/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBitmapDevice.h" #include "SkConfig8888.h" #include "SkDraw.h" #include "SkRasterClip.h" #include "SkShader.h" #include "SkSurface.h" #define CHECK_FOR_ANNOTATION(paint) \ do { if (paint.getAnnotation()) { return; } } while (0) static bool valid_for_bitmap_device(const SkImageInfo& info, SkAlphaType* newAlphaType) { if (info.width() < 0 || info.height() < 0) { return false; } // TODO: can we stop supporting kUnknown in SkBitmkapDevice? if (kUnknown_SkColorType == info.colorType()) { if (newAlphaType) { *newAlphaType = kIgnore_SkAlphaType; } return true; } switch (info.alphaType()) { case kPremul_SkAlphaType: case kOpaque_SkAlphaType: break; default: return false; } SkAlphaType canonicalAlphaType = info.alphaType(); switch (info.colorType()) { case kAlpha_8_SkColorType: break; case kRGB_565_SkColorType: canonicalAlphaType = kOpaque_SkAlphaType; break; case kPMColor_SkColorType: break; default: return false; } if (newAlphaType) { *newAlphaType = canonicalAlphaType; } return true; } SkBitmapDevice::SkBitmapDevice(const SkBitmap& bitmap) : fBitmap(bitmap) { SkASSERT(valid_for_bitmap_device(bitmap.info(), NULL)); } SkBitmapDevice::SkBitmapDevice(const SkBitmap& bitmap, const SkDeviceProperties& deviceProperties) : SkBaseDevice(deviceProperties) , fBitmap(bitmap) { SkASSERT(valid_for_bitmap_device(bitmap.info(), NULL)); } #ifdef SK_SUPPORT_LEGACY_COMPATIBLEDEVICE_CONFIG void SkBitmapDevice::init(SkBitmap::Config config, int width, int height, bool isOpaque) { fBitmap.setConfig(config, width, height, 0, isOpaque ? kOpaque_SkAlphaType : kPremul_SkAlphaType); if (SkBitmap::kNo_Config != config) { if (!fBitmap.allocPixels()) { // indicate failure by zeroing our bitmap fBitmap.setConfig(config, 0, 0, 0, isOpaque ? kOpaque_SkAlphaType : kPremul_SkAlphaType); } else if (!isOpaque) { fBitmap.eraseColor(SK_ColorTRANSPARENT); } } } SkBitmapDevice::SkBitmapDevice(SkBitmap::Config config, int width, int height, bool isOpaque) { this->init(config, width, height, isOpaque); } SkBitmapDevice::SkBitmapDevice(SkBitmap::Config config, int width, int height, bool isOpaque, const SkDeviceProperties& deviceProperties) : SkBaseDevice(deviceProperties) { this->init(config, width, height, isOpaque); } #endif SkBitmapDevice* SkBitmapDevice::Create(const SkImageInfo& origInfo, const SkDeviceProperties* props) { SkImageInfo info = origInfo; if (!valid_for_bitmap_device(info, &info.fAlphaType)) { return NULL; } SkBitmap bitmap; if (kUnknown_SkColorType == info.colorType()) { if (!bitmap.setConfig(info)) { return NULL; } } else { if (!bitmap.allocPixels(info)) { return NULL; } if (!bitmap.info().isOpaque()) { bitmap.eraseColor(SK_ColorTRANSPARENT); } } if (props) { return SkNEW_ARGS(SkBitmapDevice, (bitmap, *props)); } else { return SkNEW_ARGS(SkBitmapDevice, (bitmap)); } } SkImageInfo SkBitmapDevice::imageInfo() const { return fBitmap.info(); } void SkBitmapDevice::replaceBitmapBackendForRasterSurface(const SkBitmap& bm) { SkASSERT(bm.width() == fBitmap.width()); SkASSERT(bm.height() == fBitmap.height()); fBitmap = bm; // intent is to use bm's pixelRef (and rowbytes/config) fBitmap.lockPixels(); } SkBaseDevice* SkBitmapDevice::onCreateDevice(const SkImageInfo& info, Usage usage) { return SkBitmapDevice::Create(info, &this->getDeviceProperties()); } void SkBitmapDevice::lockPixels() { if (fBitmap.lockPixelsAreWritable()) { fBitmap.lockPixels(); } } void SkBitmapDevice::unlockPixels() { if (fBitmap.lockPixelsAreWritable()) { fBitmap.unlockPixels(); } } void SkBitmapDevice::clear(SkColor color) { fBitmap.eraseColor(color); } const SkBitmap& SkBitmapDevice::onAccessBitmap() { return fBitmap; } bool SkBitmapDevice::canHandleImageFilter(const SkImageFilter*) { return false; } bool SkBitmapDevice::filterImage(const SkImageFilter* filter, const SkBitmap& src, const SkMatrix& ctm, SkBitmap* result, SkIPoint* offset) { return false; } bool SkBitmapDevice::allowImageFilter(const SkImageFilter*) { return true; } bool SkBitmapDevice::onReadPixels(const SkBitmap& bitmap, int x, int y, SkCanvas::Config8888 config8888) { SkASSERT(SkBitmap::kARGB_8888_Config == bitmap.config()); SkASSERT(!bitmap.isNull()); SkASSERT(SkIRect::MakeWH(this->width(), this->height()).contains(SkIRect::MakeXYWH(x, y, bitmap.width(), bitmap.height()))); SkIRect srcRect = SkIRect::MakeXYWH(x, y, bitmap.width(), bitmap.height()); const SkBitmap& src = this->accessBitmap(false); SkBitmap subset; if (!src.extractSubset(&subset, srcRect)) { return false; } if (kPMColor_SkColorType != subset.colorType()) { // It'd be preferable to do this directly to bitmap. subset.copyTo(&subset, kPMColor_SkColorType); } SkAutoLockPixels alp(bitmap); uint32_t* bmpPixels = reinterpret_cast(bitmap.getPixels()); SkCopyBitmapToConfig8888(bmpPixels, bitmap.rowBytes(), config8888, subset); return true; } void SkBitmapDevice::writePixels(const SkBitmap& bitmap, int x, int y, SkCanvas::Config8888 config8888) { if (bitmap.isNull() || bitmap.getTexture()) { return; } const SkBitmap* sprite = &bitmap; // check whether we have to handle a config8888 that doesn't match SkPMColor if (SkBitmap::kARGB_8888_Config == bitmap.config() && SkCanvas::kNative_Premul_Config8888 != config8888 && kPMColorAlias != config8888) { // We're going to have to convert from a config8888 to the native config // First we clip to the device bounds. SkBitmap dstBmp = this->accessBitmap(true); SkIRect spriteRect = SkIRect::MakeXYWH(x, y, bitmap.width(), bitmap.height()); SkIRect devRect = SkIRect::MakeWH(dstBmp.width(), dstBmp.height()); if (!spriteRect.intersect(devRect)) { return; } // write directly to the device if it has pixels and is SkPMColor bool drawSprite; if (SkBitmap::kARGB_8888_Config == dstBmp.config() && !dstBmp.isNull()) { // we can write directly to the dst when doing the conversion dstBmp.extractSubset(&dstBmp, spriteRect); drawSprite = false; } else { // we convert to a temporary bitmap and draw that as a sprite if (!dstBmp.allocPixels(SkImageInfo::MakeN32Premul(spriteRect.width(), spriteRect.height()))) { return; } drawSprite = true; } // copy pixels to dstBmp and convert from config8888 to native config. SkAutoLockPixels alp(bitmap); uint32_t* srcPixels = bitmap.getAddr32(spriteRect.fLeft - x, spriteRect.fTop - y); SkCopyConfig8888ToBitmap(dstBmp, srcPixels, bitmap.rowBytes(), config8888); if (drawSprite) { // we've clipped the sprite when we made a copy x = spriteRect.fLeft; y = spriteRect.fTop; sprite = &dstBmp; } else { return; } } SkPaint paint; paint.setXfermodeMode(SkXfermode::kSrc_Mode); SkRasterClip clip(SkIRect::MakeWH(fBitmap.width(), fBitmap.height())); SkDraw draw; draw.fRC = &clip; draw.fClip = &clip.bwRgn(); draw.fBitmap = &fBitmap; // canvas should have already called accessBitmap draw.fMatrix = &SkMatrix::I(); this->drawSprite(draw, *sprite, x, y, paint); } /////////////////////////////////////////////////////////////////////////////// void SkBitmapDevice::drawPaint(const SkDraw& draw, const SkPaint& paint) { draw.drawPaint(paint); } void SkBitmapDevice::drawPoints(const SkDraw& draw, SkCanvas::PointMode mode, size_t count, const SkPoint pts[], const SkPaint& paint) { CHECK_FOR_ANNOTATION(paint); draw.drawPoints(mode, count, pts, paint); } void SkBitmapDevice::drawRect(const SkDraw& draw, const SkRect& r, const SkPaint& paint) { CHECK_FOR_ANNOTATION(paint); draw.drawRect(r, paint); } void SkBitmapDevice::drawOval(const SkDraw& draw, const SkRect& oval, const SkPaint& paint) { CHECK_FOR_ANNOTATION(paint); SkPath path; path.addOval(oval); // call the VIRTUAL version, so any subclasses who do handle drawPath aren't // required to override drawOval. this->drawPath(draw, path, paint, NULL, true); } void SkBitmapDevice::drawRRect(const SkDraw& draw, const SkRRect& rrect, const SkPaint& paint) { CHECK_FOR_ANNOTATION(paint); #ifdef SK_IGNORE_BLURRED_RRECT_OPT SkPath path; path.addRRect(rrect); // call the VIRTUAL version, so any subclasses who do handle drawPath aren't // required to override drawRRect. this->drawPath(draw, path, paint, NULL, true); #else draw.drawRRect(rrect, paint); #endif } void SkBitmapDevice::drawPath(const SkDraw& draw, const SkPath& path, const SkPaint& paint, const SkMatrix* prePathMatrix, bool pathIsMutable) { CHECK_FOR_ANNOTATION(paint); draw.drawPath(path, paint, prePathMatrix, pathIsMutable); } void SkBitmapDevice::drawBitmap(const SkDraw& draw, const SkBitmap& bitmap, const SkMatrix& matrix, const SkPaint& paint) { draw.drawBitmap(bitmap, matrix, paint); } void SkBitmapDevice::drawBitmapRect(const SkDraw& draw, const SkBitmap& bitmap, const SkRect* src, const SkRect& dst, const SkPaint& paint, SkCanvas::DrawBitmapRectFlags flags) { SkMatrix matrix; SkRect bitmapBounds, tmpSrc, tmpDst; SkBitmap tmpBitmap; bitmapBounds.isetWH(bitmap.width(), bitmap.height()); // Compute matrix from the two rectangles if (src) { tmpSrc = *src; } else { tmpSrc = bitmapBounds; } matrix.setRectToRect(tmpSrc, dst, SkMatrix::kFill_ScaleToFit); const SkRect* dstPtr = &dst; const SkBitmap* bitmapPtr = &bitmap; // clip the tmpSrc to the bounds of the bitmap, and recompute dstRect if // needed (if the src was clipped). No check needed if src==null. if (src) { if (!bitmapBounds.contains(*src)) { if (!tmpSrc.intersect(bitmapBounds)) { return; // nothing to draw } // recompute dst, based on the smaller tmpSrc matrix.mapRect(&tmpDst, tmpSrc); dstPtr = &tmpDst; } // since we may need to clamp to the borders of the src rect within // the bitmap, we extract a subset. SkIRect srcIR; tmpSrc.roundOut(&srcIR); if (!bitmap.extractSubset(&tmpBitmap, srcIR)) { return; } bitmapPtr = &tmpBitmap; // Since we did an extract, we need to adjust the matrix accordingly SkScalar dx = 0, dy = 0; if (srcIR.fLeft > 0) { dx = SkIntToScalar(srcIR.fLeft); } if (srcIR.fTop > 0) { dy = SkIntToScalar(srcIR.fTop); } if (dx || dy) { matrix.preTranslate(dx, dy); } SkRect extractedBitmapBounds; extractedBitmapBounds.isetWH(bitmapPtr->width(), bitmapPtr->height()); if (extractedBitmapBounds == tmpSrc) { // no fractional part in src, we can just call drawBitmap goto USE_DRAWBITMAP; } } else { USE_DRAWBITMAP: // We can go faster by just calling drawBitmap, which will concat the // matrix with the CTM, and try to call drawSprite if it can. If not, // it will make a shader and call drawRect, as we do below. this->drawBitmap(draw, *bitmapPtr, matrix, paint); return; } // construct a shader, so we can call drawRect with the dst SkShader* s = SkShader::CreateBitmapShader(*bitmapPtr, SkShader::kClamp_TileMode, SkShader::kClamp_TileMode); if (NULL == s) { return; } s->setLocalMatrix(matrix); SkPaint paintWithShader(paint); paintWithShader.setStyle(SkPaint::kFill_Style); paintWithShader.setShader(s)->unref(); // Call ourself, in case the subclass wanted to share this setup code // but handle the drawRect code themselves. this->drawRect(draw, *dstPtr, paintWithShader); } void SkBitmapDevice::drawSprite(const SkDraw& draw, const SkBitmap& bitmap, int x, int y, const SkPaint& paint) { draw.drawSprite(bitmap, x, y, paint); } void SkBitmapDevice::drawText(const SkDraw& draw, const void* text, size_t len, SkScalar x, SkScalar y, const SkPaint& paint) { draw.drawText((const char*)text, len, x, y, paint); } void SkBitmapDevice::drawPosText(const SkDraw& draw, const void* text, size_t len, const SkScalar xpos[], SkScalar y, int scalarsPerPos, const SkPaint& paint) { draw.drawPosText((const char*)text, len, xpos, y, scalarsPerPos, paint); } void SkBitmapDevice::drawTextOnPath(const SkDraw& draw, const void* text, size_t len, const SkPath& path, const SkMatrix* matrix, const SkPaint& paint) { draw.drawTextOnPath((const char*)text, len, path, matrix, paint); } void SkBitmapDevice::drawVertices(const SkDraw& draw, SkCanvas::VertexMode vmode, int vertexCount, const SkPoint verts[], const SkPoint textures[], const SkColor colors[], SkXfermode* xmode, const uint16_t indices[], int indexCount, const SkPaint& paint) { draw.drawVertices(vmode, vertexCount, verts, textures, colors, xmode, indices, indexCount, paint); } void SkBitmapDevice::drawDevice(const SkDraw& draw, SkBaseDevice* device, int x, int y, const SkPaint& paint) { const SkBitmap& src = device->accessBitmap(false); draw.drawSprite(src, x, y, paint); } SkSurface* SkBitmapDevice::newSurface(const SkImageInfo& info) { return SkSurface::NewRaster(info); } const void* SkBitmapDevice::peekPixels(SkImageInfo* info, size_t* rowBytes) { if (fBitmap.getPixels() && fBitmap.asImageInfo(info)) { if (rowBytes) { *rowBytes = fBitmap.rowBytes(); } return fBitmap.getPixels(); } return NULL; } /////////////////////////////////////////////////////////////////////////////// bool SkBitmapDevice::filterTextFlags(const SkPaint& paint, TextFlags* flags) { if (!paint.isLCDRenderText() || !paint.isAntiAlias()) { // we're cool with the paint as is return false; } if (SkBitmap::kARGB_8888_Config != fBitmap.config() || paint.getRasterizer() || paint.getPathEffect() || paint.isFakeBoldText() || paint.getStyle() != SkPaint::kFill_Style || !SkXfermode::IsMode(paint.getXfermode(), SkXfermode::kSrcOver_Mode)) { // turn off lcd flags->fFlags = paint.getFlags() & ~SkPaint::kLCDRenderText_Flag; flags->fHinting = paint.getHinting(); return true; } // we're cool with the paint as is return false; }