// It is important _not_ to put header guards here. // This file will be intentionally included three times. // Useful reading: // https://software.intel.com/sites/landingpage/IntrinsicsGuide/ #if defined(SK4X_PREAMBLE) // Code in this file may assume SSE and SSE2. #include // It must check for later instruction sets. #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 #include #endif // A little bit of template metaprogramming to map // float to __m128 and int32_t to __m128i. template struct SkScalarToSIMD; template <> struct SkScalarToSIMD { typedef __m128 Type; }; template <> struct SkScalarToSIMD { typedef __m128i Type; }; // These are all free, zero instructions. // MSVC insists we use _mm_castA_B(a) instead of (B)a. static __m128 as_4f(__m128i v) { return _mm_castsi128_ps(v); } static __m128 as_4f(__m128 v) { return v ; } static __m128i as_4i(__m128i v) { return v ; } static __m128i as_4i(__m128 v) { return _mm_castps_si128(v); } #elif defined(SK4X_PRIVATE) // It'd be slightly faster to call _mm_cmpeq_epi32() on an unintialized register and itself, // but that has caused hard to debug issues when compilers recognize dealing with uninitialized // memory as undefined behavior that can be optimized away. static __m128i True() { return _mm_set1_epi8(~0); } // Leaving these implicit makes the rest of the code below a bit less noisy to read. Sk4x(__m128i); Sk4x(__m128); Sk4x andNot(const Sk4x&) const; typename SkScalarToSIMD::Type fVec; #else//Method definitions. // Helps to get these in before anything else. template <> inline Sk4f::Sk4x(__m128i v) : fVec(as_4f(v)) {} template <> inline Sk4f::Sk4x(__m128 v) : fVec( v ) {} template <> inline Sk4i::Sk4x(__m128i v) : fVec( v ) {} template <> inline Sk4i::Sk4x(__m128 v) : fVec(as_4i(v)) {} // Next, methods whose implementation is the same for Sk4f and Sk4i. template Sk4x::Sk4x() {} template Sk4x::Sk4x(const Sk4x& other) { *this = other; } template Sk4x& Sk4x::operator=(const Sk4x& other) { fVec = other.fVec; return *this; } // We pun in these _mm_shuffle_* methods a little to use the fastest / most available methods. // They're all bit-preserving operations so it shouldn't matter. template Sk4x Sk4x::zwxy() const { return _mm_shuffle_epi32(as_4i(fVec), _MM_SHUFFLE(1,0,3,2)); } template Sk4x Sk4x::XYAB(const Sk4x& a, const Sk4x& b) { return _mm_movelh_ps(as_4f(a.fVec), as_4f(b.fVec)); } template Sk4x Sk4x::ZWCD(const Sk4x& a, const Sk4x& b) { return _mm_movehl_ps(as_4f(b.fVec), as_4f(a.fVec)); } // Now we'll write all Sk4f specific methods. This M() macro will remove some noise. #define M(...) template <> inline __VA_ARGS__ Sk4f:: M() Sk4x(float a, float b, float c, float d) : fVec(_mm_set_ps(d,c,b,a)) {} M(Sk4f) Load (const float fs[4]) { return _mm_loadu_ps(fs); } M(Sk4f) LoadAligned(const float fs[4]) { return _mm_load_ps (fs); } M(void) store (float fs[4]) const { _mm_storeu_ps(fs, fVec); } M(void) storeAligned(float fs[4]) const { _mm_store_ps (fs, fVec); } template <> template <> Sk4i Sk4f::reinterpret() const { return as_4i(fVec); } template <> template <> Sk4i Sk4f::cast() const { return _mm_cvtps_epi32(fVec); } // We're going to try a little experiment here and skip allTrue(), anyTrue(), and bit-manipulators // for Sk4f. Code that calls them probably does so accidentally. // Ask mtklein to fill these in if you really need them. M(Sk4f) add (const Sk4f& o) const { return _mm_add_ps(fVec, o.fVec); } M(Sk4f) subtract(const Sk4f& o) const { return _mm_sub_ps(fVec, o.fVec); } M(Sk4f) multiply(const Sk4f& o) const { return _mm_mul_ps(fVec, o.fVec); } M(Sk4f) divide (const Sk4f& o) const { return _mm_div_ps(fVec, o.fVec); } M(Sk4i) equal (const Sk4f& o) const { return _mm_cmpeq_ps (fVec, o.fVec); } M(Sk4i) notEqual (const Sk4f& o) const { return _mm_cmpneq_ps(fVec, o.fVec); } M(Sk4i) lessThan (const Sk4f& o) const { return _mm_cmplt_ps (fVec, o.fVec); } M(Sk4i) greaterThan (const Sk4f& o) const { return _mm_cmpgt_ps (fVec, o.fVec); } M(Sk4i) lessThanEqual (const Sk4f& o) const { return _mm_cmple_ps (fVec, o.fVec); } M(Sk4i) greaterThanEqual(const Sk4f& o) const { return _mm_cmpge_ps (fVec, o.fVec); } M(Sk4f) Min(const Sk4f& a, const Sk4f& b) { return _mm_min_ps(a.fVec, b.fVec); } M(Sk4f) Max(const Sk4f& a, const Sk4f& b) { return _mm_max_ps(a.fVec, b.fVec); } // Now we'll write all the Sk4i specific methods. Same deal for M(). #undef M #define M(...) template <> inline __VA_ARGS__ Sk4i:: M() Sk4x(int32_t a, int32_t b, int32_t c, int32_t d) : fVec(_mm_set_epi32(d,c,b,a)) {} M(Sk4i) Load (const int32_t is[4]) { return _mm_loadu_si128((const __m128i*)is); } M(Sk4i) LoadAligned(const int32_t is[4]) { return _mm_load_si128 ((const __m128i*)is); } M(void) store (int32_t is[4]) const { _mm_storeu_si128((__m128i*)is, fVec); } M(void) storeAligned(int32_t is[4]) const { _mm_store_si128 ((__m128i*)is, fVec); } template <> template <> Sk4f Sk4i::reinterpret() const { return as_4f(fVec); } template <> template <> Sk4f Sk4i::cast() const { return _mm_cvtepi32_ps(fVec); } M(bool) allTrue() const { return 0xf == _mm_movemask_ps(as_4f(fVec)); } M(bool) anyTrue() const { return 0x0 != _mm_movemask_ps(as_4f(fVec)); } M(Sk4i) bitNot() const { return _mm_xor_si128(fVec, True()); } M(Sk4i) bitAnd(const Sk4i& o) const { return _mm_and_si128(fVec, o.fVec); } M(Sk4i) bitOr (const Sk4i& o) const { return _mm_or_si128 (fVec, o.fVec); } M(Sk4i) equal (const Sk4i& o) const { return _mm_cmpeq_epi32 (fVec, o.fVec); } M(Sk4i) lessThan (const Sk4i& o) const { return _mm_cmplt_epi32 (fVec, o.fVec); } M(Sk4i) greaterThan (const Sk4i& o) const { return _mm_cmpgt_epi32 (fVec, o.fVec); } M(Sk4i) notEqual (const Sk4i& o) const { return this-> equal(o).bitNot(); } M(Sk4i) lessThanEqual (const Sk4i& o) const { return this->greaterThan(o).bitNot(); } M(Sk4i) greaterThanEqual(const Sk4i& o) const { return this-> lessThan(o).bitNot(); } M(Sk4i) add (const Sk4i& o) const { return _mm_add_epi32(fVec, o.fVec); } M(Sk4i) subtract(const Sk4i& o) const { return _mm_sub_epi32(fVec, o.fVec); } // SSE doesn't have integer division. Let's see how far we can get without Sk4i::divide(). // Sk4i's multiply(), Min(), and Max() all improve significantly with SSE4.1. #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 M(Sk4i) multiply(const Sk4i& o) const { return _mm_mullo_epi32(fVec, o.fVec); } M(Sk4i) Min(const Sk4i& a, const Sk4i& b) { return _mm_min_epi32(a.fVec, b.fVec); } M(Sk4i) Max(const Sk4i& a, const Sk4i& b) { return _mm_max_epi32(a.fVec, b.fVec); } #else M(Sk4i) multiply(const Sk4i& o) const { // First 2 32->64 bit multiplies. __m128i mul02 = _mm_mul_epu32(fVec, o.fVec), mul13 = _mm_mul_epu32(_mm_srli_si128(fVec, 4), _mm_srli_si128(o.fVec, 4)); // Now recombine the high bits of the two products. return _mm_unpacklo_epi32(_mm_shuffle_epi32(mul02, _MM_SHUFFLE(0,0,2,0)), _mm_shuffle_epi32(mul13, _MM_SHUFFLE(0,0,2,0))); } M(Sk4i) andNot(const Sk4i& o) const { return _mm_andnot_si128(o.fVec, fVec); } M(Sk4i) Min(const Sk4i& a, const Sk4i& b) { Sk4i less = a.lessThan(b); return a.bitAnd(less).bitOr(b.andNot(less)); } M(Sk4i) Max(const Sk4i& a, const Sk4i& b) { Sk4i less = a.lessThan(b); return b.bitAnd(less).bitOr(a.andNot(less)); } #endif #undef M #endif//Method definitions.