/* * Copyright 2008 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBitmap.h" #include "SkColorPriv.h" #include "SkDither.h" #include "SkFlattenable.h" #include "SkImagePriv.h" #include "SkMallocPixelRef.h" #include "SkMask.h" #include "SkOrderedReadBuffer.h" #include "SkOrderedWriteBuffer.h" #include "SkPixelRef.h" #include "SkThread.h" #include "SkUnPreMultiply.h" #include "SkUtils.h" #include "SkValidationUtils.h" #include "SkPackBits.h" #include struct MipLevel { void* fPixels; uint32_t fRowBytes; uint32_t fWidth, fHeight; }; struct SkBitmap::MipMap : SkNoncopyable { int32_t fRefCnt; int fLevelCount; // MipLevel fLevel[fLevelCount]; // Pixels[] static MipMap* Alloc(int levelCount, size_t pixelSize) { if (levelCount < 0) { return NULL; } int64_t size = (levelCount + 1) * sizeof(MipLevel); size += sizeof(MipMap) + pixelSize; if (!sk_64_isS32(size)) { return NULL; } MipMap* mm = (MipMap*)sk_malloc_throw(sk_64_asS32(size)); mm->fRefCnt = 1; mm->fLevelCount = levelCount; return mm; } const MipLevel* levels() const { return (const MipLevel*)(this + 1); } MipLevel* levels() { return (MipLevel*)(this + 1); } const void* pixels() const { return levels() + fLevelCount; } void* pixels() { return levels() + fLevelCount; } void ref() { if (SK_MaxS32 == sk_atomic_inc(&fRefCnt)) { sk_throw(); } } void unref() { SkASSERT(fRefCnt > 0); if (sk_atomic_dec(&fRefCnt) == 1) { sk_free(this); } } }; /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// SkBitmap::SkBitmap() { sk_bzero(this, sizeof(*this)); } SkBitmap::SkBitmap(const SkBitmap& src) { SkDEBUGCODE(src.validate();) sk_bzero(this, sizeof(*this)); *this = src; SkDEBUGCODE(this->validate();) } SkBitmap::~SkBitmap() { SkDEBUGCODE(this->validate();) this->freePixels(); } SkBitmap& SkBitmap::operator=(const SkBitmap& src) { if (this != &src) { this->freePixels(); memcpy(this, &src, sizeof(src)); // inc src reference counts SkSafeRef(src.fPixelRef); SkSafeRef(src.fMipMap); // we reset our locks if we get blown away fPixelLockCount = 0; /* The src could be in 3 states 1. no pixelref, in which case we just copy/ref the pixels/ctable 2. unlocked pixelref, pixels/ctable should be null 3. locked pixelref, we should lock the ref again ourselves */ if (NULL == fPixelRef) { // leave fPixels as it is SkSafeRef(fColorTable); // ref the user's ctable if present } else { // we have a pixelref, so pixels/ctable reflect it // ignore the values from the memcpy fPixels = NULL; fColorTable = NULL; // Note that what to for genID is somewhat arbitrary. We have no // way to track changes to raw pixels across multiple SkBitmaps. // Would benefit from an SkRawPixelRef type created by // setPixels. // Just leave the memcpy'ed one but they'll get out of sync // as soon either is modified. } } SkDEBUGCODE(this->validate();) return *this; } void SkBitmap::swap(SkBitmap& other) { SkTSwap(fColorTable, other.fColorTable); SkTSwap(fPixelRef, other.fPixelRef); SkTSwap(fPixelRefOrigin, other.fPixelRefOrigin); SkTSwap(fPixelLockCount, other.fPixelLockCount); SkTSwap(fMipMap, other.fMipMap); SkTSwap(fPixels, other.fPixels); SkTSwap(fRowBytes, other.fRowBytes); SkTSwap(fWidth, other.fWidth); SkTSwap(fHeight, other.fHeight); SkTSwap(fConfig, other.fConfig); SkTSwap(fAlphaType, other.fAlphaType); SkTSwap(fFlags, other.fFlags); SkTSwap(fBytesPerPixel, other.fBytesPerPixel); SkDEBUGCODE(this->validate();) } void SkBitmap::reset() { this->freePixels(); sk_bzero(this, sizeof(*this)); } int SkBitmap::ComputeBytesPerPixel(SkBitmap::Config config) { int bpp; switch (config) { case kNo_Config: bpp = 0; // not applicable break; case kA8_Config: case kIndex8_Config: bpp = 1; break; case kRGB_565_Config: case kARGB_4444_Config: bpp = 2; break; case kARGB_8888_Config: bpp = 4; break; default: SkDEBUGFAIL("unknown config"); bpp = 0; // error break; } return bpp; } size_t SkBitmap::ComputeRowBytes(Config c, int width) { if (width < 0) { return 0; } int64_t rowBytes = 0; switch (c) { case kNo_Config: break; case kA8_Config: case kIndex8_Config: rowBytes = width; break; case kRGB_565_Config: case kARGB_4444_Config: // assign and then shift, so we don't overflow int rowBytes = width; rowBytes <<= 1; break; case kARGB_8888_Config: // assign and then shift, so we don't overflow int rowBytes = width; rowBytes <<= 2; break; default: SkDEBUGFAIL("unknown config"); break; } return sk_64_isS32(rowBytes) ? sk_64_asS32(rowBytes) : 0; } int64_t SkBitmap::ComputeSize64(Config config, int width, int height) { int64_t rowBytes = sk_64_mul(ComputeBytesPerPixel(config), width); return rowBytes * height; } size_t SkBitmap::ComputeSize(Config c, int width, int height) { int64_t size = SkBitmap::ComputeSize64(c, width, height); return sk_64_isS32(size) ? sk_64_asS32(size) : 0; } int64_t SkBitmap::ComputeSafeSize64(Config config, uint32_t width, uint32_t height, size_t rowBytes) { int64_t safeSize = 0; if (height > 0) { int64_t lastRow = sk_64_mul(ComputeBytesPerPixel(config), width); safeSize = sk_64_mul(height - 1, rowBytes) + lastRow; } SkASSERT(safeSize >= 0); return safeSize; } size_t SkBitmap::ComputeSafeSize(Config config, uint32_t width, uint32_t height, size_t rowBytes) { int64_t safeSize = ComputeSafeSize64(config, width, height, rowBytes); int32_t safeSize32 = (int32_t)safeSize; if (safeSize32 != safeSize) { safeSize32 = 0; } return safeSize32; } void SkBitmap::getBounds(SkRect* bounds) const { SkASSERT(bounds); bounds->set(0, 0, SkIntToScalar(fWidth), SkIntToScalar(fHeight)); } void SkBitmap::getBounds(SkIRect* bounds) const { SkASSERT(bounds); bounds->set(0, 0, fWidth, fHeight); } /////////////////////////////////////////////////////////////////////////////// static bool validate_alphaType(SkBitmap::Config config, SkAlphaType alphaType, SkAlphaType* canonical = NULL) { switch (config) { case SkBitmap::kNo_Config: alphaType = kIgnore_SkAlphaType; break; case SkBitmap::kA8_Config: if (kUnpremul_SkAlphaType == alphaType) { alphaType = kPremul_SkAlphaType; } // fall-through case SkBitmap::kIndex8_Config: case SkBitmap::kARGB_4444_Config: case SkBitmap::kARGB_8888_Config: if (kIgnore_SkAlphaType == alphaType) { return false; } break; case SkBitmap::kRGB_565_Config: alphaType = kOpaque_SkAlphaType; break; default: return false; } if (canonical) { *canonical = alphaType; } return true; } bool SkBitmap::setConfig(Config config, int width, int height, size_t rowBytes, SkAlphaType alphaType) { if ((width | height) < 0) { goto BAD_CONFIG; } if (rowBytes == 0) { rowBytes = SkBitmap::ComputeRowBytes(config, width); if (0 == rowBytes && kNo_Config != config && width > 0) { goto BAD_CONFIG; } } if (!validate_alphaType(config, alphaType, &alphaType)) { goto BAD_CONFIG; } this->freePixels(); fConfig = SkToU8(config); fAlphaType = SkToU8(alphaType); fWidth = width; fHeight = height; fRowBytes = SkToU32(rowBytes); fBytesPerPixel = (uint8_t)ComputeBytesPerPixel(config); SkDEBUGCODE(this->validate();) return true; // if we got here, we had an error, so we reset the bitmap to empty BAD_CONFIG: this->reset(); return false; } bool SkBitmap::setConfig(const SkImageInfo& info, size_t rowBytes) { return this->setConfig(SkImageInfoToBitmapConfig(info), info.fWidth, info.fHeight, rowBytes, info.fAlphaType); } bool SkBitmap::setAlphaType(SkAlphaType alphaType) { if (!validate_alphaType(this->config(), alphaType, &alphaType)) { return false; } fAlphaType = SkToU8(alphaType); return true; } void SkBitmap::updatePixelsFromRef() const { if (NULL != fPixelRef) { if (fPixelLockCount > 0) { SkASSERT(fPixelRef->isLocked()); void* p = fPixelRef->pixels(); if (NULL != p) { p = (char*)p + fPixelRefOrigin.fY * fRowBytes + fPixelRefOrigin.fX * fBytesPerPixel; } fPixels = p; SkRefCnt_SafeAssign(fColorTable, fPixelRef->colorTable()); } else { SkASSERT(0 == fPixelLockCount); fPixels = NULL; if (fColorTable) { fColorTable->unref(); fColorTable = NULL; } } } } static bool config_to_colorType(SkBitmap::Config config, SkColorType* ctOut) { SkColorType ct; switch (config) { case SkBitmap::kA8_Config: ct = kAlpha_8_SkColorType; break; case SkBitmap::kIndex8_Config: ct = kIndex_8_SkColorType; break; case SkBitmap::kRGB_565_Config: ct = kRGB_565_SkColorType; break; case SkBitmap::kARGB_4444_Config: ct = kARGB_4444_SkColorType; break; case SkBitmap::kARGB_8888_Config: ct = kPMColor_SkColorType; break; case SkBitmap::kNo_Config: default: return false; } if (ctOut) { *ctOut = ct; } return true; } bool SkBitmap::asImageInfo(SkImageInfo* info) const { SkColorType ct; if (!config_to_colorType(this->config(), &ct)) { return false; } if (info) { info->fWidth = fWidth; info->fHeight = fHeight; info->fAlphaType = this->alphaType(); info->fColorType = ct; } return true; } SkPixelRef* SkBitmap::setPixelRef(SkPixelRef* pr, int dx, int dy) { #ifdef SK_DEBUG if (pr) { SkImageInfo info; if (this->asImageInfo(&info)) { const SkImageInfo& prInfo = pr->info(); SkASSERT(info.fWidth <= prInfo.fWidth); SkASSERT(info.fHeight <= prInfo.fHeight); SkASSERT(info.fColorType == prInfo.fColorType); switch (prInfo.fAlphaType) { case kIgnore_SkAlphaType: SkASSERT(fAlphaType == kIgnore_SkAlphaType); break; case kOpaque_SkAlphaType: case kPremul_SkAlphaType: SkASSERT(info.fAlphaType == kOpaque_SkAlphaType || info.fAlphaType == kPremul_SkAlphaType); break; case kUnpremul_SkAlphaType: SkASSERT(info.fAlphaType == kOpaque_SkAlphaType || info.fAlphaType == kUnpremul_SkAlphaType); break; } } } #endif if (pr) { const SkImageInfo& info = pr->info(); fPixelRefOrigin.set(SkPin32(dx, 0, info.fWidth), SkPin32(dy, 0, info.fHeight)); } else { // ignore dx,dy if there is no pixelref fPixelRefOrigin.setZero(); } if (fPixelRef != pr) { if (fPixelRef != pr) { this->freePixels(); SkASSERT(NULL == fPixelRef); SkSafeRef(pr); fPixelRef = pr; } this->updatePixelsFromRef(); } SkDEBUGCODE(this->validate();) return pr; } void SkBitmap::lockPixels() const { if (NULL != fPixelRef && 0 == sk_atomic_inc(&fPixelLockCount)) { fPixelRef->lockPixels(); this->updatePixelsFromRef(); } SkDEBUGCODE(this->validate();) } void SkBitmap::unlockPixels() const { SkASSERT(NULL == fPixelRef || fPixelLockCount > 0); if (NULL != fPixelRef && 1 == sk_atomic_dec(&fPixelLockCount)) { fPixelRef->unlockPixels(); this->updatePixelsFromRef(); } SkDEBUGCODE(this->validate();) } bool SkBitmap::lockPixelsAreWritable() const { return (fPixelRef) ? fPixelRef->lockPixelsAreWritable() : false; } void SkBitmap::setPixels(void* p, SkColorTable* ctable) { if (NULL == p) { this->setPixelRef(NULL); return; } SkImageInfo info; if (!this->asImageInfo(&info)) { this->setPixelRef(NULL); return; } SkPixelRef* pr = SkMallocPixelRef::NewDirect(info, p, fRowBytes, ctable); if (NULL == pr) { this->setPixelRef(NULL); return; } this->setPixelRef(pr)->unref(); // since we're already allocated, we lockPixels right away this->lockPixels(); SkDEBUGCODE(this->validate();) } bool SkBitmap::allocPixels(Allocator* allocator, SkColorTable* ctable) { HeapAllocator stdalloc; if (NULL == allocator) { allocator = &stdalloc; } return allocator->allocPixelRef(this, ctable); } void SkBitmap::freePixels() { // if we're gonna free the pixels, we certainly need to free the mipmap this->freeMipMap(); if (fColorTable) { fColorTable->unref(); fColorTable = NULL; } if (NULL != fPixelRef) { if (fPixelLockCount > 0) { fPixelRef->unlockPixels(); } fPixelRef->unref(); fPixelRef = NULL; fPixelRefOrigin.setZero(); } fPixelLockCount = 0; fPixels = NULL; } void SkBitmap::freeMipMap() { if (fMipMap) { fMipMap->unref(); fMipMap = NULL; } } uint32_t SkBitmap::getGenerationID() const { return (fPixelRef) ? fPixelRef->getGenerationID() : 0; } void SkBitmap::notifyPixelsChanged() const { SkASSERT(!this->isImmutable()); if (fPixelRef) { fPixelRef->notifyPixelsChanged(); } } GrTexture* SkBitmap::getTexture() const { return fPixelRef ? fPixelRef->getTexture() : NULL; } /////////////////////////////////////////////////////////////////////////////// /** We explicitly use the same allocator for our pixels that SkMask does, so that we can freely assign memory allocated by one class to the other. */ bool SkBitmap::HeapAllocator::allocPixelRef(SkBitmap* dst, SkColorTable* ctable) { SkImageInfo info; if (!dst->asImageInfo(&info)) { // SkDebugf("unsupported config for info %d\n", dst->config()); return false; } SkPixelRef* pr = SkMallocPixelRef::NewAllocate(info, dst->rowBytes(), ctable); if (NULL == pr) { return false; } dst->setPixelRef(pr)->unref(); // since we're already allocated, we lockPixels right away dst->lockPixels(); return true; } /////////////////////////////////////////////////////////////////////////////// size_t SkBitmap::getSafeSize() const { // This is intended to be a size_t version of ComputeSafeSize64(), just // faster. The computation is meant to be identical. return (fHeight ? ((fHeight - 1) * fRowBytes) + ComputeRowBytes(this->config(), fWidth): 0); } bool SkBitmap::copyPixelsTo(void* const dst, size_t dstSize, size_t dstRowBytes, bool preserveDstPad) const { if (0 == dstRowBytes) { dstRowBytes = fRowBytes; } if (dstRowBytes < ComputeRowBytes(this->config(), fWidth) || dst == NULL || (getPixels() == NULL && pixelRef() == NULL)) return false; if (!preserveDstPad && static_cast(dstRowBytes) == fRowBytes) { size_t safeSize = this->getSafeSize(); if (safeSize > dstSize || safeSize == 0) return false; else { SkAutoLockPixels lock(*this); // This implementation will write bytes beyond the end of each row, // excluding the last row, if the bitmap's stride is greater than // strictly required by the current config. memcpy(dst, getPixels(), safeSize); return true; } } else { // If destination has different stride than us, then copy line by line. if (ComputeSafeSize(this->config(), fWidth, fHeight, dstRowBytes) > dstSize) return false; else { // Just copy what we need on each line. size_t rowBytes = ComputeRowBytes(this->config(), fWidth); SkAutoLockPixels lock(*this); const uint8_t* srcP = reinterpret_cast(getPixels()); uint8_t* dstP = reinterpret_cast(dst); for (uint32_t row = 0; row < fHeight; row++, srcP += fRowBytes, dstP += dstRowBytes) { memcpy(dstP, srcP, rowBytes); } return true; } } } /////////////////////////////////////////////////////////////////////////////// bool SkBitmap::isImmutable() const { return fPixelRef ? fPixelRef->isImmutable() : fFlags & kImageIsImmutable_Flag; } void SkBitmap::setImmutable() { if (fPixelRef) { fPixelRef->setImmutable(); } else { fFlags |= kImageIsImmutable_Flag; } } bool SkBitmap::isVolatile() const { return (fFlags & kImageIsVolatile_Flag) != 0; } void SkBitmap::setIsVolatile(bool isVolatile) { if (isVolatile) { fFlags |= kImageIsVolatile_Flag; } else { fFlags &= ~kImageIsVolatile_Flag; } } void* SkBitmap::getAddr(int x, int y) const { SkASSERT((unsigned)x < (unsigned)this->width()); SkASSERT((unsigned)y < (unsigned)this->height()); char* base = (char*)this->getPixels(); if (base) { base += y * this->rowBytes(); switch (this->config()) { case SkBitmap::kARGB_8888_Config: base += x << 2; break; case SkBitmap::kARGB_4444_Config: case SkBitmap::kRGB_565_Config: base += x << 1; break; case SkBitmap::kA8_Config: case SkBitmap::kIndex8_Config: base += x; break; break; default: SkDEBUGFAIL("Can't return addr for config"); base = NULL; break; } } return base; } SkColor SkBitmap::getColor(int x, int y) const { SkASSERT((unsigned)x < (unsigned)this->width()); SkASSERT((unsigned)y < (unsigned)this->height()); switch (this->config()) { case SkBitmap::kA8_Config: { uint8_t* addr = this->getAddr8(x, y); return SkColorSetA(0, addr[0]); } case SkBitmap::kIndex8_Config: { SkPMColor c = this->getIndex8Color(x, y); return SkUnPreMultiply::PMColorToColor(c); } case SkBitmap::kRGB_565_Config: { uint16_t* addr = this->getAddr16(x, y); return SkPixel16ToColor(addr[0]); } case SkBitmap::kARGB_4444_Config: { uint16_t* addr = this->getAddr16(x, y); SkPMColor c = SkPixel4444ToPixel32(addr[0]); return SkUnPreMultiply::PMColorToColor(c); } case SkBitmap::kARGB_8888_Config: { uint32_t* addr = this->getAddr32(x, y); return SkUnPreMultiply::PMColorToColor(addr[0]); } case kNo_Config: default: SkASSERT(false); return 0; } SkASSERT(false); // Not reached. return 0; } bool SkBitmap::ComputeIsOpaque(const SkBitmap& bm) { SkAutoLockPixels alp(bm); if (!bm.getPixels()) { return false; } const int height = bm.height(); const int width = bm.width(); switch (bm.config()) { case SkBitmap::kA8_Config: { unsigned a = 0xFF; for (int y = 0; y < height; ++y) { const uint8_t* row = bm.getAddr8(0, y); for (int x = 0; x < width; ++x) { a &= row[x]; } if (0xFF != a) { return false; } } return true; } break; case SkBitmap::kIndex8_Config: { SkAutoLockColors alc(bm); const SkPMColor* table = alc.colors(); if (!table) { return false; } SkPMColor c = (SkPMColor)~0; for (int i = bm.getColorTable()->count() - 1; i >= 0; --i) { c &= table[i]; } return 0xFF == SkGetPackedA32(c); } break; case SkBitmap::kRGB_565_Config: return true; break; case SkBitmap::kARGB_4444_Config: { unsigned c = 0xFFFF; for (int y = 0; y < height; ++y) { const SkPMColor16* row = bm.getAddr16(0, y); for (int x = 0; x < width; ++x) { c &= row[x]; } if (0xF != SkGetPackedA4444(c)) { return false; } } return true; } break; case SkBitmap::kARGB_8888_Config: { SkPMColor c = (SkPMColor)~0; for (int y = 0; y < height; ++y) { const SkPMColor* row = bm.getAddr32(0, y); for (int x = 0; x < width; ++x) { c &= row[x]; } if (0xFF != SkGetPackedA32(c)) { return false; } } return true; } default: break; } return false; } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// static uint16_t pack_8888_to_4444(unsigned a, unsigned r, unsigned g, unsigned b) { unsigned pixel = (SkA32To4444(a) << SK_A4444_SHIFT) | (SkR32To4444(r) << SK_R4444_SHIFT) | (SkG32To4444(g) << SK_G4444_SHIFT) | (SkB32To4444(b) << SK_B4444_SHIFT); return SkToU16(pixel); } void SkBitmap::internalErase(const SkIRect& area, U8CPU a, U8CPU r, U8CPU g, U8CPU b) const { #ifdef SK_DEBUG SkDEBUGCODE(this->validate();) SkASSERT(!area.isEmpty()); { SkIRect total = { 0, 0, this->width(), this->height() }; SkASSERT(total.contains(area)); } #endif if (kNo_Config == fConfig || kIndex8_Config == fConfig) { return; } SkAutoLockPixels alp(*this); // perform this check after the lock call if (!this->readyToDraw()) { return; } int height = area.height(); const int width = area.width(); const int rowBytes = fRowBytes; // make rgb premultiplied if (255 != a) { r = SkAlphaMul(r, a); g = SkAlphaMul(g, a); b = SkAlphaMul(b, a); } switch (fConfig) { case kA8_Config: { uint8_t* p = this->getAddr8(area.fLeft, area.fTop); while (--height >= 0) { memset(p, a, width); p += rowBytes; } break; } case kARGB_4444_Config: case kRGB_565_Config: { uint16_t* p = this->getAddr16(area.fLeft, area.fTop);; uint16_t v; if (kARGB_4444_Config == fConfig) { v = pack_8888_to_4444(a, r, g, b); } else { v = SkPackRGB16(r >> (8 - SK_R16_BITS), g >> (8 - SK_G16_BITS), b >> (8 - SK_B16_BITS)); } while (--height >= 0) { sk_memset16(p, v, width); p = (uint16_t*)((char*)p + rowBytes); } break; } case kARGB_8888_Config: { uint32_t* p = this->getAddr32(area.fLeft, area.fTop); uint32_t v = SkPackARGB32(a, r, g, b); while (--height >= 0) { sk_memset32(p, v, width); p = (uint32_t*)((char*)p + rowBytes); } break; } } this->notifyPixelsChanged(); } void SkBitmap::eraseARGB(U8CPU a, U8CPU r, U8CPU g, U8CPU b) const { SkIRect area = { 0, 0, this->width(), this->height() }; if (!area.isEmpty()) { this->internalErase(area, a, r, g, b); } } void SkBitmap::eraseArea(const SkIRect& rect, SkColor c) const { SkIRect area = { 0, 0, this->width(), this->height() }; if (area.intersect(rect)) { this->internalErase(area, SkColorGetA(c), SkColorGetR(c), SkColorGetG(c), SkColorGetB(c)); } } ////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////// bool SkBitmap::extractSubset(SkBitmap* result, const SkIRect& subset) const { SkDEBUGCODE(this->validate();) if (NULL == result || NULL == fPixelRef) { return false; // no src pixels } SkIRect srcRect, r; srcRect.set(0, 0, this->width(), this->height()); if (!r.intersect(srcRect, subset)) { return false; // r is empty (i.e. no intersection) } if (fPixelRef->getTexture() != NULL) { // Do a deep copy SkPixelRef* pixelRef = fPixelRef->deepCopy(this->config(), &subset); if (pixelRef != NULL) { SkBitmap dst; dst.setConfig(this->config(), subset.width(), subset.height(), 0, this->alphaType()); dst.setIsVolatile(this->isVolatile()); dst.setPixelRef(pixelRef)->unref(); SkDEBUGCODE(dst.validate()); result->swap(dst); return true; } } // If the upper left of the rectangle was outside the bounds of this SkBitmap, we should have // exited above. SkASSERT(static_cast(r.fLeft) < static_cast(this->width())); SkASSERT(static_cast(r.fTop) < static_cast(this->height())); SkBitmap dst; dst.setConfig(this->config(), r.width(), r.height(), this->rowBytes(), this->alphaType()); dst.setIsVolatile(this->isVolatile()); if (fPixelRef) { SkIPoint origin = fPixelRefOrigin; origin.fX += r.fLeft; origin.fY += r.fTop; // share the pixelref with a custom offset dst.setPixelRef(fPixelRef, origin); } SkDEBUGCODE(dst.validate();) // we know we're good, so commit to result result->swap(dst); return true; } /////////////////////////////////////////////////////////////////////////////// #include "SkCanvas.h" #include "SkPaint.h" bool SkBitmap::canCopyTo(Config dstConfig) const { if (this->config() == kNo_Config) { return false; } bool sameConfigs = (this->config() == dstConfig); switch (dstConfig) { case kA8_Config: case kRGB_565_Config: case kARGB_8888_Config: break; case kIndex8_Config: if (!sameConfigs) { return false; } break; case kARGB_4444_Config: return sameConfigs || kARGB_8888_Config == this->config(); default: return false; } return true; } bool SkBitmap::copyTo(SkBitmap* dst, Config dstConfig, Allocator* alloc) const { if (!this->canCopyTo(dstConfig)) { return false; } // if we have a texture, first get those pixels SkBitmap tmpSrc; const SkBitmap* src = this; if (fPixelRef) { SkIRect subset; subset.setXYWH(fPixelRefOrigin.fX, fPixelRefOrigin.fY, fWidth, fHeight); if (fPixelRef->readPixels(&tmpSrc, &subset)) { SkASSERT(tmpSrc.width() == this->width()); SkASSERT(tmpSrc.height() == this->height()); // did we get lucky and we can just return tmpSrc? if (tmpSrc.config() == dstConfig && NULL == alloc) { dst->swap(tmpSrc); if (dst->pixelRef() && this->config() == dstConfig) { // TODO(scroggo): fix issue 1742 dst->pixelRef()->cloneGenID(*fPixelRef); } return true; } // fall through to the raster case src = &tmpSrc; } } // we lock this now, since we may need its colortable SkAutoLockPixels srclock(*src); if (!src->readyToDraw()) { return false; } SkBitmap tmpDst; tmpDst.setConfig(dstConfig, src->width(), src->height(), 0, src->alphaType()); // allocate colortable if srcConfig == kIndex8_Config SkColorTable* ctable = (dstConfig == kIndex8_Config) ? new SkColorTable(*src->getColorTable()) : NULL; SkAutoUnref au(ctable); if (!tmpDst.allocPixels(alloc, ctable)) { return false; } if (!tmpDst.readyToDraw()) { // allocator/lock failed return false; } /* do memcpy for the same configs cases, else use drawing */ if (src->config() == dstConfig) { if (tmpDst.getSize() == src->getSize()) { memcpy(tmpDst.getPixels(), src->getPixels(), src->getSafeSize()); SkPixelRef* pixelRef = tmpDst.pixelRef(); if (NULL != pixelRef && NULL != fPixelRef) { // TODO(scroggo): fix issue 1742 pixelRef->cloneGenID(*fPixelRef); } } else { const char* srcP = reinterpret_cast(src->getPixels()); char* dstP = reinterpret_cast(tmpDst.getPixels()); // to be sure we don't read too much, only copy our logical pixels size_t bytesToCopy = tmpDst.width() * tmpDst.bytesPerPixel(); for (int y = 0; y < tmpDst.height(); y++) { memcpy(dstP, srcP, bytesToCopy); srcP += src->rowBytes(); dstP += tmpDst.rowBytes(); } } } else if (SkBitmap::kARGB_4444_Config == dstConfig && SkBitmap::kARGB_8888_Config == src->config()) { SkASSERT(src->height() == tmpDst.height()); SkASSERT(src->width() == tmpDst.width()); for (int y = 0; y < src->height(); ++y) { SkPMColor16* SK_RESTRICT dstRow = (SkPMColor16*) tmpDst.getAddr16(0, y); SkPMColor* SK_RESTRICT srcRow = (SkPMColor*) src->getAddr32(0, y); DITHER_4444_SCAN(y); for (int x = 0; x < src->width(); ++x) { dstRow[x] = SkDitherARGB32To4444(srcRow[x], DITHER_VALUE(x)); } } } else { // Always clear the dest in case one of the blitters accesses it // TODO: switch the allocation of tmpDst to call sk_calloc_throw tmpDst.eraseColor(SK_ColorTRANSPARENT); SkCanvas canvas(tmpDst); SkPaint paint; paint.setDither(true); canvas.drawBitmap(*src, 0, 0, &paint); } dst->swap(tmpDst); return true; } bool SkBitmap::deepCopyTo(SkBitmap* dst, Config dstConfig) const { if (!this->canCopyTo(dstConfig)) { return false; } // If we have a PixelRef, and it supports deep copy, use it. // Currently supported only by texture-backed bitmaps. if (fPixelRef) { SkPixelRef* pixelRef = fPixelRef->deepCopy(dstConfig); if (pixelRef) { uint32_t rowBytes; if (dstConfig == fConfig) { // TODO(scroggo): fix issue 1742 pixelRef->cloneGenID(*fPixelRef); // Use the same rowBytes as the original. rowBytes = fRowBytes; } else { // With the new config, an appropriate fRowBytes will be computed by setConfig. rowBytes = 0; } dst->setConfig(dstConfig, fWidth, fHeight, rowBytes); dst->setPixelRef(pixelRef, fPixelRefOrigin)->unref(); return true; } } if (this->getTexture()) { return false; } else { return this->copyTo(dst, dstConfig, NULL); } } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// static void downsampleby2_proc32(SkBitmap* dst, int x, int y, const SkBitmap& src) { x <<= 1; y <<= 1; const SkPMColor* p = src.getAddr32(x, y); const SkPMColor* baseP = p; SkPMColor c, ag, rb; c = *p; ag = (c >> 8) & 0xFF00FF; rb = c & 0xFF00FF; if (x < src.width() - 1) { p += 1; } c = *p; ag += (c >> 8) & 0xFF00FF; rb += c & 0xFF00FF; p = baseP; if (y < src.height() - 1) { p += src.rowBytes() >> 2; } c = *p; ag += (c >> 8) & 0xFF00FF; rb += c & 0xFF00FF; if (x < src.width() - 1) { p += 1; } c = *p; ag += (c >> 8) & 0xFF00FF; rb += c & 0xFF00FF; *dst->getAddr32(x >> 1, y >> 1) = ((rb >> 2) & 0xFF00FF) | ((ag << 6) & 0xFF00FF00); } static inline uint32_t expand16(U16CPU c) { return (c & ~SK_G16_MASK_IN_PLACE) | ((c & SK_G16_MASK_IN_PLACE) << 16); } // returns dirt in the top 16bits, but we don't care, since we only // store the low 16bits. static inline U16CPU pack16(uint32_t c) { return (c & ~SK_G16_MASK_IN_PLACE) | ((c >> 16) & SK_G16_MASK_IN_PLACE); } static void downsampleby2_proc16(SkBitmap* dst, int x, int y, const SkBitmap& src) { x <<= 1; y <<= 1; const uint16_t* p = src.getAddr16(x, y); const uint16_t* baseP = p; SkPMColor c; c = expand16(*p); if (x < src.width() - 1) { p += 1; } c += expand16(*p); p = baseP; if (y < src.height() - 1) { p += src.rowBytes() >> 1; } c += expand16(*p); if (x < src.width() - 1) { p += 1; } c += expand16(*p); *dst->getAddr16(x >> 1, y >> 1) = (uint16_t)pack16(c >> 2); } static uint32_t expand4444(U16CPU c) { return (c & 0xF0F) | ((c & ~0xF0F) << 12); } static U16CPU collaps4444(uint32_t c) { return (c & 0xF0F) | ((c >> 12) & ~0xF0F); } static void downsampleby2_proc4444(SkBitmap* dst, int x, int y, const SkBitmap& src) { x <<= 1; y <<= 1; const uint16_t* p = src.getAddr16(x, y); const uint16_t* baseP = p; uint32_t c; c = expand4444(*p); if (x < src.width() - 1) { p += 1; } c += expand4444(*p); p = baseP; if (y < src.height() - 1) { p += src.rowBytes() >> 1; } c += expand4444(*p); if (x < src.width() - 1) { p += 1; } c += expand4444(*p); *dst->getAddr16(x >> 1, y >> 1) = (uint16_t)collaps4444(c >> 2); } void SkBitmap::buildMipMap(bool forceRebuild) { if (forceRebuild) this->freeMipMap(); else if (fMipMap) return; // we're already built SkASSERT(NULL == fMipMap); void (*proc)(SkBitmap* dst, int x, int y, const SkBitmap& src); const SkBitmap::Config config = this->config(); switch (config) { case kARGB_8888_Config: proc = downsampleby2_proc32; break; case kRGB_565_Config: proc = downsampleby2_proc16; break; case kARGB_4444_Config: proc = downsampleby2_proc4444; break; case kIndex8_Config: case kA8_Config: default: return; // don't build mipmaps for these configs } SkAutoLockPixels alp(*this); if (!this->readyToDraw()) { return; } // whip through our loop to compute the exact size needed size_t size = 0; int maxLevels = 0; { int width = this->width(); int height = this->height(); for (;;) { width >>= 1; height >>= 1; if (0 == width || 0 == height) { break; } size += ComputeRowBytes(config, width) * height; maxLevels += 1; } } // nothing to build if (0 == maxLevels) { return; } SkBitmap srcBM(*this); srcBM.lockPixels(); if (!srcBM.readyToDraw()) { return; } MipMap* mm = MipMap::Alloc(maxLevels, size); if (NULL == mm) { return; } MipLevel* level = mm->levels(); uint8_t* addr = (uint8_t*)mm->pixels(); int width = this->width(); int height = this->height(); uint32_t rowBytes; SkBitmap dstBM; for (int i = 0; i < maxLevels; i++) { width >>= 1; height >>= 1; rowBytes = SkToU32(ComputeRowBytes(config, width)); level[i].fPixels = addr; level[i].fWidth = width; level[i].fHeight = height; level[i].fRowBytes = rowBytes; dstBM.setConfig(config, width, height, rowBytes); dstBM.setPixels(addr); srcBM.lockPixels(); for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { proc(&dstBM, x, y, srcBM); } } srcBM.unlockPixels(); srcBM = dstBM; addr += height * rowBytes; } SkASSERT(addr == (uint8_t*)mm->pixels() + size); fMipMap = mm; } bool SkBitmap::hasMipMap() const { return fMipMap != NULL; } int SkBitmap::extractMipLevel(SkBitmap* dst, SkFixed sx, SkFixed sy) { if (NULL == fMipMap) { return 0; } int level = ComputeMipLevel(sx, sy) >> 16; SkASSERT(level >= 0); if (level <= 0) { return 0; } if (level >= fMipMap->fLevelCount) { level = fMipMap->fLevelCount - 1; } if (dst) { const MipLevel& mip = fMipMap->levels()[level - 1]; dst->setConfig((SkBitmap::Config)this->config(), mip.fWidth, mip.fHeight, mip.fRowBytes); dst->setPixels(mip.fPixels); } return level; } SkFixed SkBitmap::ComputeMipLevel(SkFixed sx, SkFixed sy) { sx = SkAbs32(sx); sy = SkAbs32(sy); if (sx < sy) { sx = sy; } if (sx < SK_Fixed1) { return 0; } int clz = SkCLZ(sx); SkASSERT(clz >= 1 && clz <= 15); return SkIntToFixed(15 - clz) + ((unsigned)(sx << (clz + 1)) >> 16); } /////////////////////////////////////////////////////////////////////////////// static bool GetBitmapAlpha(const SkBitmap& src, uint8_t* SK_RESTRICT alpha, int alphaRowBytes) { SkASSERT(alpha != NULL); SkASSERT(alphaRowBytes >= src.width()); SkBitmap::Config config = src.config(); int w = src.width(); int h = src.height(); size_t rb = src.rowBytes(); SkAutoLockPixels alp(src); if (!src.readyToDraw()) { // zero out the alpha buffer and return while (--h >= 0) { memset(alpha, 0, w); alpha += alphaRowBytes; } return false; } if (SkBitmap::kA8_Config == config && !src.isOpaque()) { const uint8_t* s = src.getAddr8(0, 0); while (--h >= 0) { memcpy(alpha, s, w); s += rb; alpha += alphaRowBytes; } } else if (SkBitmap::kARGB_8888_Config == config && !src.isOpaque()) { const SkPMColor* SK_RESTRICT s = src.getAddr32(0, 0); while (--h >= 0) { for (int x = 0; x < w; x++) { alpha[x] = SkGetPackedA32(s[x]); } s = (const SkPMColor*)((const char*)s + rb); alpha += alphaRowBytes; } } else if (SkBitmap::kARGB_4444_Config == config && !src.isOpaque()) { const SkPMColor16* SK_RESTRICT s = src.getAddr16(0, 0); while (--h >= 0) { for (int x = 0; x < w; x++) { alpha[x] = SkPacked4444ToA32(s[x]); } s = (const SkPMColor16*)((const char*)s + rb); alpha += alphaRowBytes; } } else if (SkBitmap::kIndex8_Config == config && !src.isOpaque()) { SkColorTable* ct = src.getColorTable(); if (ct) { const SkPMColor* SK_RESTRICT table = ct->lockColors(); const uint8_t* SK_RESTRICT s = src.getAddr8(0, 0); while (--h >= 0) { for (int x = 0; x < w; x++) { alpha[x] = SkGetPackedA32(table[s[x]]); } s += rb; alpha += alphaRowBytes; } ct->unlockColors(); } } else { // src is opaque, so just fill alpha[] with 0xFF memset(alpha, 0xFF, h * alphaRowBytes); } return true; } #include "SkPaint.h" #include "SkMaskFilter.h" #include "SkMatrix.h" bool SkBitmap::extractAlpha(SkBitmap* dst, const SkPaint* paint, Allocator *allocator, SkIPoint* offset) const { SkDEBUGCODE(this->validate();) SkBitmap tmpBitmap; SkMatrix identity; SkMask srcM, dstM; srcM.fBounds.set(0, 0, this->width(), this->height()); srcM.fRowBytes = SkAlign4(this->width()); srcM.fFormat = SkMask::kA8_Format; SkMaskFilter* filter = paint ? paint->getMaskFilter() : NULL; // compute our (larger?) dst bounds if we have a filter if (NULL != filter) { identity.reset(); srcM.fImage = NULL; if (!filter->filterMask(&dstM, srcM, identity, NULL)) { goto NO_FILTER_CASE; } dstM.fRowBytes = SkAlign4(dstM.fBounds.width()); } else { NO_FILTER_CASE: tmpBitmap.setConfig(SkBitmap::kA8_Config, this->width(), this->height(), srcM.fRowBytes); if (!tmpBitmap.allocPixels(allocator, NULL)) { // Allocation of pixels for alpha bitmap failed. SkDebugf("extractAlpha failed to allocate (%d,%d) alpha bitmap\n", tmpBitmap.width(), tmpBitmap.height()); return false; } GetBitmapAlpha(*this, tmpBitmap.getAddr8(0, 0), srcM.fRowBytes); if (offset) { offset->set(0, 0); } tmpBitmap.swap(*dst); return true; } srcM.fImage = SkMask::AllocImage(srcM.computeImageSize()); SkAutoMaskFreeImage srcCleanup(srcM.fImage); GetBitmapAlpha(*this, srcM.fImage, srcM.fRowBytes); if (!filter->filterMask(&dstM, srcM, identity, NULL)) { goto NO_FILTER_CASE; } SkAutoMaskFreeImage dstCleanup(dstM.fImage); tmpBitmap.setConfig(SkBitmap::kA8_Config, dstM.fBounds.width(), dstM.fBounds.height(), dstM.fRowBytes); if (!tmpBitmap.allocPixels(allocator, NULL)) { // Allocation of pixels for alpha bitmap failed. SkDebugf("extractAlpha failed to allocate (%d,%d) alpha bitmap\n", tmpBitmap.width(), tmpBitmap.height()); return false; } memcpy(tmpBitmap.getPixels(), dstM.fImage, dstM.computeImageSize()); if (offset) { offset->set(dstM.fBounds.fLeft, dstM.fBounds.fTop); } SkDEBUGCODE(tmpBitmap.validate();) tmpBitmap.swap(*dst); return true; } /////////////////////////////////////////////////////////////////////////////// enum { SERIALIZE_PIXELTYPE_NONE, SERIALIZE_PIXELTYPE_REF_DATA }; void SkBitmap::flatten(SkFlattenableWriteBuffer& buffer) const { buffer.writeInt(fWidth); buffer.writeInt(fHeight); buffer.writeInt(fRowBytes); buffer.writeInt(fConfig); buffer.writeInt(fAlphaType); if (fPixelRef) { if (fPixelRef->getFactory()) { buffer.writeInt(SERIALIZE_PIXELTYPE_REF_DATA); buffer.writeInt(fPixelRefOrigin.fX); buffer.writeInt(fPixelRefOrigin.fY); buffer.writeFlattenable(fPixelRef); return; } // if we get here, we can't record the pixels buffer.writeInt(SERIALIZE_PIXELTYPE_NONE); } else { buffer.writeInt(SERIALIZE_PIXELTYPE_NONE); } } void SkBitmap::unflatten(SkFlattenableReadBuffer& buffer) { this->reset(); int width = buffer.readInt(); int height = buffer.readInt(); int rowBytes = buffer.readInt(); Config config = (Config)buffer.readInt(); SkAlphaType alphaType = (SkAlphaType)buffer.readInt(); buffer.validate((width >= 0) && (height >= 0) && (rowBytes >= 0) && SkIsValidConfig(config) && validate_alphaType(config, alphaType)); bool configIsValid = this->setConfig(config, width, height, rowBytes, alphaType); // Note : Using (fRowBytes >= (fWidth * fBytesPerPixel)) in the following test can create false // positives if the multiplication causes an integer overflow. Use the division instead. buffer.validate(configIsValid && (fBytesPerPixel > 0) && ((fRowBytes / fBytesPerPixel) >= fWidth)); int reftype = buffer.readInt(); if (buffer.validate((SERIALIZE_PIXELTYPE_REF_DATA == reftype) || (SERIALIZE_PIXELTYPE_NONE == reftype))) { switch (reftype) { case SERIALIZE_PIXELTYPE_REF_DATA: { SkIPoint origin; origin.fX = buffer.readInt(); origin.fY = buffer.readInt(); size_t offset = origin.fY * rowBytes + origin.fX * fBytesPerPixel; SkPixelRef* pr = buffer.readPixelRef(); if (!buffer.validate((NULL == pr) || (pr->getAllocatedSizeInBytes() >= (offset + this->getSafeSize())))) { origin.setZero(); } SkSafeUnref(this->setPixelRef(pr, origin)); break; } case SERIALIZE_PIXELTYPE_NONE: break; default: SkDEBUGFAIL("unrecognized pixeltype in serialized data"); sk_throw(); } } } /////////////////////////////////////////////////////////////////////////////// SkBitmap::RLEPixels::RLEPixels(int width, int height) { fHeight = height; fYPtrs = (uint8_t**)sk_calloc_throw(height * sizeof(uint8_t*)); } SkBitmap::RLEPixels::~RLEPixels() { sk_free(fYPtrs); } /////////////////////////////////////////////////////////////////////////////// #ifdef SK_DEBUG void SkBitmap::validate() const { SkASSERT(fConfig < kConfigCount); SkASSERT(fRowBytes >= (unsigned)ComputeRowBytes((Config)fConfig, fWidth)); uint8_t allFlags = kImageIsOpaque_Flag | kImageIsVolatile_Flag | kImageIsImmutable_Flag; #ifdef SK_BUILD_FOR_ANDROID allFlags |= kHasHardwareMipMap_Flag; #endif SkASSERT(fFlags <= allFlags); SkASSERT(fPixelLockCount >= 0); SkASSERT(NULL == fColorTable || (unsigned)fColorTable->getRefCnt() < 10000); SkASSERT((uint8_t)ComputeBytesPerPixel((Config)fConfig) == fBytesPerPixel); #if 0 // these asserts are not thread-correct, so disable for now if (fPixelRef) { if (fPixelLockCount > 0) { SkASSERT(fPixelRef->isLocked()); } else { SkASSERT(NULL == fPixels); SkASSERT(NULL == fColorTable); } } #endif } #endif #ifdef SK_DEVELOPER void SkBitmap::toString(SkString* str) const { static const char* gConfigNames[kConfigCount] = { "NONE", "A8", "INDEX8", "565", "4444", "8888" }; str->appendf("bitmap: ((%d, %d) %s", this->width(), this->height(), gConfigNames[this->config()]); str->append(" ("); if (this->isOpaque()) { str->append("opaque"); } else { str->append("transparent"); } if (this->isImmutable()) { str->append(", immutable"); } else { str->append(", not-immutable"); } str->append(")"); SkPixelRef* pr = this->pixelRef(); if (NULL == pr) { // show null or the explicit pixel address (rare) str->appendf(" pixels:%p", this->getPixels()); } else { const char* uri = pr->getURI(); if (NULL != uri) { str->appendf(" uri:\"%s\"", uri); } else { str->appendf(" pixelref:%p", pr); } } str->append(")"); } #endif