/* * Copyright 2008 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkAtomics.h" #include "SkBitmap.h" #include "SkColorPriv.h" #include "SkData.h" #include "SkFilterQuality.h" #include "SkMallocPixelRef.h" #include "SkMask.h" #include "SkMath.h" #include "SkPixelRef.h" #include "SkReadBuffer.h" #include "SkRect.h" #include "SkScalar.h" #include "SkTemplates.h" #include "SkUnPreMultiply.h" #include "SkWriteBuffer.h" #include static bool reset_return_false(SkBitmap* bm) { bm->reset(); return false; } SkBitmap::SkBitmap() { sk_bzero(this, sizeof(*this)); } SkBitmap::SkBitmap(const SkBitmap& src) { SkDEBUGCODE(src.validate();) sk_bzero(this, sizeof(*this)); *this = src; SkDEBUGCODE(this->validate();) } SkBitmap::SkBitmap(SkBitmap&& other) : SkBitmap() { this->swap(other); } SkBitmap::~SkBitmap() { SkDEBUGCODE(this->validate();) this->freePixels(); } SkBitmap& SkBitmap::operator=(const SkBitmap& src) { if (this != &src) { this->freePixels(); this->fPixelRef = SkSafeRef(src.fPixelRef); if (this->fPixelRef) { // ignore the values if we have a pixelRef this->fPixels = nullptr; this->fColorTable = nullptr; } else { this->fPixels = src.fPixels; this->fColorTable = src.fColorTable; } // we reset our locks if we get blown away this->fPixelLockCount = 0; this->fPixelRefOrigin = src.fPixelRefOrigin; this->fInfo = src.fInfo; this->fRowBytes = src.fRowBytes; this->fFlags = src.fFlags; } SkDEBUGCODE(this->validate();) return *this; } SkBitmap& SkBitmap::operator=(SkBitmap&& other) { if (this != &other) { this->swap(other); other.reset(); } return *this; } void SkBitmap::swap(SkBitmap& other) { SkTSwap(fColorTable, other.fColorTable); SkTSwap(fPixelRef, other.fPixelRef); SkTSwap(fPixelRefOrigin, other.fPixelRefOrigin); SkTSwap(fPixelLockCount, other.fPixelLockCount); SkTSwap(fPixels, other.fPixels); SkTSwap(fInfo, other.fInfo); SkTSwap(fRowBytes, other.fRowBytes); SkTSwap(fFlags, other.fFlags); SkDEBUGCODE(this->validate();) } void SkBitmap::reset() { this->freePixels(); this->fInfo.reset(); sk_bzero(this, sizeof(*this)); } void SkBitmap::getBounds(SkRect* bounds) const { SkASSERT(bounds); bounds->set(0, 0, SkIntToScalar(fInfo.width()), SkIntToScalar(fInfo.height())); } void SkBitmap::getBounds(SkIRect* bounds) const { SkASSERT(bounds); bounds->set(0, 0, fInfo.width(), fInfo.height()); } /////////////////////////////////////////////////////////////////////////////// bool SkBitmap::setInfo(const SkImageInfo& info, size_t rowBytes) { SkAlphaType newAT = info.alphaType(); if (!SkColorTypeValidateAlphaType(info.colorType(), info.alphaType(), &newAT)) { return reset_return_false(this); } // don't look at info.alphaType(), since newAT is the real value... // require that rowBytes fit in 31bits int64_t mrb = info.minRowBytes64(); if ((int32_t)mrb != mrb) { return reset_return_false(this); } if ((int64_t)rowBytes != (int32_t)rowBytes) { return reset_return_false(this); } if (info.width() < 0 || info.height() < 0) { return reset_return_false(this); } if (kUnknown_SkColorType == info.colorType()) { rowBytes = 0; } else if (0 == rowBytes) { rowBytes = (size_t)mrb; } else if (!info.validRowBytes(rowBytes)) { return reset_return_false(this); } this->freePixels(); fInfo = info.makeAlphaType(newAT); fRowBytes = SkToU32(rowBytes); return true; } bool SkBitmap::setAlphaType(SkAlphaType newAlphaType) { if (!SkColorTypeValidateAlphaType(fInfo.colorType(), newAlphaType, &newAlphaType)) { return false; } if (fInfo.alphaType() != newAlphaType) { fInfo = fInfo.makeAlphaType(newAlphaType); if (fPixelRef) { fPixelRef->changeAlphaType(newAlphaType); } } return true; } void SkBitmap::updatePixelsFromRef() const { if (fPixelRef) { if (fPixelLockCount > 0) { SkASSERT(fPixelRef->isLocked()); void* p = fPixelRef->pixels(); if (p) { p = (char*)p + fPixelRefOrigin.fY * fRowBytes + fPixelRefOrigin.fX * fInfo.bytesPerPixel(); } fPixels = p; fColorTable = fPixelRef->colorTable(); } else { SkASSERT(0 == fPixelLockCount); fPixels = nullptr; fColorTable = nullptr; } } } SkPixelRef* SkBitmap::setPixelRef(SkPixelRef* pr, int dx, int dy) { #ifdef SK_DEBUG if (pr) { if (kUnknown_SkColorType != fInfo.colorType()) { const SkImageInfo& prInfo = pr->info(); SkASSERT(fInfo.width() <= prInfo.width()); SkASSERT(fInfo.height() <= prInfo.height()); SkASSERT(fInfo.colorType() == prInfo.colorType()); switch (prInfo.alphaType()) { case kUnknown_SkAlphaType: SkASSERT(fInfo.alphaType() == kUnknown_SkAlphaType); break; case kOpaque_SkAlphaType: case kPremul_SkAlphaType: SkASSERT(fInfo.alphaType() == kOpaque_SkAlphaType || fInfo.alphaType() == kPremul_SkAlphaType); break; case kUnpremul_SkAlphaType: SkASSERT(fInfo.alphaType() == kOpaque_SkAlphaType || fInfo.alphaType() == kUnpremul_SkAlphaType); break; } } } #endif if (pr) { const SkImageInfo& info = pr->info(); fPixelRefOrigin.set(SkTPin(dx, 0, info.width()), SkTPin(dy, 0, info.height())); } else { // ignore dx,dy if there is no pixelref fPixelRefOrigin.setZero(); } if (fPixelRef != pr) { this->freePixels(); SkASSERT(nullptr == fPixelRef); SkSafeRef(pr); fPixelRef = pr; this->updatePixelsFromRef(); } SkDEBUGCODE(this->validate();) return pr; } void SkBitmap::lockPixels() const { if (fPixelRef && 0 == sk_atomic_inc(&fPixelLockCount)) { fPixelRef->lockPixels(); this->updatePixelsFromRef(); } SkDEBUGCODE(this->validate();) } void SkBitmap::unlockPixels() const { SkASSERT(nullptr == fPixelRef || fPixelLockCount > 0); if (fPixelRef && 1 == sk_atomic_dec(&fPixelLockCount)) { fPixelRef->unlockPixels(); this->updatePixelsFromRef(); } SkDEBUGCODE(this->validate();) } bool SkBitmap::lockPixelsAreWritable() const { return (fPixelRef) ? fPixelRef->lockPixelsAreWritable() : false; } void SkBitmap::setPixels(void* p, SkColorTable* ctable) { if (nullptr == p) { this->setPixelRef(nullptr); return; } if (kUnknown_SkColorType == fInfo.colorType()) { this->setPixelRef(nullptr); return; } SkPixelRef* pr = SkMallocPixelRef::NewDirect(fInfo, p, fRowBytes, ctable); if (nullptr == pr) { this->setPixelRef(nullptr); return; } this->setPixelRef(pr)->unref(); // since we're already allocated, we lockPixels right away this->lockPixels(); SkDEBUGCODE(this->validate();) } bool SkBitmap::tryAllocPixels(Allocator* allocator, SkColorTable* ctable) { HeapAllocator stdalloc; if (nullptr == allocator) { allocator = &stdalloc; } return allocator->allocPixelRef(this, ctable); } /////////////////////////////////////////////////////////////////////////////// bool SkBitmap::tryAllocPixels(const SkImageInfo& requestedInfo, size_t rowBytes) { if (kIndex_8_SkColorType == requestedInfo.colorType()) { return reset_return_false(this); } if (!this->setInfo(requestedInfo, rowBytes)) { return reset_return_false(this); } // setInfo may have corrected info (e.g. 565 is always opaque). const SkImageInfo& correctedInfo = this->info(); // setInfo may have computed a valid rowbytes if 0 were passed in rowBytes = this->rowBytes(); SkMallocPixelRef::PRFactory defaultFactory; SkPixelRef* pr = defaultFactory.create(correctedInfo, rowBytes, nullptr); if (nullptr == pr) { return reset_return_false(this); } this->setPixelRef(pr)->unref(); // TODO: lockPixels could/should return bool or void*/nullptr this->lockPixels(); if (nullptr == this->getPixels()) { return reset_return_false(this); } return true; } bool SkBitmap::tryAllocPixels(const SkImageInfo& requestedInfo, SkPixelRefFactory* factory, SkColorTable* ctable) { if (kIndex_8_SkColorType == requestedInfo.colorType() && nullptr == ctable) { return reset_return_false(this); } if (!this->setInfo(requestedInfo)) { return reset_return_false(this); } // setInfo may have corrected info (e.g. 565 is always opaque). const SkImageInfo& correctedInfo = this->info(); SkMallocPixelRef::PRFactory defaultFactory; if (nullptr == factory) { factory = &defaultFactory; } SkPixelRef* pr = factory->create(correctedInfo, correctedInfo.minRowBytes(), ctable); if (nullptr == pr) { return reset_return_false(this); } this->setPixelRef(pr)->unref(); // TODO: lockPixels could/should return bool or void*/nullptr this->lockPixels(); if (nullptr == this->getPixels()) { return reset_return_false(this); } return true; } static void invoke_release_proc(void (*proc)(void* pixels, void* ctx), void* pixels, void* ctx) { if (proc) { proc(pixels, ctx); } } bool SkBitmap::installPixels(const SkImageInfo& requestedInfo, void* pixels, size_t rb, SkColorTable* ct, void (*releaseProc)(void* addr, void* context), void* context) { if (!this->setInfo(requestedInfo, rb)) { invoke_release_proc(releaseProc, pixels, context); this->reset(); return false; } if (nullptr == pixels) { invoke_release_proc(releaseProc, pixels, context); return true; // we behaved as if they called setInfo() } // setInfo may have corrected info (e.g. 565 is always opaque). const SkImageInfo& correctedInfo = this->info(); SkPixelRef* pr = SkMallocPixelRef::NewWithProc(correctedInfo, rb, ct, pixels, releaseProc, context); if (!pr) { this->reset(); return false; } this->setPixelRef(pr)->unref(); // since we're already allocated, we lockPixels right away this->lockPixels(); SkDEBUGCODE(this->validate();) return true; } bool SkBitmap::installPixels(const SkPixmap& pixmap) { return this->installPixels(pixmap.info(), pixmap.writable_addr(), pixmap.rowBytes(), pixmap.ctable(), nullptr, nullptr); } bool SkBitmap::installMaskPixels(const SkMask& mask) { if (SkMask::kA8_Format != mask.fFormat) { this->reset(); return false; } return this->installPixels(SkImageInfo::MakeA8(mask.fBounds.width(), mask.fBounds.height()), mask.fImage, mask.fRowBytes); } /////////////////////////////////////////////////////////////////////////////// void SkBitmap::freePixels() { if (fPixelRef) { if (fPixelLockCount > 0) { fPixelRef->unlockPixels(); } fPixelRef->unref(); fPixelRef = nullptr; fPixelRefOrigin.setZero(); } fPixelLockCount = 0; fPixels = nullptr; fColorTable = nullptr; } uint32_t SkBitmap::getGenerationID() const { return (fPixelRef) ? fPixelRef->getGenerationID() : 0; } void SkBitmap::notifyPixelsChanged() const { SkASSERT(!this->isImmutable()); if (fPixelRef) { fPixelRef->notifyPixelsChanged(); } } /////////////////////////////////////////////////////////////////////////////// /** We explicitly use the same allocator for our pixels that SkMask does, so that we can freely assign memory allocated by one class to the other. */ bool SkBitmap::HeapAllocator::allocPixelRef(SkBitmap* dst, SkColorTable* ctable) { const SkImageInfo info = dst->info(); if (kUnknown_SkColorType == info.colorType()) { // SkDebugf("unsupported config for info %d\n", dst->config()); return false; } SkPixelRef* pr = SkMallocPixelRef::NewAllocate(info, dst->rowBytes(), ctable); if (nullptr == pr) { return false; } dst->setPixelRef(pr)->unref(); // since we're already allocated, we lockPixels right away dst->lockPixels(); return true; } /////////////////////////////////////////////////////////////////////////////// static bool copy_pixels_to(const SkPixmap& src, void* const dst, size_t dstSize, size_t dstRowBytes, bool preserveDstPad) { const SkImageInfo& info = src.info(); if (0 == dstRowBytes) { dstRowBytes = src.rowBytes(); } if (dstRowBytes < info.minRowBytes()) { return false; } if (!preserveDstPad && static_cast(dstRowBytes) == src.rowBytes()) { size_t safeSize = src.getSafeSize(); if (safeSize > dstSize || safeSize == 0) return false; else { // This implementation will write bytes beyond the end of each row, // excluding the last row, if the bitmap's stride is greater than // strictly required by the current config. memcpy(dst, src.addr(), safeSize); return true; } } else { // If destination has different stride than us, then copy line by line. if (info.getSafeSize(dstRowBytes) > dstSize) { return false; } else { // Just copy what we need on each line. size_t rowBytes = info.minRowBytes(); const uint8_t* srcP = reinterpret_cast(src.addr()); uint8_t* dstP = reinterpret_cast(dst); for (int row = 0; row < info.height(); ++row) { memcpy(dstP, srcP, rowBytes); srcP += src.rowBytes(); dstP += dstRowBytes; } return true; } } } bool SkBitmap::copyPixelsTo(void* dst, size_t dstSize, size_t dstRB, bool preserveDstPad) const { if (nullptr == dst) { return false; } SkAutoPixmapUnlock result; if (!this->requestLock(&result)) { return false; } return copy_pixels_to(result.pixmap(), dst, dstSize, dstRB, preserveDstPad); } /////////////////////////////////////////////////////////////////////////////// bool SkBitmap::isImmutable() const { return fPixelRef ? fPixelRef->isImmutable() : false; } void SkBitmap::setImmutable() { if (fPixelRef) { fPixelRef->setImmutable(); } } bool SkBitmap::isVolatile() const { return (fFlags & kImageIsVolatile_Flag) != 0; } void SkBitmap::setIsVolatile(bool isVolatile) { if (isVolatile) { fFlags |= kImageIsVolatile_Flag; } else { fFlags &= ~kImageIsVolatile_Flag; } } void* SkBitmap::getAddr(int x, int y) const { SkASSERT((unsigned)x < (unsigned)this->width()); SkASSERT((unsigned)y < (unsigned)this->height()); char* base = (char*)this->getPixels(); if (base) { base += y * this->rowBytes(); switch (this->colorType()) { case kRGBA_F16_SkColorType: base += x << 3; break; case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: base += x << 2; break; case kARGB_4444_SkColorType: case kRGB_565_SkColorType: base += x << 1; break; case kAlpha_8_SkColorType: case kIndex_8_SkColorType: case kGray_8_SkColorType: base += x; break; default: SkDEBUGFAIL("Can't return addr for config"); base = nullptr; break; } } return base; } #include "SkHalf.h" SkColor SkBitmap::getColor(int x, int y) const { SkASSERT((unsigned)x < (unsigned)this->width()); SkASSERT((unsigned)y < (unsigned)this->height()); switch (this->colorType()) { case kGray_8_SkColorType: { uint8_t* addr = this->getAddr8(x, y); return SkColorSetRGB(*addr, *addr, *addr); } case kAlpha_8_SkColorType: { uint8_t* addr = this->getAddr8(x, y); return SkColorSetA(0, addr[0]); } case kIndex_8_SkColorType: { SkPMColor c = this->getIndex8Color(x, y); return SkUnPreMultiply::PMColorToColor(c); } case kRGB_565_SkColorType: { uint16_t* addr = this->getAddr16(x, y); return SkPixel16ToColor(addr[0]); } case kARGB_4444_SkColorType: { uint16_t* addr = this->getAddr16(x, y); SkPMColor c = SkPixel4444ToPixel32(addr[0]); return SkUnPreMultiply::PMColorToColor(c); } case kBGRA_8888_SkColorType: { uint32_t* addr = this->getAddr32(x, y); SkPMColor c = SkSwizzle_BGRA_to_PMColor(addr[0]); return SkUnPreMultiply::PMColorToColor(c); } case kRGBA_8888_SkColorType: { uint32_t* addr = this->getAddr32(x, y); SkPMColor c = SkSwizzle_RGBA_to_PMColor(addr[0]); return SkUnPreMultiply::PMColorToColor(c); } case kRGBA_F16_SkColorType: { const uint64_t* addr = (const uint64_t*)fPixels + y * (fRowBytes >> 3) + x; Sk4f p4 = SkHalfToFloat_finite(addr[0]); if (p4[3]) { float inva = 1 / p4[3]; p4 = p4 * Sk4f(inva, inva, inva, 1); } SkColor c; SkNx_cast(p4 * Sk4f(255) + Sk4f(0.5f)).store(&c); // p4 is RGBA, but we want BGRA, so we need to swap next return SkSwizzle_RB(c); } default: SkASSERT(false); return 0; } SkASSERT(false); // Not reached. return 0; } static bool compute_is_opaque(const SkPixmap& pmap) { const int height = pmap.height(); const int width = pmap.width(); switch (pmap.colorType()) { case kAlpha_8_SkColorType: { unsigned a = 0xFF; for (int y = 0; y < height; ++y) { const uint8_t* row = pmap.addr8(0, y); for (int x = 0; x < width; ++x) { a &= row[x]; } if (0xFF != a) { return false; } } return true; } break; case kIndex_8_SkColorType: { const SkColorTable* ctable = pmap.ctable(); if (nullptr == ctable) { return false; } const SkPMColor* table = ctable->readColors(); SkPMColor c = (SkPMColor)~0; for (int i = ctable->count() - 1; i >= 0; --i) { c &= table[i]; } return 0xFF == SkGetPackedA32(c); } break; case kRGB_565_SkColorType: case kGray_8_SkColorType: return true; break; case kARGB_4444_SkColorType: { unsigned c = 0xFFFF; for (int y = 0; y < height; ++y) { const SkPMColor16* row = pmap.addr16(0, y); for (int x = 0; x < width; ++x) { c &= row[x]; } if (0xF != SkGetPackedA4444(c)) { return false; } } return true; } break; case kBGRA_8888_SkColorType: case kRGBA_8888_SkColorType: { SkPMColor c = (SkPMColor)~0; for (int y = 0; y < height; ++y) { const SkPMColor* row = pmap.addr32(0, y); for (int x = 0; x < width; ++x) { c &= row[x]; } if (0xFF != SkGetPackedA32(c)) { return false; } } return true; } default: break; } return false; } bool SkBitmap::ComputeIsOpaque(const SkBitmap& bm) { SkAutoPixmapUnlock result; if (!bm.requestLock(&result)) { return false; } return compute_is_opaque(result.pixmap()); } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// void SkBitmap::erase(SkColor c, const SkIRect& area) const { SkDEBUGCODE(this->validate();) switch (fInfo.colorType()) { case kUnknown_SkColorType: case kIndex_8_SkColorType: // TODO: can we ASSERT that we never get here? return; // can't erase. Should we bzero so the memory is not uninitialized? default: break; } SkAutoPixmapUnlock result; if (!this->requestLock(&result)) { return; } if (result.pixmap().erase(c, area)) { this->notifyPixelsChanged(); } } void SkBitmap::eraseColor(SkColor c) const { this->erase(c, SkIRect::MakeWH(this->width(), this->height())); } ////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////// bool SkBitmap::extractSubset(SkBitmap* result, const SkIRect& subset) const { SkDEBUGCODE(this->validate();) if (nullptr == result || nullptr == fPixelRef) { return false; // no src pixels } SkIRect srcRect, r; srcRect.set(0, 0, this->width(), this->height()); if (!r.intersect(srcRect, subset)) { return false; // r is empty (i.e. no intersection) } // If the upper left of the rectangle was outside the bounds of this SkBitmap, we should have // exited above. SkASSERT(static_cast(r.fLeft) < static_cast(this->width())); SkASSERT(static_cast(r.fTop) < static_cast(this->height())); SkBitmap dst; dst.setInfo(this->info().makeWH(r.width(), r.height()), this->rowBytes()); dst.setIsVolatile(this->isVolatile()); if (fPixelRef) { SkIPoint origin = fPixelRefOrigin; origin.fX += r.fLeft; origin.fY += r.fTop; // share the pixelref with a custom offset dst.setPixelRef(fPixelRef, origin); } SkDEBUGCODE(dst.validate();) // we know we're good, so commit to result result->swap(dst); return true; } /////////////////////////////////////////////////////////////////////////////// bool SkBitmap::canCopyTo(SkColorType dstColorType) const { const SkColorType srcCT = this->colorType(); if (srcCT == kUnknown_SkColorType) { return false; } bool sameConfigs = (srcCT == dstColorType); switch (dstColorType) { case kAlpha_8_SkColorType: case kRGB_565_SkColorType: case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: break; case kIndex_8_SkColorType: if (!sameConfigs) { return false; } break; case kARGB_4444_SkColorType: return sameConfigs || kN32_SkColorType == srcCT || kIndex_8_SkColorType == srcCT; case kGray_8_SkColorType: switch (srcCT) { case kGray_8_SkColorType: case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: return true; default: break; } return false; default: return false; } return true; } bool SkBitmap::readPixels(const SkImageInfo& requestedDstInfo, void* dstPixels, size_t dstRB, int x, int y) const { SkAutoPixmapUnlock src; if (!this->requestLock(&src)) { return false; } return src.pixmap().readPixels(requestedDstInfo, dstPixels, dstRB, x, y); } bool SkBitmap::copyTo(SkBitmap* dst, SkColorType dstColorType, Allocator* alloc) const { if (!this->canCopyTo(dstColorType)) { return false; } // if we have a texture, first get those pixels SkBitmap tmpSrc; const SkBitmap* src = this; if (fPixelRef) { SkIRect subset; subset.setXYWH(fPixelRefOrigin.fX, fPixelRefOrigin.fY, fInfo.width(), fInfo.height()); if (fPixelRef->readPixels(&tmpSrc, dstColorType, &subset)) { if (fPixelRef->info().alphaType() == kUnpremul_SkAlphaType) { // FIXME: The only meaningful implementation of readPixels // (GrPixelRef) assumes premultiplied pixels. return false; } SkASSERT(tmpSrc.width() == this->width()); SkASSERT(tmpSrc.height() == this->height()); // did we get lucky and we can just return tmpSrc? if (tmpSrc.colorType() == dstColorType && nullptr == alloc) { dst->swap(tmpSrc); // If the result is an exact copy, clone the gen ID. if (dst->pixelRef() && dst->pixelRef()->info() == fPixelRef->info()) { dst->pixelRef()->cloneGenID(*fPixelRef); } return true; } // fall through to the raster case src = &tmpSrc; } } SkAutoPixmapUnlock srcUnlocker; if (!src->requestLock(&srcUnlocker)) { return false; } const SkPixmap& srcPM = srcUnlocker.pixmap(); const SkImageInfo dstInfo = srcPM.info().makeColorType(dstColorType); SkBitmap tmpDst; if (!tmpDst.setInfo(dstInfo)) { return false; } // allocate colortable if srcConfig == kIndex8_Config SkAutoTUnref ctable; if (dstColorType == kIndex_8_SkColorType) { ctable.reset(SkRef(srcPM.ctable())); } if (!tmpDst.tryAllocPixels(alloc, ctable)) { return false; } SkAutoPixmapUnlock dstUnlocker; if (!tmpDst.requestLock(&dstUnlocker)) { return false; } if (!srcPM.readPixels(dstUnlocker.pixmap())) { return false; } // (for BitmapHeap) Clone the pixelref genID even though we have a new pixelref. // The old copyTo impl did this, so we continue it for now. // // TODO: should we ignore rowbytes (i.e. getSize)? Then it could just be // if (src_pixelref->info == dst_pixelref->info) // if (srcPM.colorType() == dstColorType && tmpDst.getSize() == srcPM.getSize64()) { SkPixelRef* dstPixelRef = tmpDst.pixelRef(); if (dstPixelRef->info() == fPixelRef->info()) { dstPixelRef->cloneGenID(*fPixelRef); } } dst->swap(tmpDst); return true; } // TODO: can we merge this with copyTo? bool SkBitmap::deepCopyTo(SkBitmap* dst) const { const SkColorType dstCT = this->colorType(); if (!this->canCopyTo(dstCT)) { return false; } return this->copyTo(dst, dstCT, nullptr); } /////////////////////////////////////////////////////////////////////////////// static void rect_memset(uint8_t* array, U8CPU value, SkISize size, size_t rowBytes) { for (int y = 0; y < size.height(); ++y) { memset(array, value, size.width()); array += rowBytes; } } static void get_bitmap_alpha(const SkPixmap& pmap, uint8_t* SK_RESTRICT alpha, int alphaRowBytes) { SkColorType colorType = pmap.colorType(); int w = pmap.width(); int h = pmap.height(); size_t rb = pmap.rowBytes(); if (kAlpha_8_SkColorType == colorType && !pmap.isOpaque()) { const uint8_t* s = pmap.addr8(0, 0); while (--h >= 0) { memcpy(alpha, s, w); s += rb; alpha += alphaRowBytes; } } else if (kN32_SkColorType == colorType && !pmap.isOpaque()) { const SkPMColor* SK_RESTRICT s = pmap.addr32(0, 0); while (--h >= 0) { for (int x = 0; x < w; x++) { alpha[x] = SkGetPackedA32(s[x]); } s = (const SkPMColor*)((const char*)s + rb); alpha += alphaRowBytes; } } else if (kARGB_4444_SkColorType == colorType && !pmap.isOpaque()) { const SkPMColor16* SK_RESTRICT s = pmap.addr16(0, 0); while (--h >= 0) { for (int x = 0; x < w; x++) { alpha[x] = SkPacked4444ToA32(s[x]); } s = (const SkPMColor16*)((const char*)s + rb); alpha += alphaRowBytes; } } else if (kIndex_8_SkColorType == colorType && !pmap.isOpaque()) { const SkColorTable* ct = pmap.ctable(); if (ct) { const SkPMColor* SK_RESTRICT table = ct->readColors(); const uint8_t* SK_RESTRICT s = pmap.addr8(0, 0); while (--h >= 0) { for (int x = 0; x < w; x++) { alpha[x] = SkGetPackedA32(table[s[x]]); } s += rb; alpha += alphaRowBytes; } } } else { // src is opaque, so just fill alpha[] with 0xFF rect_memset(alpha, 0xFF, pmap.info().dimensions(), alphaRowBytes); } } static bool GetBitmapAlpha(const SkBitmap& src, uint8_t* SK_RESTRICT alpha, int alphaRowBytes) { SkASSERT(alpha != nullptr); SkASSERT(alphaRowBytes >= src.width()); SkAutoPixmapUnlock apl; if (!src.requestLock(&apl)) { rect_memset(alpha, 0, src.info().dimensions(), alphaRowBytes); return false; } get_bitmap_alpha(apl.pixmap(), alpha, alphaRowBytes); return true; } #include "SkPaint.h" #include "SkMaskFilter.h" #include "SkMatrix.h" bool SkBitmap::extractAlpha(SkBitmap* dst, const SkPaint* paint, Allocator *allocator, SkIPoint* offset) const { SkDEBUGCODE(this->validate();) SkBitmap tmpBitmap; SkMatrix identity; SkMask srcM, dstM; srcM.fBounds.set(0, 0, this->width(), this->height()); srcM.fRowBytes = SkAlign4(this->width()); srcM.fFormat = SkMask::kA8_Format; SkMaskFilter* filter = paint ? paint->getMaskFilter() : nullptr; // compute our (larger?) dst bounds if we have a filter if (filter) { identity.reset(); if (!filter->filterMask(&dstM, srcM, identity, nullptr)) { goto NO_FILTER_CASE; } dstM.fRowBytes = SkAlign4(dstM.fBounds.width()); } else { NO_FILTER_CASE: tmpBitmap.setInfo(SkImageInfo::MakeA8(this->width(), this->height()), srcM.fRowBytes); if (!tmpBitmap.tryAllocPixels(allocator, nullptr)) { // Allocation of pixels for alpha bitmap failed. SkDebugf("extractAlpha failed to allocate (%d,%d) alpha bitmap\n", tmpBitmap.width(), tmpBitmap.height()); return false; } GetBitmapAlpha(*this, tmpBitmap.getAddr8(0, 0), srcM.fRowBytes); if (offset) { offset->set(0, 0); } tmpBitmap.swap(*dst); return true; } srcM.fImage = SkMask::AllocImage(srcM.computeImageSize()); SkAutoMaskFreeImage srcCleanup(srcM.fImage); GetBitmapAlpha(*this, srcM.fImage, srcM.fRowBytes); if (!filter->filterMask(&dstM, srcM, identity, nullptr)) { goto NO_FILTER_CASE; } SkAutoMaskFreeImage dstCleanup(dstM.fImage); tmpBitmap.setInfo(SkImageInfo::MakeA8(dstM.fBounds.width(), dstM.fBounds.height()), dstM.fRowBytes); if (!tmpBitmap.tryAllocPixels(allocator, nullptr)) { // Allocation of pixels for alpha bitmap failed. SkDebugf("extractAlpha failed to allocate (%d,%d) alpha bitmap\n", tmpBitmap.width(), tmpBitmap.height()); return false; } memcpy(tmpBitmap.getPixels(), dstM.fImage, dstM.computeImageSize()); if (offset) { offset->set(dstM.fBounds.fLeft, dstM.fBounds.fTop); } SkDEBUGCODE(tmpBitmap.validate();) tmpBitmap.swap(*dst); return true; } /////////////////////////////////////////////////////////////////////////////// static void write_raw_pixels(SkWriteBuffer* buffer, const SkPixmap& pmap) { const SkImageInfo& info = pmap.info(); const size_t snugRB = info.width() * info.bytesPerPixel(); const char* src = (const char*)pmap.addr(); const size_t ramRB = pmap.rowBytes(); buffer->write32(SkToU32(snugRB)); info.flatten(*buffer); const size_t size = snugRB * info.height(); SkAutoTMalloc storage(size); char* dst = storage.get(); for (int y = 0; y < info.height(); ++y) { memcpy(dst, src, snugRB); dst += snugRB; src += ramRB; } buffer->writeByteArray(storage.get(), size); const SkColorTable* ct = pmap.ctable(); if (kIndex_8_SkColorType == info.colorType() && ct) { buffer->writeBool(true); ct->writeToBuffer(*buffer); } else { buffer->writeBool(false); } } void SkBitmap::WriteRawPixels(SkWriteBuffer* buffer, const SkBitmap& bitmap) { const SkImageInfo info = bitmap.info(); if (0 == info.width() || 0 == info.height() || nullptr == bitmap.pixelRef()) { buffer->writeUInt(0); // instead of snugRB, signaling no pixels return; } SkAutoPixmapUnlock result; if (!bitmap.requestLock(&result)) { buffer->writeUInt(0); // instead of snugRB, signaling no pixels return; } write_raw_pixels(buffer, result.pixmap()); } bool SkBitmap::ReadRawPixels(SkReadBuffer* buffer, SkBitmap* bitmap) { const size_t snugRB = buffer->readUInt(); if (0 == snugRB) { // no pixels return false; } SkImageInfo info; info.unflatten(*buffer); // If there was an error reading "info" or if it is bogus, // don't use it to compute minRowBytes() if (!buffer->validate(SkColorTypeValidateAlphaType(info.colorType(), info.alphaType()))) { return false; } const size_t ramRB = info.minRowBytes(); const int height = SkMax32(info.height(), 0); const uint64_t snugSize = sk_64_mul(snugRB, height); const uint64_t ramSize = sk_64_mul(ramRB, height); static const uint64_t max_size_t = (size_t)(-1); if (!buffer->validate((snugSize <= ramSize) && (ramSize <= max_size_t))) { return false; } sk_sp data(SkData::MakeUninitialized(SkToSizeT(ramSize))); unsigned char* dst = (unsigned char*)data->writable_data(); buffer->readByteArray(dst, SkToSizeT(snugSize)); if (snugSize != ramSize) { const unsigned char* srcRow = dst + snugRB * (height - 1); unsigned char* dstRow = dst + ramRB * (height - 1); for (int y = height - 1; y >= 1; --y) { memmove(dstRow, srcRow, snugRB); srcRow -= snugRB; dstRow -= ramRB; } SkASSERT(srcRow == dstRow); // first row does not need to be moved } SkAutoTUnref ctable; if (buffer->readBool()) { ctable.reset(SkColorTable::Create(*buffer)); if (!ctable) { return false; } if (info.isEmpty()) { // require an empty ctable if (ctable->count() != 0) { buffer->validate(false); return false; } } else { // require a non-empty ctable if (ctable->count() == 0) { buffer->validate(false); return false; } unsigned char maxIndex = ctable->count() - 1; for (uint64_t i = 0; i < ramSize; ++i) { dst[i] = SkTMin(dst[i], maxIndex); } } } SkAutoTUnref pr(SkMallocPixelRef::NewWithData(info, info.minRowBytes(), ctable.get(), data.get())); if (!pr.get()) { return false; } bitmap->setInfo(pr->info()); bitmap->setPixelRef(pr, 0, 0); return true; } enum { SERIALIZE_PIXELTYPE_NONE, SERIALIZE_PIXELTYPE_REF_DATA }; /////////////////////////////////////////////////////////////////////////////// SkBitmap::RLEPixels::RLEPixels(int width, int height) { fHeight = height; fYPtrs = (uint8_t**)sk_calloc_throw(height * sizeof(uint8_t*)); } SkBitmap::RLEPixels::~RLEPixels() { sk_free(fYPtrs); } /////////////////////////////////////////////////////////////////////////////// #ifdef SK_DEBUG void SkBitmap::validate() const { fInfo.validate(); // ImageInfo may not require this, but Bitmap ensures that opaque-only // colorTypes report opaque for their alphatype if (kRGB_565_SkColorType == fInfo.colorType()) { SkASSERT(kOpaque_SkAlphaType == fInfo.alphaType()); } SkASSERT(fInfo.validRowBytes(fRowBytes)); uint8_t allFlags = kImageIsVolatile_Flag; #ifdef SK_BUILD_FOR_ANDROID allFlags |= kHasHardwareMipMap_Flag; #endif SkASSERT((~allFlags & fFlags) == 0); SkASSERT(fPixelLockCount >= 0); if (fPixels) { SkASSERT(fPixelRef); SkASSERT(fPixelLockCount > 0); SkASSERT(fPixelRef->isLocked()); SkASSERT(fPixelRef->rowBytes() == fRowBytes); SkASSERT(fPixelRefOrigin.fX >= 0); SkASSERT(fPixelRefOrigin.fY >= 0); SkASSERT(fPixelRef->info().width() >= (int)this->width() + fPixelRefOrigin.fX); SkASSERT(fPixelRef->info().height() >= (int)this->height() + fPixelRefOrigin.fY); SkASSERT(fPixelRef->rowBytes() >= fInfo.minRowBytes()); } else { SkASSERT(nullptr == fColorTable); } } #endif #ifndef SK_IGNORE_TO_STRING #include "SkString.h" void SkBitmap::toString(SkString* str) const { static const char* gColorTypeNames[kLastEnum_SkColorType + 1] = { "UNKNOWN", "A8", "565", "4444", "RGBA", "BGRA", "INDEX8", }; str->appendf("bitmap: ((%d, %d) %s", this->width(), this->height(), gColorTypeNames[this->colorType()]); str->append(" ("); if (this->isOpaque()) { str->append("opaque"); } else { str->append("transparent"); } if (this->isImmutable()) { str->append(", immutable"); } else { str->append(", not-immutable"); } str->append(")"); SkPixelRef* pr = this->pixelRef(); if (nullptr == pr) { // show null or the explicit pixel address (rare) str->appendf(" pixels:%p", this->getPixels()); } else { const char* uri = pr->getURI(); if (uri) { str->appendf(" uri:\"%s\"", uri); } else { str->appendf(" pixelref:%p", pr); } } str->append(")"); } #endif /////////////////////////////////////////////////////////////////////////////// bool SkBitmap::requestLock(SkAutoPixmapUnlock* result) const { SkASSERT(result); SkPixelRef* pr = fPixelRef; if (nullptr == pr) { return false; } // We have to lock the whole thing (using the pixelref's dimensions) until the api supports // a partial lock (with offset/origin). Hence we can't use our fInfo. SkPixelRef::LockRequest req = { pr->info().dimensions(), kNone_SkFilterQuality }; SkPixelRef::LockResult res; if (pr->requestLock(req, &res)) { SkASSERT(res.fPixels); // The bitmap may be a subset of the pixelref's dimensions SkASSERT(fPixelRefOrigin.x() + fInfo.width() <= res.fSize.width()); SkASSERT(fPixelRefOrigin.y() + fInfo.height() <= res.fSize.height()); const void* addr = (const char*)res.fPixels + SkColorTypeComputeOffset(fInfo.colorType(), fPixelRefOrigin.x(), fPixelRefOrigin.y(), res.fRowBytes); result->reset(SkPixmap(this->info(), addr, res.fRowBytes, res.fCTable), res.fUnlockProc, res.fUnlockContext); return true; } return false; } bool SkBitmap::peekPixels(SkPixmap* pmap) const { if (fPixels) { if (pmap) { pmap->reset(fInfo, fPixels, fRowBytes, fColorTable); } return true; } return false; } /////////////////////////////////////////////////////////////////////////////// #ifdef SK_DEBUG void SkImageInfo::validate() const { SkASSERT(fWidth >= 0); SkASSERT(fHeight >= 0); SkASSERT(SkColorTypeIsValid(fColorType)); SkASSERT(SkAlphaTypeIsValid(fAlphaType)); } #endif