/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBitmapProcShader.h" #include "SkBitmapProcState.h" #include "SkBitmapProvider.h" #include "SkColorPriv.h" #include "SkErrorInternals.h" #include "SkPixelRef.h" #include "SkReadBuffer.h" #include "SkWriteBuffer.h" #if SK_SUPPORT_GPU #include "SkGrPriv.h" #include "effects/GrBicubicEffect.h" #include "effects/GrSimpleTextureEffect.h" #endif static bool only_scale_and_translate(const SkMatrix& matrix) { unsigned mask = SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask; return (matrix.getType() & ~mask) == 0; } class BitmapProcInfoContext : public SkShader::Context { public: // The info has been allocated elsewhere, but we are responsible for calling its destructor. BitmapProcInfoContext(const SkShader& shader, const SkShader::ContextRec& rec, SkBitmapProcInfo* info) : INHERITED(shader, rec) , fInfo(info) { fFlags = 0; if (fInfo->fPixmap.isOpaque() && (255 == this->getPaintAlpha())) { fFlags |= SkShader::kOpaqueAlpha_Flag; } if (1 == fInfo->fPixmap.height() && only_scale_and_translate(this->getTotalInverse())) { fFlags |= SkShader::kConstInY32_Flag; } } ~BitmapProcInfoContext() override { fInfo->~SkBitmapProcInfo(); } uint32_t getFlags() const override { return fFlags; } private: SkBitmapProcInfo* fInfo; uint32_t fFlags; typedef SkShader::Context INHERITED; }; /////////////////////////////////////////////////////////////////////////////////////////////////// class BitmapProcShaderContext : public BitmapProcInfoContext { public: BitmapProcShaderContext(const SkShader& shader, const SkShader::ContextRec& rec, SkBitmapProcState* state) : INHERITED(shader, rec, state) , fState(state) {} void shadeSpan(int x, int y, SkPMColor dstC[], int count) override { const SkBitmapProcState& state = *fState; if (state.getShaderProc32()) { state.getShaderProc32()(&state, x, y, dstC, count); return; } const int BUF_MAX = 128; uint32_t buffer[BUF_MAX]; SkBitmapProcState::MatrixProc mproc = state.getMatrixProc(); SkBitmapProcState::SampleProc32 sproc = state.getSampleProc32(); const int max = state.maxCountForBufferSize(sizeof(buffer[0]) * BUF_MAX); SkASSERT(state.fPixmap.addr()); for (;;) { int n = SkTMin(count, max); SkASSERT(n > 0 && n < BUF_MAX*2); mproc(state, buffer, n, x, y); sproc(state, buffer, n, dstC); if ((count -= n) == 0) { break; } SkASSERT(count > 0); x += n; dstC += n; } } ShadeProc asAShadeProc(void** ctx) override { if (fState->getShaderProc32()) { *ctx = fState; return (ShadeProc)fState->getShaderProc32(); } return nullptr; } private: SkBitmapProcState* fState; typedef BitmapProcInfoContext INHERITED; }; /////////////////////////////////////////////////////////////////////////////////////////////////// #include "SkLinearBitmapPipeline.h" #include "SkPM4f.h" #include "SkXfermode.h" class LinearPipelineContext : public BitmapProcInfoContext { public: LinearPipelineContext(const SkShader& shader, const SkShader::ContextRec& rec, SkBitmapProcInfo* info) : INHERITED(shader, rec, info) { // Save things off in case we need to build a blitter pipeline. fSrcPixmap = info->fPixmap; fAlpha = SkColorGetA(info->fPaintColor) / 255.0f; fXMode = info->fTileModeX; fYMode = info->fTileModeY; fFilterQuality = info->fFilterQuality; fMatrixTypeMask = info->fRealInvMatrix.getType(); // Need to ensure that our pipeline is created at a 16byte aligned address fShaderPipeline = (SkLinearBitmapPipeline*)SkAlign16((intptr_t)fShaderStorage); new (fShaderPipeline) SkLinearBitmapPipeline(info->fRealInvMatrix, info->fFilterQuality, info->fTileModeX, info->fTileModeY, fAlpha, info->fPixmap); // To implement the old shadeSpan entry-point, we need to efficiently convert our native // floats into SkPMColor. The SkXfermode::D32Procs do exactly that. // sk_sp xfer(SkXfermode::Make(SkXfermode::kSrc_Mode)); fXferProc = SkXfermode::GetD32Proc(xfer.get(), 0); } ~LinearPipelineContext() override { // since we did a manual new, we need to manually destroy as well. fShaderPipeline->~SkLinearBitmapPipeline(); if (fBlitterPipeline != nullptr) { fBlitterPipeline->~SkLinearBitmapPipeline(); } } void shadeSpan4f(int x, int y, SkPM4f dstC[], int count) override { fShaderPipeline->shadeSpan4f(x, y, dstC, count); } void shadeSpan(int x, int y, SkPMColor dstC[], int count) override { const int N = 128; SkPM4f tmp[N]; while (count > 0) { const int n = SkTMin(count, N); fShaderPipeline->shadeSpan4f(x, y, tmp, n); fXferProc(nullptr, dstC, tmp, n, nullptr); dstC += n; x += n; count -= n; } } bool onChooseBlitProcs(const SkImageInfo& dstInfo, BlitState* state) override { SkXfermode::Mode mode; if (!SkXfermode::AsMode(state->fXfer, &mode)) { return false; } // Need to ensure that our pipeline is created at a 16byte aligned address fBlitterPipeline = (SkLinearBitmapPipeline*)SkAlign16((intptr_t)fBlitterStorage); if (SkLinearBitmapPipeline::ClonePipelineForBlitting( fBlitterPipeline, *fShaderPipeline, fMatrixTypeMask, fXMode, fYMode, fFilterQuality, fSrcPixmap, fAlpha, mode, dstInfo)) { state->fStorage[0] = fBlitterPipeline; state->fBlitBW = &LinearPipelineContext::ForwardToPipeline; return true; } // Did not successfully create a pipeline so don't destruct it. fBlitterPipeline = nullptr; return false; } static void ForwardToPipeline(BlitState* state, int x, int y, const SkPixmap& dst, int count) { SkLinearBitmapPipeline* pipeline = static_cast(state->fStorage[0]); void* addr = dst.writable_addr32(x, y); pipeline->blitSpan(x, y, addr, count); } private: enum { kActualSize = sizeof(SkLinearBitmapPipeline), kPaddedSize = SkAlignPtr(kActualSize + 12), }; void* fShaderStorage[kPaddedSize / sizeof(void*)]; SkLinearBitmapPipeline* fShaderPipeline; void* fBlitterStorage[kPaddedSize / sizeof(void*)]; SkLinearBitmapPipeline* fBlitterPipeline{nullptr}; SkXfermode::D32Proc fXferProc; SkPixmap fSrcPixmap; float fAlpha; SkShader::TileMode fXMode; SkShader::TileMode fYMode; SkMatrix::TypeMask fMatrixTypeMask; SkFilterQuality fFilterQuality; typedef BitmapProcInfoContext INHERITED; }; /////////////////////////////////////////////////////////////////////////////////////////////////// static bool choose_linear_pipeline(const SkShader::ContextRec& rec, const SkImageInfo& srcInfo) { // These src attributes are not supported in the new 4f context (yet) // if (srcInfo.profileType() != kSRGB_SkColorProfileType) { return false; } if (srcInfo.colorType() != kRGBA_8888_SkColorType && srcInfo.colorType() != kBGRA_8888_SkColorType && srcInfo.colorType() != kIndex_8_SkColorType && srcInfo.colorType() != kRGBA_F16_SkColorType) { return false; } // If we get here, we can reasonably use either context, respect the caller's preference // return SkShader::ContextRec::kPM4f_DstType == rec.fPreferredDstType; } size_t SkBitmapProcShader::ContextSize(const ContextRec& rec, const SkImageInfo& srcInfo) { size_t size0 = sizeof(BitmapProcShaderContext) + sizeof(SkBitmapProcState); size_t size1 = sizeof(LinearPipelineContext) + sizeof(SkBitmapProcInfo); return SkTMax(size0, size1); } SkShader::Context* SkBitmapProcShader::MakeContext(const SkShader& shader, TileMode tmx, TileMode tmy, const SkBitmapProvider& provider, const ContextRec& rec, void* storage) { SkMatrix totalInverse; // Do this first, so we know the matrix can be inverted. if (!shader.computeTotalInverse(rec, &totalInverse)) { return nullptr; } // Decide if we can/want to use the new linear pipeline bool useLinearPipeline = choose_linear_pipeline(rec, provider.info()); if (useLinearPipeline) { void* infoStorage = (char*)storage + sizeof(LinearPipelineContext); SkBitmapProcInfo* info = new (infoStorage) SkBitmapProcInfo(provider, tmx, tmy); if (!info->init(totalInverse, *rec.fPaint)) { info->~SkBitmapProcInfo(); return nullptr; } if (info->fPixmap.colorType() != kRGBA_8888_SkColorType && info->fPixmap.colorType() != kBGRA_8888_SkColorType && info->fPixmap.colorType() != kIndex_8_SkColorType && info->fPixmap.colorType() != kRGBA_F16_SkColorType) { return nullptr; } return new (storage) LinearPipelineContext(shader, rec, info); } else { void* stateStorage = (char*)storage + sizeof(BitmapProcShaderContext); SkBitmapProcState* state = new (stateStorage) SkBitmapProcState(provider, tmx, tmy); if (!state->setup(totalInverse, *rec.fPaint)) { state->~SkBitmapProcState(); return nullptr; } return new (storage) BitmapProcShaderContext(shader, rec, state); } } SkShader::Context* SkBitmapProcShader::onCreateContext(const ContextRec& rec, void* storage) const { return MakeContext(*this, (TileMode)fTileModeX, (TileMode)fTileModeY, SkBitmapProvider(fRawBitmap), rec, storage); } /////////////////////////////////////////////////////////////////////////////////////////////////// SkBitmapProcShader::SkBitmapProcShader(const SkBitmap& src, TileMode tmx, TileMode tmy, const SkMatrix* localMatrix) : INHERITED(localMatrix) { fRawBitmap = src; fTileModeX = (uint8_t)tmx; fTileModeY = (uint8_t)tmy; } bool SkBitmapProcShader::onIsABitmap(SkBitmap* texture, SkMatrix* texM, TileMode xy[]) const { if (texture) { *texture = fRawBitmap; } if (texM) { texM->reset(); } if (xy) { xy[0] = (TileMode)fTileModeX; xy[1] = (TileMode)fTileModeY; } return true; } sk_sp SkBitmapProcShader::CreateProc(SkReadBuffer& buffer) { SkMatrix lm; buffer.readMatrix(&lm); SkBitmap bm; if (!buffer.readBitmap(&bm)) { return nullptr; } bm.setImmutable(); TileMode mx = (TileMode)buffer.readUInt(); TileMode my = (TileMode)buffer.readUInt(); return SkShader::MakeBitmapShader(bm, mx, my, &lm); } void SkBitmapProcShader::flatten(SkWriteBuffer& buffer) const { buffer.writeMatrix(this->getLocalMatrix()); buffer.writeBitmap(fRawBitmap); buffer.writeUInt(fTileModeX); buffer.writeUInt(fTileModeY); } bool SkBitmapProcShader::isOpaque() const { return fRawBitmap.isOpaque(); } /////////////////////////////////////////////////////////////////////////////////////////////////// #include "SkUnPreMultiply.h" #include "SkColorShader.h" #include "SkEmptyShader.h" // returns true and set color if the bitmap can be drawn as a single color // (for efficiency) static bool can_use_color_shader(const SkBitmap& bm, SkColor* color) { #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK // HWUI does not support color shaders (see b/22390304) return false; #endif if (1 != bm.width() || 1 != bm.height()) { return false; } SkAutoLockPixels alp(bm); if (!bm.readyToDraw()) { return false; } switch (bm.colorType()) { case kN32_SkColorType: *color = SkUnPreMultiply::PMColorToColor(*bm.getAddr32(0, 0)); return true; case kRGB_565_SkColorType: *color = SkPixel16ToColor(*bm.getAddr16(0, 0)); return true; case kIndex_8_SkColorType: *color = SkUnPreMultiply::PMColorToColor(bm.getIndex8Color(0, 0)); return true; default: // just skip the other configs for now break; } return false; } static bool bitmap_is_too_big(const SkBitmap& bm) { // SkBitmapProcShader stores bitmap coordinates in a 16bit buffer, as it // communicates between its matrix-proc and its sampler-proc. Until we can // widen that, we have to reject bitmaps that are larger. // static const int kMaxSize = 65535; return bm.width() > kMaxSize || bm.height() > kMaxSize; } sk_sp SkMakeBitmapShader(const SkBitmap& src, SkShader::TileMode tmx, SkShader::TileMode tmy, const SkMatrix* localMatrix, SkTBlitterAllocator* allocator) { SkShader* shader; SkColor color; if (src.isNull() || bitmap_is_too_big(src)) { if (nullptr == allocator) { shader = new SkEmptyShader; } else { shader = allocator->createT(); } } else if (can_use_color_shader(src, &color)) { if (nullptr == allocator) { shader = new SkColorShader(color); } else { shader = allocator->createT(color); } } else { if (nullptr == allocator) { shader = new SkBitmapProcShader(src, tmx, tmy, localMatrix); } else { shader = allocator->createT(src, tmx, tmy, localMatrix); } } return sk_sp(shader); } /////////////////////////////////////////////////////////////////////////////// #ifndef SK_IGNORE_TO_STRING void SkBitmapProcShader::toString(SkString* str) const { static const char* gTileModeName[SkShader::kTileModeCount] = { "clamp", "repeat", "mirror" }; str->append("BitmapShader: ("); str->appendf("(%s, %s)", gTileModeName[fTileModeX], gTileModeName[fTileModeY]); str->append(" "); fRawBitmap.toString(str); this->INHERITED::toString(str); str->append(")"); } #endif /////////////////////////////////////////////////////////////////////////////// #if SK_SUPPORT_GPU #include "GrTextureAccess.h" #include "SkGr.h" #include "effects/GrSimpleTextureEffect.h" const GrFragmentProcessor* SkBitmapProcShader::asFragmentProcessor(GrContext* context, const SkMatrix& viewM, const SkMatrix* localMatrix, SkFilterQuality filterQuality) const { SkMatrix matrix; matrix.setIDiv(fRawBitmap.width(), fRawBitmap.height()); SkMatrix lmInverse; if (!this->getLocalMatrix().invert(&lmInverse)) { return nullptr; } if (localMatrix) { SkMatrix inv; if (!localMatrix->invert(&inv)) { return nullptr; } lmInverse.postConcat(inv); } matrix.preConcat(lmInverse); SkShader::TileMode tm[] = { (TileMode)fTileModeX, (TileMode)fTileModeY, }; // Must set wrap and filter on the sampler before requesting a texture. In two places below // we check the matrix scale factors to determine how to interpret the filter quality setting. // This completely ignores the complexity of the drawVertices case where explicit local coords // are provided by the caller. bool doBicubic; GrTextureParams::FilterMode textureFilterMode = GrSkFilterQualityToGrFilterMode(filterQuality, viewM, this->getLocalMatrix(), &doBicubic); GrTextureParams params(tm, textureFilterMode); SkAutoTUnref texture(GrRefCachedBitmapTexture(context, fRawBitmap, params)); if (!texture) { SkErrorInternals::SetError( kInternalError_SkError, "Couldn't convert bitmap to texture."); return nullptr; } SkAutoTUnref inner; if (doBicubic) { inner.reset(GrBicubicEffect::Create(texture, matrix, tm)); } else { inner.reset(GrSimpleTextureEffect::Create(texture, matrix, params)); } if (kAlpha_8_SkColorType == fRawBitmap.colorType()) { return GrFragmentProcessor::MulOutputByInputUnpremulColor(inner); } return GrFragmentProcessor::MulOutputByInputAlpha(inner); } #endif