXDY, SI8_alpha_D32_filter_DXDY, SI8_opaque_D32_filter_DX, SI8_alpha_D32_filter_DX, S4444_opaque_D32_nofilter_DXDY, S4444_alpha_D32_nofilter_DXDY, S4444_opaque_D32_nofilter_DX, S4444_alpha_D32_nofilter_DX, S4444_opaque_D32_filter_DXDY, S4444_alpha_D32_filter_DXDY, S4444_opaque_D32_filter_DX, S4444_alpha_D32_filter_DX, // A8 treats alpha/opaque the same (equally efficient) SA8_alpha_D32_nofilter_DXDY, SA8_alpha_D32_nofilter_DXDY, SA8_alpha_D32_nofilter_DX, SA8_alpha_D32_nofilter_DX, SA8_alpha_D32_filter_DXDY, SA8_alpha_D32_filter_DXDY, SA8_alpha_D32_filter_DX, SA8_alpha_D32_filter_DX }; static const SampleProc16 gSkBitmapProcStateSample16[] = { S32_D16_nofilter_DXDY, S32_D16_nofilter_DX, S32_D16_filter_DXDY, S32_D16_filter_DX, S16_D16_nofilter_DXDY, S16_D16_nofilter_DX, S16_D16_filter_DXDY, S16_D16_filter_DX, SI8_D16_nofilter_DXDY, SI8_D16_nofilter_DX, SI8_D16_filter_DXDY, SI8_D16_filter_DX, // Don't support 4444 -> 565 NULL, NULL, NULL, NULL, // Don't support A8 -> 565 NULL, NULL, NULL, NULL }; #endif fSampleProc32 = SK_ARM_NEON_WRAP(gSkBitmapProcStateSample32)[index]; index >>= 1; // shift away any opaque/alpha distinction fSampleProc16 = SK_ARM_NEON_WRAP(gSkBitmapProcStateSample16)[index]; // our special-case shaderprocs if (SK_ARM_NEON_WRAP(S16_D16_filter_DX) == fSampleProc16) { if (clampClamp) { fShaderProc16 = SK_ARM_NEON_WRAP(Clamp_S16_D16_filter_DX_shaderproc); } else if (SkShader::kRepeat_TileMode == fTileModeX && SkShader::kRepeat_TileMode == fTileModeY) { fShaderProc16 = SK_ARM_NEON_WRAP(Repeat_S16_D16_filter_DX_shaderproc); } } else if (SK_ARM_NEON_WRAP(SI8_opaque_D32_filter_DX) == fSampleProc32 && clampClamp) { fShaderProc32 = SK_ARM_NEON_WRAP(Clamp_SI8_opaque_D32_filter_DX_shaderproc); } if (NULL == fShaderProc32) { fShaderProc32 = this->chooseShaderProc32(); } } // see if our platform has any accelerated overrides this->platformProcs(); return true; } static void Clamp_S32_D32_nofilter_trans_shaderproc(const SkBitmapProcState& s, int x, int y, SkPMColor* SK_RESTRICT colors, int count) { SkASSERT(((s.fInvType & ~SkMatrix::kTranslate_Mask)) == 0); SkASSERT(s.fInvKy == 0); SkASSERT(count > 0 && colors != NULL); SkASSERT(SkPaint::kNone_FilterLevel == s.fFilterLevel); const int maxX = s.fBitmap->width() - 1; const int maxY = s.fBitmap->height() - 1; int ix = s.fFilterOneX + x; int iy = SkClampMax(s.fFilterOneY + y, maxY); #ifdef SK_DEBUG { SkPoint pt; s.fInvProc(s.fInvMatrix, SkIntToScalar(x) + SK_ScalarHalf, SkIntToScalar(y) + SK_ScalarHalf, &pt); int iy2 = SkClampMax(SkScalarFloorToInt(pt.fY), maxY); int ix2 = SkScalarFloorToInt(pt.fX); SkASSERT(iy == iy2); SkASSERT(ix == ix2); } #endif const SkPMColor* row = s.fBitmap->getAddr32(0, iy); // clamp to the left if (ix < 0) { int n = SkMin32(-ix, count); sk_memset32(colors, row[0], n); count -= n; if (0 == count) { return; } colors += n; SkASSERT(-ix == n); ix = 0; } // copy the middle if (ix <= maxX) { int n = SkMin32(maxX - ix + 1, count); memcpy(colors, row + ix, n * sizeof(SkPMColor)); count -= n; if (0 == count) { return; } colors += n; } SkASSERT(count > 0); // clamp to the right sk_memset32(colors, row[maxX], count); } static inline int sk_int_mod(int x, int n) { SkASSERT(n > 0); if ((unsigned)x >= (unsigned)n) { if (x < 0) { x = n + ~(~x % n); } else { x = x % n; } } return x; } static inline int sk_int_mirror(int x, int n) { x = sk_int_mod(x, 2 * n); if (x >= n) { x = n + ~(x - n); } return x; } static void Repeat_S32_D32_nofilter_trans_shaderproc(const SkBitmapProcState& s, int x, int y, SkPMColor* SK_RESTRICT colors, int count) { SkASSERT(((s.fInvType & ~SkMatrix::kTranslate_Mask)) == 0); SkASSERT(s.fInvKy == 0); SkASSERT(count > 0 && colors != NULL); SkASSERT(SkPaint::kNone_FilterLevel == s.fFilterLevel); const int stopX = s.fBitmap->width(); const int stopY = s.fBitmap->height(); int ix = s.fFilterOneX + x; int iy = sk_int_mod(s.fFilterOneY + y, stopY); #ifdef SK_DEBUG { SkPoint pt; s.fInvProc(s.fInvMatrix, SkIntToScalar(x) + SK_ScalarHalf, SkIntToScalar(y) + SK_ScalarHalf, &pt); int iy2 = sk_int_mod(SkScalarFloorToInt(pt.fY), stopY); int ix2 = SkScalarFloorToInt(pt.fX); SkASSERT(iy == iy2); SkASSERT(ix == ix2); } #endif const SkPMColor* row = s.fBitmap->getAddr32(0, iy); ix = sk_int_mod(ix, stopX); for (;;) { int n = SkMin32(stopX - ix, count); memcpy(colors, row + ix, n * sizeof(SkPMColor)); count -= n; if (0 == count) { return; } colors += n; ix = 0; } } static void S32_D32_constX_shaderproc(const SkBitmapProcState& s, int x, int y, SkPMColor* SK_RESTRICT colors, int count) { SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) == 0); SkASSERT(s.fInvKy == 0); SkASSERT(count > 0 && colors != NULL); SkASSERT(1 == s.fBitmap->width()); int iY0; int iY1 SK_INIT_TO_AVOID_WARNING; int iSubY SK_INIT_TO_AVOID_WARNING; if (SkPaint::kNone_FilterLevel != s.fFilterLevel) { SkBitmapProcState::MatrixProc mproc = s.getMatrixProc(); uint32_t xy[2]; mproc(s, xy, 1, x, y); iY0 = xy[0] >> 18; iY1 = xy[0] & 0x3FFF; iSubY = (xy[0] >> 14) & 0xF; } else { int yTemp; if (s.fInvType > SkMatrix::kTranslate_Mask) { SkPoint pt; s.fInvProc(s.fInvMatrix, SkIntToScalar(x) + SK_ScalarHalf, SkIntToScalar(y) + SK_ScalarHalf, &pt); // When the matrix has a scale component the setup code in // chooseProcs multiples the inverse matrix by the inverse of the // bitmap's width and height. Since this method is going to do // its own tiling and sampling we need to undo that here. if (SkShader::kClamp_TileMode != s.fTileModeX || SkShader::kClamp_TileMode != s.fTileModeY) { yTemp = SkScalarFloorToInt(pt.fY * s.fBitmap->height()); } else { yTemp = SkScalarFloorToInt(pt.fY); } } else { yTemp = s.fFilterOneY + y; } const int stopY = s.fBitmap->height(); switch (s.fTileModeY) { case SkShader::kClamp_TileMode: iY0 = SkClampMax(yTemp, stopY-1); break; case SkShader::kRepeat_TileMode: iY0 = sk_int_mod(yTemp, stopY); break; case SkShader::kMirror_TileMode: default: iY0 = sk_int_mirror(yTemp, stopY); break; } #ifdef SK_DEBUG { SkPoint pt; s.fInvProc(s.fInvMatrix, SkIntToScalar(x) + SK_ScalarHalf, SkIntToScalar(y) + SK_ScalarHalf, &pt); if (s.fInvType > SkMatrix::kTranslate_Mask && (SkShader::kClamp_TileMode != s.fTileModeX || SkShader::kClamp_TileMode != s.fTileModeY)) { pt.fY *= s.fBitmap->height(); } int iY2; switch (s.fTileModeY) { case SkShader::kClamp_TileMode: iY2 = SkClampMax(SkScalarFloorToInt(pt.fY), stopY-1); break; case SkShader::kRepeat_TileMode: iY2 = sk_int_mod(SkScalarFloorToInt(pt.fY), stopY); break; case SkShader::kMirror_TileMode: default: iY2 = sk_int_mirror(SkScalarFloorToInt(pt.fY), stopY); break; } SkASSERT(iY0 == iY2); } #endif } const SkPMColor* row0 = s.fBitmap->getAddr32(0, iY0); SkPMColor color; if (SkPaint::kNone_FilterLevel != s.fFilterLevel) { const SkPMColor* row1 = s.fBitmap->getAddr32(0, iY1); if (s.fAlphaScale < 256) { Filter_32_alpha(iSubY, *row0, *row1, &color, s.fAlphaScale); } else { Filter_32_opaque(iSubY, *row0, *row1, &color); } } else { if (s.fAlphaScale < 256) { color = SkAlphaMulQ(*row0, s.fAlphaScale); } else { color = *row0; } } sk_memset32(colors, color, count); } static void DoNothing_shaderproc(const SkBitmapProcState&, int x, int y, SkPMColor* SK_RESTRICT colors, int count) { // if we get called, the matrix is too tricky, so we just draw nothing sk_memset32(colors, 0, count); } bool SkBitmapProcState::setupForTranslate() { SkPoint pt; fInvProc(fInvMatrix, SK_ScalarHalf, SK_ScalarHalf, &pt); /* * if the translate is larger than our ints, we can get random results, or * worse, we might get 0x80000000, which wreaks havoc on us, since we can't * negate it. */ const SkScalar too_big = SkIntToScalar(1 << 30); if (SkScalarAbs(pt.fX) > too_big || SkScalarAbs(pt.fY) > too_big) { return false; } // Since we know we're not filtered, we re-purpose these fields allow // us to go from device -> src coordinates w/ just an integer add, // rather than running through the inverse-matrix fFilterOneX = SkScalarFloorToInt(pt.fX); fFilterOneY = SkScalarFloorToInt(pt.fY); return true; } SkBitmapProcState::ShaderProc32 SkBitmapProcState::chooseShaderProc32() { if (SkBitmap::kARGB_8888_Config != fBitmap->config()) { return NULL; } static const unsigned kMask = SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask; if (1 == fBitmap->width() && 0 == (fInvType & ~kMask)) { if (SkPaint::kNone_FilterLevel == fFilterLevel && fInvType <= SkMatrix::kTranslate_Mask && !this->setupForTranslate()) { return DoNothing_shaderproc; } return S32_D32_constX_shaderproc; } if (fAlphaScale < 256) { return NULL; } if (fInvType > SkMatrix::kTranslate_Mask) { return NULL; } if (SkPaint::kNone_FilterLevel != fFilterLevel) { return NULL; } SkShader::TileMode tx = (SkShader::TileMode)fTileModeX; SkShader::TileMode ty = (SkShader::TileMode)fTileModeY; if (SkShader::kClamp_TileMode == tx && SkShader::kClamp_TileMode == ty) { if (this->setupForTranslate()) { return Clamp_S32_D32_nofilter_trans_shaderproc; } return DoNothing_shaderproc; } if (SkShader::kRepeat_TileMode == tx && SkShader::kRepeat_TileMode == ty) { if (this->setupForTranslate()) { return Repeat_S32_D32_nofilter_trans_shaderproc; } return DoNothing_shaderproc; } return NULL; } /////////////////////////////////////////////////////////////////////////////// #ifdef SK_DEBUG static void check_scale_nofilter(uint32_t bitmapXY[], int count, unsigned mx, unsigned my) { unsigned y = *bitmapXY++; SkASSERT(y < my); const uint16_t* xptr = reinterpret_cast(bitmapXY); for (int i = 0; i < count; ++i) { SkASSERT(xptr[i] < mx); } } static void check_scale_filter(uint32_t bitmapXY[], int count, unsigned mx, unsigned my) { uint32_t YY = *bitmapXY++; unsigned y0 = YY >> 18; unsigned y1 = YY & 0x3FFF; SkASSERT(y0 < my); SkASSERT(y1 < my); for (int i = 0; i < count; ++i) { uint32_t XX = bitmapXY[i]; unsigned x0 = XX >> 18; unsigned x1 = XX & 0x3FFF; SkASSERT(x0 < mx); SkASSERT(x1 < mx); } } static void check_affine_nofilter(uint32_t bitmapXY[], int count, unsigned mx, unsigned my) { for (int i = 0; i < count; ++i) { uint32_t XY = bitmapXY[i]; unsigned x = XY & 0xFFFF; unsigned y = XY >> 16; SkASSERT(x < mx); SkASSERT(y < my); } } static void check_affine_filter(uint32_t bitmapXY[], int count, unsigned mx, unsigned my) { for (int i = 0; i < count; ++i) { uint32_t YY = *bitmapXY++; unsigned y0 = YY >> 18; unsigned y1 = YY & 0x3FFF; SkASSERT(y0 < my); SkASSERT(y1 < my); uint32_t XX = *bitmapXY++; unsigned x0 = XX >> 18; unsigned x1 = XX & 0x3FFF; SkASSERT(x0 < mx); SkASSERT(x1 < mx); } } void SkBitmapProcState::DebugMatrixProc(const SkBitmapProcState& state, uint32_t bitmapXY[], int count, int x, int y) { SkASSERT(bitmapXY); SkASSERT(count > 0); state.fMatrixProc(state, bitmapXY, count, x, y); void (*proc)(uint32_t bitmapXY[], int count, unsigned mx, unsigned my); // There are four formats possible: // scale -vs- affine // filter -vs- nofilter if (state.fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) { proc = state.fFilterLevel != SkPaint::kNone_FilterLevel ? check_scale_filter : check_scale_nofilter; } else { proc = state.fFilterLevel != SkPaint::kNone_FilterLevel ? check_affine_filter : check_affine_nofilter; } proc(bitmapXY, count, state.fBitmap->width(), state.fBitmap->height()); } SkBitmapProcState::MatrixProc SkBitmapProcState::getMatrixProc() const { return DebugMatrixProc; } #endif /////////////////////////////////////////////////////////////////////////////// /* The storage requirements for the different matrix procs are as follows, where each X or Y is 2 bytes, and N is the number of pixels/elements: scale/translate nofilter Y(4bytes) + N * X affine/perspective nofilter N * (X Y) scale/translate filter Y Y + N * (X X) affine/perspective filter N * (Y Y X X) */ int SkBitmapProcState::maxCountForBufferSize(size_t bufferSize) const { int32_t size = static_cast(bufferSize); size &= ~3; // only care about 4-byte aligned chunks if (fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) { size -= 4; // the shared Y (or YY) coordinate if (size < 0) { size = 0; } size >>= 1; } else { size >>= 2; } if (fFilterLevel != SkPaint::kNone_FilterLevel) { size >>= 1; } return size; }