/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Sk64.h" #include "SkMathPriv.h" #define shift_left(hi, lo) \ hi = (hi << 1) | (lo >> 31); \ lo <<= 1 #define shift_left_bits(hi, lo, bits) \ SkASSERT((unsigned)(bits) < 31); \ hi = (hi << (bits)) | (lo >> (32 - (bits))); \ lo <<= (bits) ////////////////////////////////////////////////////////////////////// int Sk64::getClzAbs() const { int32_t hi = fHi; uint32_t lo = fLo; // get abs if (hi < 0) { hi = -hi - Sk32ToBool(lo); lo = 0 - lo; } return hi ? SkCLZ(hi) : SkCLZ(lo) + 32; } void Sk64::shiftLeft(unsigned bits) { SkASSERT(bits <= 63); if (bits == 0) return; if (bits >= 32) { fHi = fLo << (bits - 32); fLo = 0; } else { fHi = (fHi << bits) | (fLo >> (32 - bits)); fLo <<= bits; } } int32_t Sk64::getShiftRight(unsigned bits) const { SkASSERT(bits <= 63); if (bits == 0) return fLo; if (bits >= 32) return fHi >> (bits - 32); else { #ifdef SK_DEBUG int32_t tmp = fHi >> bits; SkASSERT(tmp == 0 || tmp == -1); #endif return (fHi << (32 - bits)) | (fLo >> bits); } } void Sk64::shiftRight(unsigned bits) { SkASSERT(bits <= 63); if (bits == 0) return; if (bits >= 32) { fLo = fHi >> (bits - 32); fHi >>= 31; } else { fLo = (fHi << (32 - bits)) | (fLo >> bits); fHi >>= bits; } } void Sk64::roundRight(unsigned bits) { SkASSERT(bits <= 63); if (bits) { Sk64 one; one.set(1); one.shiftLeft(bits - 1); this->add(one); this->shiftRight(bits); } } int Sk64::shiftToMake32() const { int32_t hi = fHi; uint32_t lo = fLo; if (hi < 0) // make it positive { hi = -hi - Sk32ToBool(lo); lo = 0 - lo; } if (hi == 0) return lo >> 31; else return 33 - SkCLZ(hi); } void Sk64::negate() { fHi = -fHi - Sk32ToBool(fLo); fLo = 0 - fLo; } void Sk64::abs() { if (fHi < 0) { fHi = -fHi - Sk32ToBool(fLo); fLo = 0 - fLo; } } //////////////////////////////////////////////////////////////// static inline int32_t round_right_16(int32_t hi, uint32_t lo) { uint32_t sum = lo + (1 << 15); hi += (sum < lo); return (hi << 16) | (sum >> 16); } SkBool Sk64::isFixed() const { Sk64 tmp = *this; tmp.roundRight(16); return tmp.is32(); } SkFract Sk64::getFract() const { Sk64 tmp = *this; tmp.roundRight(30); return tmp.get32(); } void Sk64::sub(const Sk64& a) { fHi = fHi - a.fHi - (fLo < a.fLo); fLo = fLo - a.fLo; } void Sk64::rsub(const Sk64& a) { fHi = a.fHi - fHi - (a.fLo < fLo); fLo = a.fLo - fLo; } void Sk64::setMul(int32_t a, int32_t b) { int sa = a >> 31; int sb = b >> 31; // now make them positive a = (a ^ sa) - sa; b = (b ^ sb) - sb; uint32_t ah = a >> 16; uint32_t al = a & 0xFFFF; uint32_t bh = b >> 16; uint32_t bl = b & 0xFFFF; uint32_t A = ah * bh; uint32_t B = ah * bl + al * bh; uint32_t C = al * bl; /* [ A ] [ B ] [ C ] */ fLo = C + (B << 16); fHi = A + (B >>16) + (fLo < C); if (sa != sb) this->negate(); } void Sk64::div(int32_t denom, DivOptions option) { SkASSERT(denom); int32_t hi = fHi; uint32_t lo = fLo; int sign = denom ^ hi; denom = SkAbs32(denom); if (hi < 0) { hi = -hi - Sk32ToBool(lo); lo = 0 - lo; } if (option == kRound_DivOption) // add denom/2 { uint32_t newLo = lo + (denom >> 1); hi += (newLo < lo); lo = newLo; } if (hi == 0) // fast-case { if (lo < (uint32_t)denom) this->set(0, 0); else { this->set(0, lo / denom); if (sign < 0) this->negate(); } return; } int bits; { int dbits = SkCLZ(denom); int nbits = SkCLZ(hi); bits = 32 + dbits - nbits; SkASSERT(bits <= 63); if (bits <= 0) { this->set(0, 0); return; } denom <<= (dbits - 1); shift_left_bits(hi, lo, nbits - 1); } int32_t rhi = 0; uint32_t rlo = 0; do { shift_left(rhi, rlo); #ifdef SK_CPU_HAS_CONDITIONAL_INSTR if ((uint32_t)denom <= (uint32_t)hi) { hi -= denom; rlo |= 1; } #else int32_t diff = (denom - hi - 1) >> 31; hi -= denom & diff; rlo -= diff; #endif shift_left(hi, lo); } while (--bits >= 0); SkASSERT(rhi >= 0); fHi = rhi; fLo = rlo; if (sign < 0) this->negate(); } #define shift_left_2(a, b, c) \ a = (a << 2) | (b >> 30); \ b = (b << 2) | (c >> 30); \ c <<= 2 int32_t Sk64::getSqrt() const { SkASSERT(!this->isNeg()); uint32_t hi = fHi; uint32_t lo = fLo; uint32_t sqr = 0; uint32_t root = 0; int count = 31; do { root <<= 1; shift_left_2(sqr, hi, lo); uint32_t testDiv = (root << 1) + 1; if (sqr >= testDiv) { sqr -= testDiv; root++; } } while (--count >= 0); SkASSERT((int32_t)root >= 0); return root; } #ifdef SkLONGLONG SkLONGLONG Sk64::getLongLong() const { SkLONGLONG value = fHi; value <<= 32; return value | fLo; } #endif SkFixed Sk64::getFixedDiv(const Sk64& denom) const { Sk64 N = *this; Sk64 D = denom; int32_t sign = SkExtractSign(N.fHi ^ D.fHi); SkFixed result; N.abs(); D.abs(); // need to knock D down to just 31 bits // either by rounding it to the right, or shifting N to the left // then we can just call 64/32 div int nclz = N.fHi ? SkCLZ(N.fHi) : 32; int dclz = D.fHi ? SkCLZ(D.fHi) : (33 - (D.fLo >> 31)); int shiftN = nclz - 1; SkASSERT(shiftN >= 0); int shiftD = 33 - dclz; SkASSERT(shiftD >= 0); if (shiftD + shiftN < 16) shiftD = 16 - shiftN; else shiftN = 16 - shiftD; D.roundRight(shiftD); if (D.isZero()) result = SK_MaxS32; else { if (shiftN >= 0) N.shiftLeft(shiftN); else N.roundRight(-shiftN); N.div(D.get32(), Sk64::kTrunc_DivOption); if (N.is32()) result = N.get32(); else result = SK_MaxS32; } return SkApplySign(result, sign); }