/* * Copyright 2008 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkAtomics.h" #include "SkBitmap.h" #include "SkColorData.h" #include "SkColorTable.h" #include "SkConvertPixels.h" #include "SkData.h" #include "SkFilterQuality.h" #include "SkHalf.h" #include "SkImageInfoPriv.h" #include "SkMallocPixelRef.h" #include "SkMask.h" #include "SkMath.h" #include "SkPixelRef.h" #include "SkReadBuffer.h" #include "SkRect.h" #include "SkScalar.h" #include "SkTemplates.h" #include "SkUnPreMultiply.h" #include "SkWriteBuffer.h" #include "SkWritePixelsRec.h" #include static bool reset_return_false(SkBitmap* bm) { bm->reset(); return false; } SkBitmap::SkBitmap() : fPixels (nullptr) , fPixelRefOrigin{0, 0} , fRowBytes (0) , fFlags (0) {} SkBitmap::SkBitmap(const SkBitmap& src) : fPixelRef (src.fPixelRef) , fPixels (src.fPixels) , fPixelRefOrigin(src.fPixelRefOrigin) , fInfo (src.fInfo) , fRowBytes (src.fRowBytes) , fFlags (src.fFlags) { SkDEBUGCODE(src.validate();) SkDEBUGCODE(this->validate();) } SkBitmap::SkBitmap(SkBitmap&& other) : fPixelRef (std::move(other.fPixelRef)) , fPixels (other.fPixels) , fPixelRefOrigin (other.fPixelRefOrigin) , fInfo (std::move(other.fInfo)) , fRowBytes (other.fRowBytes) , fFlags (other.fFlags) { SkASSERT(!other.fPixelRef); other.fInfo.reset(); other.fPixels = nullptr; other.fPixelRefOrigin = SkIPoint{0, 0}; other.fRowBytes = 0; other.fFlags = 0; } SkBitmap::~SkBitmap() {} SkBitmap& SkBitmap::operator=(const SkBitmap& src) { if (this != &src) { fPixelRef = src.fPixelRef; fPixels = src.fPixels; fPixelRefOrigin = src.fPixelRefOrigin; fInfo = src.fInfo; fRowBytes = src.fRowBytes; fFlags = src.fFlags; } SkDEBUGCODE(this->validate();) return *this; } SkBitmap& SkBitmap::operator=(SkBitmap&& other) { if (this != &other) { fPixelRef = std::move(other.fPixelRef); fInfo = std::move(other.fInfo); fPixels = other.fPixels; fPixelRefOrigin = other.fPixelRefOrigin; fRowBytes = other.fRowBytes; fFlags = other.fFlags; SkASSERT(!other.fPixelRef); other.fInfo.reset(); other.fPixels = nullptr; other.fPixelRefOrigin = SkIPoint{0, 0}; other.fRowBytes = 0; other.fFlags = 0; } return *this; } void SkBitmap::swap(SkBitmap& other) { SkTSwap(*this, other); SkDEBUGCODE(this->validate();) } void SkBitmap::reset() { this->freePixels(); this->fInfo.reset(); sk_bzero(this, sizeof(*this)); } void SkBitmap::getBounds(SkRect* bounds) const { SkASSERT(bounds); bounds->set(0, 0, SkIntToScalar(fInfo.width()), SkIntToScalar(fInfo.height())); } void SkBitmap::getBounds(SkIRect* bounds) const { SkASSERT(bounds); bounds->set(0, 0, fInfo.width(), fInfo.height()); } /////////////////////////////////////////////////////////////////////////////// bool SkBitmap::setInfo(const SkImageInfo& info, size_t rowBytes) { SkAlphaType newAT = info.alphaType(); if (!SkColorTypeValidateAlphaType(info.colorType(), info.alphaType(), &newAT)) { return reset_return_false(this); } // don't look at info.alphaType(), since newAT is the real value... // require that rowBytes fit in 31bits int64_t mrb = info.minRowBytes64(); if ((int32_t)mrb != mrb) { return reset_return_false(this); } if ((int64_t)rowBytes != (int32_t)rowBytes) { return reset_return_false(this); } if (info.width() < 0 || info.height() < 0) { return reset_return_false(this); } if (kUnknown_SkColorType == info.colorType()) { rowBytes = 0; } else if (0 == rowBytes) { rowBytes = (size_t)mrb; } else if (!info.validRowBytes(rowBytes)) { return reset_return_false(this); } this->freePixels(); fInfo = info.makeAlphaType(newAT); fRowBytes = SkToU32(rowBytes); SkDEBUGCODE(this->validate();) return true; } bool SkBitmap::setAlphaType(SkAlphaType newAlphaType) { if (!SkColorTypeValidateAlphaType(fInfo.colorType(), newAlphaType, &newAlphaType)) { return false; } if (fInfo.alphaType() != newAlphaType) { fInfo = fInfo.makeAlphaType(newAlphaType); } SkDEBUGCODE(this->validate();) return true; } void SkBitmap::updatePixelsFromRef() { void* p = nullptr; if (fPixelRef) { // wish we could assert that a pixelref *always* has pixels p = fPixelRef->pixels(); if (p) { SkASSERT(fRowBytes == fPixelRef->rowBytes()); p = (char*)p + fPixelRefOrigin.fY * fRowBytes + fPixelRefOrigin.fX * fInfo.bytesPerPixel(); } } fPixels = p; } void SkBitmap::setPixelRef(sk_sp pr, int dx, int dy) { #ifdef SK_DEBUG if (pr) { if (kUnknown_SkColorType != fInfo.colorType()) { SkASSERT(fInfo.width() + dx <= pr->width()); SkASSERT(fInfo.height() + dy <= pr->height()); } } #endif fPixelRef = std::move(pr); if (fPixelRef) { fPixelRefOrigin.set(SkTPin(dx, 0, fPixelRef->width()), SkTPin(dy, 0, fPixelRef->height())); this->updatePixelsFromRef(); } else { // ignore dx,dy if there is no pixelref fPixelRefOrigin.setZero(); fPixels = nullptr; } SkDEBUGCODE(this->validate();) } void SkBitmap::setPixels(void* p) { if (nullptr == p) { this->setPixelRef(nullptr, 0, 0); return; } if (kUnknown_SkColorType == fInfo.colorType()) { this->setPixelRef(nullptr, 0, 0); return; } this->setPixelRef(SkMallocPixelRef::MakeDirect(fInfo, p, fRowBytes), 0, 0); if (!fPixelRef) { return; } SkDEBUGCODE(this->validate();) } bool SkBitmap::tryAllocPixels(Allocator* allocator) { HeapAllocator stdalloc; if (nullptr == allocator) { allocator = &stdalloc; } return allocator->allocPixelRef(this); } /////////////////////////////////////////////////////////////////////////////// bool SkBitmap::tryAllocPixels(const SkImageInfo& requestedInfo, size_t rowBytes) { if (!this->setInfo(requestedInfo, rowBytes)) { return reset_return_false(this); } // setInfo may have corrected info (e.g. 565 is always opaque). const SkImageInfo& correctedInfo = this->info(); // setInfo may have computed a valid rowbytes if 0 were passed in rowBytes = this->rowBytes(); sk_sp pr = SkMallocPixelRef::MakeAllocate(correctedInfo, rowBytes); if (!pr) { return reset_return_false(this); } this->setPixelRef(std::move(pr), 0, 0); if (nullptr == this->getPixels()) { return reset_return_false(this); } SkDEBUGCODE(this->validate();) return true; } bool SkBitmap::tryAllocPixelsFlags(const SkImageInfo& requestedInfo, uint32_t allocFlags) { if (!this->setInfo(requestedInfo)) { return reset_return_false(this); } // setInfo may have corrected info (e.g. 565 is always opaque). const SkImageInfo& correctedInfo = this->info(); sk_sp pr = (allocFlags & kZeroPixels_AllocFlag) ? SkMallocPixelRef::MakeZeroed(correctedInfo, correctedInfo.minRowBytes()) : SkMallocPixelRef::MakeAllocate(correctedInfo, correctedInfo.minRowBytes()); if (!pr) { return reset_return_false(this); } this->setPixelRef(std::move(pr), 0, 0); if (nullptr == this->getPixels()) { return reset_return_false(this); } SkDEBUGCODE(this->validate();) return true; } static void invoke_release_proc(void (*proc)(void* pixels, void* ctx), void* pixels, void* ctx) { if (proc) { proc(pixels, ctx); } } bool SkBitmap::installPixels(const SkImageInfo& requestedInfo, void* pixels, size_t rb, void (*releaseProc)(void* addr, void* context), void* context) { if (!this->setInfo(requestedInfo, rb)) { invoke_release_proc(releaseProc, pixels, context); this->reset(); return false; } if (nullptr == pixels) { invoke_release_proc(releaseProc, pixels, context); return true; // we behaved as if they called setInfo() } // setInfo may have corrected info (e.g. 565 is always opaque). const SkImageInfo& correctedInfo = this->info(); sk_sp pr = SkMallocPixelRef::MakeWithProc(correctedInfo, rb, pixels, releaseProc, context); if (!pr) { this->reset(); return false; } this->setPixelRef(std::move(pr), 0, 0); SkDEBUGCODE(this->validate();) return true; } bool SkBitmap::installPixels(const SkPixmap& pixmap) { return this->installPixels(pixmap.info(), pixmap.writable_addr(), pixmap.rowBytes(), nullptr, nullptr); } bool SkBitmap::installMaskPixels(const SkMask& mask) { if (SkMask::kA8_Format != mask.fFormat) { this->reset(); return false; } return this->installPixels(SkImageInfo::MakeA8(mask.fBounds.width(), mask.fBounds.height()), mask.fImage, mask.fRowBytes); } /////////////////////////////////////////////////////////////////////////////// void SkBitmap::freePixels() { fPixelRef = nullptr; fPixelRefOrigin.setZero(); fPixels = nullptr; } uint32_t SkBitmap::getGenerationID() const { return fPixelRef ? fPixelRef->getGenerationID() : 0; } void SkBitmap::notifyPixelsChanged() const { SkASSERT(!this->isImmutable()); if (fPixelRef) { fPixelRef->notifyPixelsChanged(); } } /////////////////////////////////////////////////////////////////////////////// /** We explicitly use the same allocator for our pixels that SkMask does, so that we can freely assign memory allocated by one class to the other. */ bool SkBitmap::HeapAllocator::allocPixelRef(SkBitmap* dst) { const SkImageInfo info = dst->info(); if (kUnknown_SkColorType == info.colorType()) { // SkDebugf("unsupported config for info %d\n", dst->config()); return false; } sk_sp pr = SkMallocPixelRef::MakeAllocate(info, dst->rowBytes()); if (!pr) { return false; } dst->setPixelRef(std::move(pr), 0, 0); SkDEBUGCODE(dst->validate();) return true; } /////////////////////////////////////////////////////////////////////////////// bool SkBitmap::isImmutable() const { return fPixelRef ? fPixelRef->isImmutable() : false; } void SkBitmap::setImmutable() { if (fPixelRef) { fPixelRef->setImmutable(); } } bool SkBitmap::isVolatile() const { return (fFlags & kImageIsVolatile_Flag) != 0; } void SkBitmap::setIsVolatile(bool isVolatile) { if (isVolatile) { fFlags |= kImageIsVolatile_Flag; } else { fFlags &= ~kImageIsVolatile_Flag; } } void* SkBitmap::getAddr(int x, int y) const { SkASSERT((unsigned)x < (unsigned)this->width()); SkASSERT((unsigned)y < (unsigned)this->height()); char* base = (char*)this->getPixels(); if (base) { base += y * this->rowBytes(); switch (this->colorType()) { case kRGBA_F16_SkColorType: base += x << 3; break; case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: base += x << 2; break; case kARGB_4444_SkColorType: case kRGB_565_SkColorType: base += x << 1; break; case kAlpha_8_SkColorType: case kGray_8_SkColorType: base += x; break; default: SkDEBUGFAIL("Can't return addr for config"); base = nullptr; break; } } return base; } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// void SkBitmap::erase(SkColor c, const SkIRect& area) const { SkDEBUGCODE(this->validate();) switch (fInfo.colorType()) { case kUnknown_SkColorType: // TODO: can we ASSERT that we never get here? return; // can't erase. Should we bzero so the memory is not uninitialized? default: break; } SkPixmap result; if (!this->peekPixels(&result)) { return; } if (result.erase(c, area)) { this->notifyPixelsChanged(); } } void SkBitmap::eraseColor(SkColor c) const { this->erase(c, SkIRect::MakeWH(this->width(), this->height())); } ////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////// bool SkBitmap::extractSubset(SkBitmap* result, const SkIRect& subset) const { SkDEBUGCODE(this->validate();) if (nullptr == result || !fPixelRef) { return false; // no src pixels } SkIRect srcRect, r; srcRect.set(0, 0, this->width(), this->height()); if (!r.intersect(srcRect, subset)) { return false; // r is empty (i.e. no intersection) } // If the upper left of the rectangle was outside the bounds of this SkBitmap, we should have // exited above. SkASSERT(static_cast(r.fLeft) < static_cast(this->width())); SkASSERT(static_cast(r.fTop) < static_cast(this->height())); SkBitmap dst; dst.setInfo(this->info().makeWH(r.width(), r.height()), this->rowBytes()); dst.setIsVolatile(this->isVolatile()); if (fPixelRef) { SkIPoint origin = fPixelRefOrigin; origin.fX += r.fLeft; origin.fY += r.fTop; // share the pixelref with a custom offset dst.setPixelRef(fPixelRef, origin.x(), origin.y()); } SkDEBUGCODE(dst.validate();) // we know we're good, so commit to result result->swap(dst); return true; } /////////////////////////////////////////////////////////////////////////////// bool SkBitmap::readPixels(const SkImageInfo& requestedDstInfo, void* dstPixels, size_t dstRB, int x, int y, SkTransferFunctionBehavior behavior) const { SkPixmap src; if (!this->peekPixels(&src)) { return false; } return src.readPixels(requestedDstInfo, dstPixels, dstRB, x, y, behavior); } bool SkBitmap::readPixels(const SkPixmap& dst, int srcX, int srcY) const { return this->readPixels(dst.info(), dst.writable_addr(), dst.rowBytes(), srcX, srcY); } bool SkBitmap::writePixels(const SkPixmap& src, int dstX, int dstY, SkTransferFunctionBehavior behavior) { if (!SkImageInfoValidConversion(fInfo, src.info())) { return false; } SkWritePixelsRec rec(src.info(), src.addr(), src.rowBytes(), dstX, dstY); if (!rec.trim(fInfo.width(), fInfo.height())) { return false; } void* dstPixels = this->getAddr(rec.fX, rec.fY); const SkImageInfo dstInfo = fInfo.makeWH(rec.fInfo.width(), rec.fInfo.height()); SkConvertPixels(dstInfo, dstPixels, this->rowBytes(), rec.fInfo, rec.fPixels, rec.fRowBytes, nullptr, behavior); return true; } /////////////////////////////////////////////////////////////////////////////// static bool GetBitmapAlpha(const SkBitmap& src, uint8_t* SK_RESTRICT alpha, int alphaRowBytes) { SkASSERT(alpha != nullptr); SkASSERT(alphaRowBytes >= src.width()); SkPixmap pmap; if (!src.peekPixels(&pmap)) { for (int y = 0; y < src.height(); ++y) { memset(alpha, 0, src.width()); alpha += alphaRowBytes; } return false; } SkConvertPixels(SkImageInfo::MakeA8(pmap.width(), pmap.height()), alpha, alphaRowBytes, pmap.info(), pmap.addr(), pmap.rowBytes(), nullptr, SkTransferFunctionBehavior::kRespect); return true; } #include "SkPaint.h" #include "SkMaskFilter.h" #include "SkMatrix.h" bool SkBitmap::extractAlpha(SkBitmap* dst, const SkPaint* paint, Allocator *allocator, SkIPoint* offset) const { SkDEBUGCODE(this->validate();) SkBitmap tmpBitmap; SkMatrix identity; SkMask srcM, dstM; srcM.fBounds.set(0, 0, this->width(), this->height()); srcM.fRowBytes = SkAlign4(this->width()); srcM.fFormat = SkMask::kA8_Format; SkMaskFilter* filter = paint ? paint->getMaskFilter() : nullptr; // compute our (larger?) dst bounds if we have a filter if (filter) { identity.reset(); if (!filter->filterMask(&dstM, srcM, identity, nullptr)) { goto NO_FILTER_CASE; } dstM.fRowBytes = SkAlign4(dstM.fBounds.width()); } else { NO_FILTER_CASE: tmpBitmap.setInfo(SkImageInfo::MakeA8(this->width(), this->height()), srcM.fRowBytes); if (!tmpBitmap.tryAllocPixels(allocator)) { // Allocation of pixels for alpha bitmap failed. SkDebugf("extractAlpha failed to allocate (%d,%d) alpha bitmap\n", tmpBitmap.width(), tmpBitmap.height()); return false; } GetBitmapAlpha(*this, tmpBitmap.getAddr8(0, 0), srcM.fRowBytes); if (offset) { offset->set(0, 0); } tmpBitmap.swap(*dst); return true; } srcM.fImage = SkMask::AllocImage(srcM.computeImageSize()); SkAutoMaskFreeImage srcCleanup(srcM.fImage); GetBitmapAlpha(*this, srcM.fImage, srcM.fRowBytes); if (!filter->filterMask(&dstM, srcM, identity, nullptr)) { goto NO_FILTER_CASE; } SkAutoMaskFreeImage dstCleanup(dstM.fImage); tmpBitmap.setInfo(SkImageInfo::MakeA8(dstM.fBounds.width(), dstM.fBounds.height()), dstM.fRowBytes); if (!tmpBitmap.tryAllocPixels(allocator)) { // Allocation of pixels for alpha bitmap failed. SkDebugf("extractAlpha failed to allocate (%d,%d) alpha bitmap\n", tmpBitmap.width(), tmpBitmap.height()); return false; } memcpy(tmpBitmap.getPixels(), dstM.fImage, dstM.computeImageSize()); if (offset) { offset->set(dstM.fBounds.fLeft, dstM.fBounds.fTop); } SkDEBUGCODE(tmpBitmap.validate();) tmpBitmap.swap(*dst); return true; } /////////////////////////////////////////////////////////////////////////////// static void write_raw_pixels(SkWriteBuffer* buffer, const SkPixmap& pmap) { const SkImageInfo& info = pmap.info(); const size_t snugRB = info.width() * info.bytesPerPixel(); const char* src = (const char*)pmap.addr(); const size_t ramRB = pmap.rowBytes(); buffer->write32(SkToU32(snugRB)); info.flatten(*buffer); const size_t size = snugRB * info.height(); SkAutoTMalloc storage(size); char* dst = storage.get(); for (int y = 0; y < info.height(); ++y) { memcpy(dst, src, snugRB); dst += snugRB; src += ramRB; } buffer->writeByteArray(storage.get(), size); // no colortable buffer->writeBool(false); } void SkBitmap::WriteRawPixels(SkWriteBuffer* buffer, const SkBitmap& bitmap) { const SkImageInfo info = bitmap.info(); if (0 == info.width() || 0 == info.height() || bitmap.isNull()) { buffer->writeUInt(0); // instead of snugRB, signaling no pixels return; } SkPixmap result; if (!bitmap.peekPixels(&result)) { buffer->writeUInt(0); // instead of snugRB, signaling no pixels return; } write_raw_pixels(buffer, result); } bool SkBitmap::ReadRawPixels(SkReadBuffer* buffer, SkBitmap* bitmap) { if (0 == buffer->readUInt()) { return false; // no pixels } SkImageInfo info; info.unflatten(*buffer); if (info.width() < 0 || info.height() < 0) { return false; } // If there was an error reading "info" or if it is bogus, // don't use it to compute minRowBytes(). if (!buffer->validate(SkColorTypeValidateAlphaType(info.colorType(), info.alphaType()))) { return false; } // write_raw_pixels() always writes snug buffers with rowBytes == minRowBytes(). size_t bytes = info.getSafeSize(info.minRowBytes()); if (!buffer->validate(bytes != 0)) { return false; } sk_sp data(SkData::MakeUninitialized(bytes)); unsigned char* dst = (unsigned char*)data->writable_data(); if (!buffer->readByteArray(dst, bytes)) { return false; } if (buffer->readBool()) { SkColorTable::Skip(*buffer); if (!buffer->isValid()) { return false; } } sk_sp pr = SkMallocPixelRef::MakeWithData(info, info.minRowBytes(), std::move(data)); if (!pr) { return false; } bitmap->setInfo(info); bitmap->setPixelRef(std::move(pr), 0, 0); return true; } enum { SERIALIZE_PIXELTYPE_NONE, SERIALIZE_PIXELTYPE_REF_DATA }; /////////////////////////////////////////////////////////////////////////////// #ifdef SK_DEBUG void SkBitmap::validate() const { fInfo.validate(); // ImageInfo may not require this, but Bitmap ensures that opaque-only // colorTypes report opaque for their alphatype if (kRGB_565_SkColorType == fInfo.colorType()) { SkASSERT(kOpaque_SkAlphaType == fInfo.alphaType()); } SkASSERT(fInfo.validRowBytes(fRowBytes)); uint8_t allFlags = kImageIsVolatile_Flag; #ifdef SK_BUILD_FOR_ANDROID allFlags |= kHasHardwareMipMap_Flag; #endif SkASSERT((~allFlags & fFlags) == 0); if (fPixelRef && fPixelRef->pixels()) { SkASSERT(fPixels); } else { SkASSERT(!fPixels); } if (fPixels) { SkASSERT(fPixelRef); SkASSERT(fPixelRef->rowBytes() == fRowBytes); SkASSERT(fPixelRefOrigin.fX >= 0); SkASSERT(fPixelRefOrigin.fY >= 0); SkASSERT(fPixelRef->width() >= (int)this->width() + fPixelRefOrigin.fX); SkASSERT(fPixelRef->height() >= (int)this->height() + fPixelRefOrigin.fY); SkASSERT(fPixelRef->rowBytes() >= fInfo.minRowBytes()); } } #endif #ifndef SK_IGNORE_TO_STRING #include "SkString.h" void SkBitmap::toString(SkString* str) const { static const char* gColorTypeNames[kLastEnum_SkColorType + 1] = { "UNKNOWN", "A8", "565", "4444", "RGBA", "BGRA", "INDEX8", }; str->appendf("bitmap: ((%d, %d) %s", this->width(), this->height(), gColorTypeNames[this->colorType()]); str->append(" ("); if (this->isOpaque()) { str->append("opaque"); } else { str->append("transparent"); } if (this->isImmutable()) { str->append(", immutable"); } else { str->append(", not-immutable"); } str->append(")"); str->appendf(" pixelref:%p", this->pixelRef()); str->append(")"); } #endif /////////////////////////////////////////////////////////////////////////////// bool SkBitmap::peekPixels(SkPixmap* pmap) const { if (fPixels) { if (pmap) { pmap->reset(fInfo, fPixels, fRowBytes); } return true; } return false; } /////////////////////////////////////////////////////////////////////////////// #ifdef SK_DEBUG void SkImageInfo::validate() const { SkASSERT(fWidth >= 0); SkASSERT(fHeight >= 0); SkASSERT(SkColorTypeIsValid(fColorType)); SkASSERT(SkAlphaTypeIsValid(fAlphaType)); } #endif