/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkPngFilters.h" // Functions in this file look at most 3 pixels (a,b,c) to predict the fourth (d). // They're positioned like this: // prev: c b // row: a d // The Sub filter predicts d=a, Avg d=(a+b)/2, and Paeth predicts d to be whichever // of a, b, or c is closest to p=a+b-c. (Up also exists, predicting d=b.) #if defined(__SSE2__) static __m128i load3(const void* p) { uint32_t packed; memcpy(&packed, p, 3); return _mm_cvtsi32_si128(packed); } static __m128i load4(const void* p) { return _mm_cvtsi32_si128(*(const int*)p); } static void store3(void* p, __m128i v) { uint32_t packed = _mm_cvtsi128_si32(v); memcpy(p, &packed, 3); } static void store4(void* p, __m128i v) { *(int*)p = _mm_cvtsi128_si32(v); } void sk_sub3_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) { // The Sub filter predicts each pixel as the previous pixel, a. // There is no pixel to the left of the first pixel. It's encoded directly. // That works with our main loop if we just say that left pixel was zero. __m128i a, d = _mm_setzero_si128(); int rb = row_info->rowbytes; while (rb > 0) { a = d; d = load3(row); d = _mm_add_epi8(d, a); store3(row, d); row += 3; rb -= 3; } } void sk_sub4_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) { // The Sub filter predicts each pixel as the previous pixel, a. // There is no pixel to the left of the first pixel. It's encoded directly. // That works with our main loop if we just say that left pixel was zero. __m128i a, d = _mm_setzero_si128(); int rb = row_info->rowbytes; while (rb > 0) { a = d; d = load4(row); d = _mm_add_epi8(d, a); store4(row, d); row += 4; rb -= 4; } } void sk_avg3_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) { // The Avg filter predicts each pixel as the (truncated) average of a and b. // There's no pixel to the left of the first pixel. Luckily, it's // predicted to be half of the pixel above it. So again, this works // perfectly with our loop if we make sure a starts at zero. const __m128i zero = _mm_setzero_si128(); __m128i b; __m128i a, d = zero; int rb = row_info->rowbytes; while (rb > 0) { b = load3(prev); a = d; d = load3(row ); // PNG requires a truncating average here, so sadly we can't just use _mm_avg_epu8... __m128i avg = _mm_avg_epu8(a,b); // ...but we can fix it up by subtracting off 1 if it rounded up. avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b), _mm_set1_epi8(1))); d = _mm_add_epi8(d, avg); store3(row, d); prev += 3; row += 3; rb -= 3; } } void sk_avg4_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) { // The Avg filter predicts each pixel as the (truncated) average of a and b. // There's no pixel to the left of the first pixel. Luckily, it's // predicted to be half of the pixel above it. So again, this works // perfectly with our loop if we make sure a starts at zero. const __m128i zero = _mm_setzero_si128(); __m128i b; __m128i a, d = zero; int rb = row_info->rowbytes; while (rb > 0) { b = load4(prev); a = d; d = load4(row ); // PNG requires a truncating average here, so sadly we can't just use _mm_avg_epu8... __m128i avg = _mm_avg_epu8(a,b); // ...but we can fix it up by subtracting off 1 if it rounded up. avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b), _mm_set1_epi8(1))); d = _mm_add_epi8(d, avg); store4(row, d); prev += 4; row += 4; rb -= 4; } } // Returns |x| for 16-bit lanes. static __m128i abs_i16(__m128i x) { #if defined(__SSSE3__) return _mm_abs_epi16(x); #else // Read this all as, return x<0 ? -x : x. // To negate two's complement, you flip all the bits then add 1. __m128i is_negative = _mm_cmplt_epi16(x, _mm_setzero_si128()); x = _mm_xor_si128(x, is_negative); // Flip negative lanes. x = _mm_add_epi16(x, _mm_srli_epi16(is_negative, 15)); // +1 to negative lanes, else +0. return x; #endif } // Bytewise c ? t : e. static __m128i if_then_else(__m128i c, __m128i t, __m128i e) { #if defined(__SSE4_1__) return _mm_blendv_epi8(e,t,c); #else return _mm_or_si128(_mm_and_si128(c, t), _mm_andnot_si128(c, e)); #endif } void sk_paeth3_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) { // Paeth tries to predict pixel d using the pixel to the left of it, a, // and two pixels from the previous row, b and c: // prev: c b // row: a d // The Paeth function predicts d to be whichever of a, b, or c is nearest to p=a+b-c. // The first pixel has no left context, and so uses an Up filter, p = b. // This works naturally with our main loop's p = a+b-c if we force a and c to zero. // Here we zero b and d, which become c and a respectively at the start of the loop. const __m128i zero = _mm_setzero_si128(); __m128i c, b = zero, a, d = zero; int rb = row_info->rowbytes; while (rb > 0) { // It's easiest to do this math (particularly, deal with pc) with 16-bit intermediates. c = b; b = _mm_unpacklo_epi8(load3(prev), zero); a = d; d = _mm_unpacklo_epi8(load3(row ), zero); __m128i pa = _mm_sub_epi16(b,c), // (p-a) == (a+b-c - a) == (b-c) pb = _mm_sub_epi16(a,c), // (p-b) == (a+b-c - b) == (a-c) pc = _mm_add_epi16(pa,pb); // (p-c) == (a+b-c - c) == (a+b-c-c) == (b-c)+(a-c) pa = abs_i16(pa); // |p-a| pb = abs_i16(pb); // |p-b| pc = abs_i16(pc); // |p-c| __m128i smallest = _mm_min_epi16(pc, _mm_min_epi16(pa, pb)); // Paeth breaks ties favoring a over b over c. __m128i nearest = if_then_else(_mm_cmpeq_epi16(smallest, pa), a, if_then_else(_mm_cmpeq_epi16(smallest, pb), b, c)); d = _mm_add_epi8(d, nearest); // Note `_epi8`: we need addition to wrap modulo 255. store3(row, _mm_packus_epi16(d,d)); prev += 3; row += 3; rb -= 3; } } void sk_paeth4_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) { // Paeth tries to predict pixel d using the pixel to the left of it, a, // and two pixels from the previous row, b and c: // prev: c b // row: a d // The Paeth function predicts d to be whichever of a, b, or c is nearest to p=a+b-c. // The first pixel has no left context, and so uses an Up filter, p = b. // This works naturally with our main loop's p = a+b-c if we force a and c to zero. // Here we zero b and d, which become c and a respectively at the start of the loop. const __m128i zero = _mm_setzero_si128(); __m128i c, b = zero, a, d = zero; int rb = row_info->rowbytes; while (rb > 0) { // It's easiest to do this math (particularly, deal with pc) with 16-bit intermediates. c = b; b = _mm_unpacklo_epi8(load4(prev), zero); a = d; d = _mm_unpacklo_epi8(load4(row ), zero); __m128i pa = _mm_sub_epi16(b,c), // (p-a) == (a+b-c - a) == (b-c) pb = _mm_sub_epi16(a,c), // (p-b) == (a+b-c - b) == (a-c) pc = _mm_add_epi16(pa,pb); // (p-c) == (a+b-c - c) == (a+b-c-c) == (b-c)+(a-c) pa = abs_i16(pa); // |p-a| pb = abs_i16(pb); // |p-b| pc = abs_i16(pc); // |p-c| __m128i smallest = _mm_min_epi16(pc, _mm_min_epi16(pa, pb)); // Paeth breaks ties favoring a over b over c. __m128i nearest = if_then_else(_mm_cmpeq_epi16(smallest, pa), a, if_then_else(_mm_cmpeq_epi16(smallest, pb), b, c)); d = _mm_add_epi8(d, nearest); // Note `_epi8`: we need addition to wrap modulo 255. store4(row, _mm_packus_epi16(d,d)); prev += 4; row += 4; rb -= 4; } } #endif