/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBitmap.h" #include "SkCodecPriv.h" #include "SkColorPriv.h" #include "SkColorSpace.h" #include "SkColorTable.h" #include "SkMath.h" #include "SkOpts.h" #include "SkPngCodec.h" #include "SkSize.h" #include "SkStream.h" #include "SkSwizzler.h" #include "SkTemplates.h" #include "SkUtils.h" /////////////////////////////////////////////////////////////////////////////// // Callback functions /////////////////////////////////////////////////////////////////////////////// static void sk_error_fn(png_structp png_ptr, png_const_charp msg) { SkCodecPrintf("------ png error %s\n", msg); longjmp(png_jmpbuf(png_ptr), 1); } void sk_warning_fn(png_structp, png_const_charp msg) { SkCodecPrintf("----- png warning %s\n", msg); } static void sk_read_fn(png_structp png_ptr, png_bytep data, png_size_t length) { SkStream* stream = static_cast(png_get_io_ptr(png_ptr)); const size_t bytes = stream->read(data, length); if (bytes != length) { // FIXME: We want to report the fact that the stream was truncated. // One way to do that might be to pass a enum to longjmp so setjmp can // specify the failure. png_error(png_ptr, "Read Error!"); } } #ifdef PNG_READ_UNKNOWN_CHUNKS_SUPPORTED static int sk_read_user_chunk(png_structp png_ptr, png_unknown_chunkp chunk) { SkPngChunkReader* chunkReader = (SkPngChunkReader*)png_get_user_chunk_ptr(png_ptr); // readChunk() returning true means continue decoding return chunkReader->readChunk((const char*)chunk->name, chunk->data, chunk->size) ? 1 : -1; } #endif /////////////////////////////////////////////////////////////////////////////// // Helpers /////////////////////////////////////////////////////////////////////////////// class AutoCleanPng : public SkNoncopyable { public: AutoCleanPng(png_structp png_ptr) : fPng_ptr(png_ptr) , fInfo_ptr(nullptr) {} ~AutoCleanPng() { // fInfo_ptr will never be non-nullptr unless fPng_ptr is. if (fPng_ptr) { png_infopp info_pp = fInfo_ptr ? &fInfo_ptr : nullptr; png_destroy_read_struct(&fPng_ptr, info_pp, nullptr); } } void setInfoPtr(png_infop info_ptr) { SkASSERT(nullptr == fInfo_ptr); fInfo_ptr = info_ptr; } void release() { fPng_ptr = nullptr; fInfo_ptr = nullptr; } private: png_structp fPng_ptr; png_infop fInfo_ptr; }; #define AutoCleanPng(...) SK_REQUIRE_LOCAL_VAR(AutoCleanPng) // Method for coverting to either an SkPMColor or a similarly packed // unpremultiplied color. typedef uint32_t (*PackColorProc)(U8CPU a, U8CPU r, U8CPU g, U8CPU b); // Note: SkColorTable claims to store SkPMColors, which is not necessarily // the case here. // TODO: If we add support for non-native swizzles, we'll need to handle that here. bool SkPngCodec::decodePalette(bool premultiply, int* ctableCount) { int numColors; png_color* palette; if (!png_get_PLTE(fPng_ptr, fInfo_ptr, &palette, &numColors)) { return false; } // Note: These are not necessarily SkPMColors. SkPMColor colorPtr[256]; png_bytep alphas; int numColorsWithAlpha = 0; if (png_get_tRNS(fPng_ptr, fInfo_ptr, &alphas, &numColorsWithAlpha, nullptr)) { // Choose which function to use to create the color table. If the final destination's // colortype is unpremultiplied, the color table will store unpremultiplied colors. PackColorProc proc; if (premultiply) { proc = &SkPremultiplyARGBInline; } else { proc = &SkPackARGB32NoCheck; } for (int i = 0; i < numColorsWithAlpha; i++) { // We don't have a function in SkOpts that combines a set of alphas with a set // of RGBs. We could write one, but it's hardly worth it, given that this // is such a small fraction of the total decode time. colorPtr[i] = proc(alphas[i], palette->red, palette->green, palette->blue); palette++; } } if (numColorsWithAlpha < numColors) { // The optimized code depends on a 3-byte png_color struct with the colors // in RGB order. These checks make sure it is safe to use. static_assert(3 == sizeof(png_color), "png_color struct has changed. Opts are broken."); #ifdef SK_DEBUG SkASSERT(&palette->red < &palette->green); SkASSERT(&palette->green < &palette->blue); #endif #ifdef SK_PMCOLOR_IS_RGBA SkOpts::RGB_to_RGB1(colorPtr + numColorsWithAlpha, palette, numColors - numColorsWithAlpha); #else SkOpts::RGB_to_BGR1(colorPtr + numColorsWithAlpha, palette, numColors - numColorsWithAlpha); #endif } // Pad the color table with the last color in the table (or black) in the case that // invalid pixel indices exceed the number of colors in the table. const int maxColors = 1 << fBitDepth; if (numColors < maxColors) { SkPMColor lastColor = numColors > 0 ? colorPtr[numColors - 1] : SK_ColorBLACK; sk_memset32(colorPtr + numColors, lastColor, maxColors - numColors); } // Set the new color count. if (ctableCount != nullptr) { *ctableCount = maxColors; } fColorTable.reset(new SkColorTable(colorPtr, maxColors)); return true; } /////////////////////////////////////////////////////////////////////////////// // Creation /////////////////////////////////////////////////////////////////////////////// bool SkPngCodec::IsPng(const char* buf, size_t bytesRead) { return !png_sig_cmp((png_bytep) buf, (png_size_t)0, bytesRead); } static float png_fixed_point_to_float(png_fixed_point x) { // We multiply by the same factor that libpng used to convert // fixed point -> double. Since we want floats, we choose to // do the conversion ourselves rather than convert // fixed point -> double -> float. return ((float) x) * 0.00001f; } static float png_inverted_fixed_point_to_float(png_fixed_point x) { // This is necessary because the gAMA chunk actually stores 1/gamma. return 1.0f / png_fixed_point_to_float(x); } // Returns a colorSpace object that represents any color space information in // the encoded data. If the encoded data contains no color space, this will // return NULL. sk_sp read_color_space(png_structp png_ptr, png_infop info_ptr) { #if (PNG_LIBPNG_VER_MAJOR > 1) || (PNG_LIBPNG_VER_MAJOR == 1 && PNG_LIBPNG_VER_MINOR >= 6) // First check for an ICC profile png_bytep profile; png_uint_32 length; // The below variables are unused, however, we need to pass them in anyway or // png_get_iCCP() will return nothing. // Could knowing the |name| of the profile ever be interesting? Maybe for debugging? png_charp name; // The |compression| is uninteresting since: // (1) libpng has already decompressed the profile for us. // (2) "deflate" is the only mode of decompression that libpng supports. int compression; if (PNG_INFO_iCCP == png_get_iCCP(png_ptr, info_ptr, &name, &compression, &profile, &length)) { return SkColorSpace::NewICC(profile, length); } // Second, check for sRGB. if (png_get_valid(png_ptr, info_ptr, PNG_INFO_sRGB)) { // sRGB chunks also store a rendering intent: Absolute, Relative, // Perceptual, and Saturation. // FIXME (msarett): Extract this information from the sRGB chunk once // we are able to handle this information in // SkColorSpace. return SkColorSpace::NewNamed(SkColorSpace::kSRGB_Named); } // Next, check for chromaticities. png_fixed_point XYZ[9]; SkFloat3x3 toXYZD50; png_fixed_point gamma; SkFloat3 gammas; if (png_get_cHRM_XYZ_fixed(png_ptr, info_ptr, &XYZ[0], &XYZ[1], &XYZ[2], &XYZ[3], &XYZ[4], &XYZ[5], &XYZ[6], &XYZ[7], &XYZ[8])) { // FIXME (msarett): Here we are treating XYZ values as D50 even though the color // temperature is unspecified. I suspect that this assumption // is most often ok, but we could also calculate the color // temperature (D value) and then convert the XYZ to D50. Maybe // we should add a new constructor to SkColorSpace that accepts // XYZ with D-Unkown? for (int i = 0; i < 9; i++) { toXYZD50.fMat[i] = png_fixed_point_to_float(XYZ[i]); } if (PNG_INFO_gAMA == png_get_gAMA_fixed(png_ptr, info_ptr, &gamma)) { gammas.fVec[0] = gammas.fVec[1] = gammas.fVec[2] = png_inverted_fixed_point_to_float(gamma); } else { // If the image does not specify gamma, let's choose linear. Should we default // to sRGB? Most images are intended to be sRGB (gamma = 2.2f). gammas.fVec[0] = gammas.fVec[1] = gammas.fVec[2] = 1.0f; } return SkColorSpace::NewRGB(toXYZD50, gammas); } // Last, check for gamma. if (PNG_INFO_gAMA == png_get_gAMA_fixed(png_ptr, info_ptr, &gamma)) { // Guess a default value for cHRM? Or should we just give up? // Here we use the identity matrix as a default. // FIXME (msarett): Should SkFloat3x3 have a method to set the identity matrix? memset(toXYZD50.fMat, 0, 9 * sizeof(float)); toXYZD50.fMat[0] = toXYZD50.fMat[4] = toXYZD50.fMat[8] = 1.0f; // Set the gammas. gammas.fVec[0] = gammas.fVec[1] = gammas.fVec[2] = png_inverted_fixed_point_to_float(gamma); return SkColorSpace::NewRGB(toXYZD50, gammas); } #endif // LIBPNG >= 1.6 // Finally, what should we do if there is no color space information in the PNG? // The specification says that this indicates "gamma is unknown" and that the // "color is device dependent". I'm assuming we can represent this with NULL. // But should we guess sRGB? Most images are sRGB, even if they don't specify. return nullptr; } // Reads the header and initializes the output fields, if not NULL. // // @param stream Input data. Will be read to get enough information to properly // setup the codec. // @param chunkReader SkPngChunkReader, for reading unknown chunks. May be NULL. // If not NULL, png_ptr will hold an *unowned* pointer to it. The caller is // expected to continue to own it for the lifetime of the png_ptr. // @param png_ptrp Optional output variable. If non-NULL, will be set to a new // png_structp on success. // @param info_ptrp Optional output variable. If non-NULL, will be set to a new // png_infop on success; // @param imageInfo Optional output variable. If non-NULL, will be set to // reflect the properties of the encoded image on success. // @param bitDepthPtr Optional output variable. If non-NULL, will be set to the // bit depth of the encoded image on success. // @param numberPassesPtr Optional output variable. If non-NULL, will be set to // the number_passes of the encoded image on success. // @return true on success, in which case the caller is responsible for calling // png_destroy_read_struct(png_ptrp, info_ptrp). // If it returns false, the passed in fields (except stream) are unchanged. static bool read_header(SkStream* stream, SkPngChunkReader* chunkReader, png_structp* png_ptrp, png_infop* info_ptrp, SkImageInfo* imageInfo, int* bitDepthPtr, int* numberPassesPtr) { // The image is known to be a PNG. Decode enough to know the SkImageInfo. png_structp png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, nullptr, sk_error_fn, sk_warning_fn); if (!png_ptr) { return false; } AutoCleanPng autoClean(png_ptr); png_infop info_ptr = png_create_info_struct(png_ptr); if (info_ptr == nullptr) { return false; } autoClean.setInfoPtr(info_ptr); // FIXME: Could we use the return value of setjmp to specify the type of // error? if (setjmp(png_jmpbuf(png_ptr))) { return false; } png_set_read_fn(png_ptr, static_cast(stream), sk_read_fn); #ifdef PNG_READ_UNKNOWN_CHUNKS_SUPPORTED // Hookup our chunkReader so we can see any user-chunks the caller may be interested in. // This needs to be installed before we read the png header. Android may store ninepatch // chunks in the header. if (chunkReader) { png_set_keep_unknown_chunks(png_ptr, PNG_HANDLE_CHUNK_ALWAYS, (png_byte*)"", 0); png_set_read_user_chunk_fn(png_ptr, (png_voidp) chunkReader, sk_read_user_chunk); } #endif // The call to png_read_info() gives us all of the information from the // PNG file before the first IDAT (image data chunk). png_read_info(png_ptr, info_ptr); png_uint_32 origWidth, origHeight; int bitDepth, encodedColorType; png_get_IHDR(png_ptr, info_ptr, &origWidth, &origHeight, &bitDepth, &encodedColorType, nullptr, nullptr, nullptr); if (bitDepthPtr) { *bitDepthPtr = bitDepth; } // Tell libpng to strip 16 bit/color files down to 8 bits/color. // TODO: Should we handle this in SkSwizzler? Could this also benefit // RAW decodes? if (bitDepth == 16) { SkASSERT(PNG_COLOR_TYPE_PALETTE != encodedColorType); png_set_strip_16(png_ptr); } // Now determine the default colorType and alphaType and set the required transforms. // Often, we depend on SkSwizzler to perform any transforms that we need. However, we // still depend on libpng for many of the rare and PNG-specific cases. SkColorType colorType = kUnknown_SkColorType; SkAlphaType alphaType = kUnknown_SkAlphaType; switch (encodedColorType) { case PNG_COLOR_TYPE_PALETTE: // Extract multiple pixels with bit depths of 1, 2, and 4 from a single // byte into separate bytes (useful for paletted and grayscale images). if (bitDepth < 8) { // TODO: Should we use SkSwizzler here? png_set_packing(png_ptr); } colorType = kIndex_8_SkColorType; // Set the alpha type depending on if a transparency chunk exists. alphaType = png_get_valid(png_ptr, info_ptr, PNG_INFO_tRNS) ? kUnpremul_SkAlphaType : kOpaque_SkAlphaType; break; case PNG_COLOR_TYPE_RGB: if (png_get_valid(png_ptr, info_ptr, PNG_INFO_tRNS)) { // Convert to RGBA if transparency chunk exists. png_set_tRNS_to_alpha(png_ptr); alphaType = kUnpremul_SkAlphaType; } else { alphaType = kOpaque_SkAlphaType; } colorType = kN32_SkColorType; break; case PNG_COLOR_TYPE_GRAY: // Expand grayscale images to the full 8 bits from 1, 2, or 4 bits/pixel. if (bitDepth < 8) { // TODO: Should we use SkSwizzler here? png_set_expand_gray_1_2_4_to_8(png_ptr); } if (png_get_valid(png_ptr, info_ptr, PNG_INFO_tRNS)) { png_set_tRNS_to_alpha(png_ptr); // We will recommend kN32 here since we do not support kGray // with alpha. colorType = kN32_SkColorType; alphaType = kUnpremul_SkAlphaType; } else { colorType = kGray_8_SkColorType; alphaType = kOpaque_SkAlphaType; } break; case PNG_COLOR_TYPE_GRAY_ALPHA: // We will recommend kN32 here since we do not support anything // similar to GRAY_ALPHA. colorType = kN32_SkColorType; alphaType = kUnpremul_SkAlphaType; break; case PNG_COLOR_TYPE_RGBA: colorType = kN32_SkColorType; alphaType = kUnpremul_SkAlphaType; break; default: // All the color types have been covered above. SkASSERT(false); } int numberPasses = png_set_interlace_handling(png_ptr); if (numberPassesPtr) { *numberPassesPtr = numberPasses; } SkColorProfileType profileType = kLinear_SkColorProfileType; if (png_get_valid(png_ptr, info_ptr, PNG_INFO_sRGB)) { profileType = kSRGB_SkColorProfileType; } if (imageInfo) { *imageInfo = SkImageInfo::Make(origWidth, origHeight, colorType, alphaType, profileType); } autoClean.release(); if (png_ptrp) { *png_ptrp = png_ptr; } if (info_ptrp) { *info_ptrp = info_ptr; } return true; } SkPngCodec::SkPngCodec(const SkImageInfo& info, SkStream* stream, SkPngChunkReader* chunkReader, png_structp png_ptr, png_infop info_ptr, int bitDepth, int numberPasses, sk_sp colorSpace) : INHERITED(info, stream, colorSpace) , fPngChunkReader(SkSafeRef(chunkReader)) , fPng_ptr(png_ptr) , fInfo_ptr(info_ptr) , fSrcConfig(SkSwizzler::kUnknown) , fNumberPasses(numberPasses) , fBitDepth(bitDepth) {} SkPngCodec::~SkPngCodec() { this->destroyReadStruct(); } void SkPngCodec::destroyReadStruct() { if (fPng_ptr) { // We will never have a nullptr fInfo_ptr with a non-nullptr fPng_ptr SkASSERT(fInfo_ptr); png_destroy_read_struct(&fPng_ptr, &fInfo_ptr, nullptr); fPng_ptr = nullptr; fInfo_ptr = nullptr; } } /////////////////////////////////////////////////////////////////////////////// // Getting the pixels /////////////////////////////////////////////////////////////////////////////// SkCodec::Result SkPngCodec::initializeSwizzler(const SkImageInfo& requestedInfo, const Options& options, SkPMColor ctable[], int* ctableCount) { // FIXME: Could we use the return value of setjmp to specify the type of // error? if (setjmp(png_jmpbuf(fPng_ptr))) { SkCodecPrintf("setjmp long jump!\n"); return kInvalidInput; } png_read_update_info(fPng_ptr, fInfo_ptr); // suggestedColorType was determined in read_header() based on the encodedColorType const SkColorType suggestedColorType = this->getInfo().colorType(); switch (suggestedColorType) { case kIndex_8_SkColorType: //decode palette to Skia format fSrcConfig = SkSwizzler::kIndex; if (!this->decodePalette(kPremul_SkAlphaType == requestedInfo.alphaType(), ctableCount)) { return kInvalidInput; } break; case kGray_8_SkColorType: fSrcConfig = SkSwizzler::kGray; break; case kN32_SkColorType: { const uint8_t encodedColorType = png_get_color_type(fPng_ptr, fInfo_ptr); if (PNG_COLOR_TYPE_GRAY_ALPHA == encodedColorType || PNG_COLOR_TYPE_GRAY == encodedColorType) { // If encodedColorType is GRAY, there must be a transparent chunk. // Otherwise, suggestedColorType would be kGray. We have already // instructed libpng to convert the transparent chunk to alpha, // so we can treat both GRAY and GRAY_ALPHA as kGrayAlpha. SkASSERT(encodedColorType == PNG_COLOR_TYPE_GRAY_ALPHA || png_get_valid(fPng_ptr, fInfo_ptr, PNG_INFO_tRNS)); fSrcConfig = SkSwizzler::kGrayAlpha; } else { if (this->getInfo().alphaType() == kOpaque_SkAlphaType) { fSrcConfig = SkSwizzler::kRGB; } else { fSrcConfig = SkSwizzler::kRGBA; } } break; } default: // We will always recommend one of the above colorTypes. SkASSERT(false); } // Copy the color table to the client if they request kIndex8 mode copy_color_table(requestedInfo, fColorTable, ctable, ctableCount); // Create the swizzler. SkPngCodec retains ownership of the color table. const SkPMColor* colors = get_color_ptr(fColorTable.get()); fSwizzler.reset(SkSwizzler::CreateSwizzler(fSrcConfig, colors, requestedInfo, options)); SkASSERT(fSwizzler); return kSuccess; } bool SkPngCodec::onRewind() { // This sets fPng_ptr and fInfo_ptr to nullptr. If read_header // succeeds, they will be repopulated, and if it fails, they will // remain nullptr. Any future accesses to fPng_ptr and fInfo_ptr will // come through this function which will rewind and again attempt // to reinitialize them. this->destroyReadStruct(); png_structp png_ptr; png_infop info_ptr; if (!read_header(this->stream(), fPngChunkReader.get(), &png_ptr, &info_ptr, nullptr, nullptr, nullptr)) { return false; } fPng_ptr = png_ptr; fInfo_ptr = info_ptr; return true; } SkCodec::Result SkPngCodec::onGetPixels(const SkImageInfo& requestedInfo, void* dst, size_t dstRowBytes, const Options& options, SkPMColor ctable[], int* ctableCount, int* rowsDecoded) { if (!conversion_possible(requestedInfo, this->getInfo())) { return kInvalidConversion; } if (options.fSubset) { // Subsets are not supported. return kUnimplemented; } // Note that ctable and ctableCount may be modified if there is a color table const Result result = this->initializeSwizzler(requestedInfo, options, ctable, ctableCount); if (result != kSuccess) { return result; } const int width = requestedInfo.width(); const int height = requestedInfo.height(); const int bpp = SkSwizzler::BytesPerPixel(fSrcConfig); const size_t srcRowBytes = width * bpp; // FIXME: Could we use the return value of setjmp to specify the type of // error? int row = 0; // This must be declared above the call to setjmp to avoid memory leaks on incomplete images. SkAutoTMalloc storage; if (setjmp(png_jmpbuf(fPng_ptr))) { // Assume that any error that occurs while reading rows is caused by an incomplete input. if (fNumberPasses > 1) { // FIXME (msarett): Handle incomplete interlaced pngs. return (row == height) ? kSuccess : kInvalidInput; } // FIXME: We do a poor job on incomplete pngs compared to other decoders (ex: Chromium, // Ubuntu Image Viewer). This is because we use the default buffer size in libpng (8192 // bytes), and if we can't fill the buffer, we immediately fail. // For example, if we try to read 8192 bytes, and the image (incorrectly) only contains // half that, which may have been enough to contain a non-zero number of lines, we fail // when we could have decoded a few more lines and then failed. // The read function that we provide for libpng has no way of indicating that we have // made a partial read. // Making our buffer size smaller improves our incomplete decodes, but what impact does // it have on regular decode performance? Should we investigate using a different API // instead of png_read_row? Chromium uses png_process_data. *rowsDecoded = row; return (row == height) ? kSuccess : kIncompleteInput; } // FIXME: We could split these out based on subclass. void* dstRow = dst; if (fNumberPasses > 1) { storage.reset(height * srcRowBytes); uint8_t* const base = storage.get(); for (int i = 0; i < fNumberPasses; i++) { uint8_t* srcRow = base; for (int y = 0; y < height; y++) { png_read_row(fPng_ptr, srcRow, nullptr); srcRow += srcRowBytes; } } // Now swizzle it. uint8_t* srcRow = base; for (; row < height; row++) { fSwizzler->swizzle(dstRow, srcRow); dstRow = SkTAddOffset(dstRow, dstRowBytes); srcRow += srcRowBytes; } } else { storage.reset(srcRowBytes); uint8_t* srcRow = storage.get(); for (; row < height; row++) { png_read_row(fPng_ptr, srcRow, nullptr); fSwizzler->swizzle(dstRow, srcRow); dstRow = SkTAddOffset(dstRow, dstRowBytes); } } // read rest of file, and get additional comment and time chunks in info_ptr png_read_end(fPng_ptr, fInfo_ptr); return kSuccess; } uint32_t SkPngCodec::onGetFillValue(SkColorType colorType) const { const SkPMColor* colorPtr = get_color_ptr(fColorTable.get()); if (colorPtr) { return get_color_table_fill_value(colorType, colorPtr, 0); } return INHERITED::onGetFillValue(colorType); } // Subclass of SkPngCodec which supports scanline decoding class SkPngScanlineDecoder : public SkPngCodec { public: SkPngScanlineDecoder(const SkImageInfo& srcInfo, SkStream* stream, SkPngChunkReader* chunkReader, png_structp png_ptr, png_infop info_ptr, int bitDepth, sk_sp colorSpace) : INHERITED(srcInfo, stream, chunkReader, png_ptr, info_ptr, bitDepth, 1, colorSpace) , fSrcRow(nullptr) {} Result onStartScanlineDecode(const SkImageInfo& dstInfo, const Options& options, SkPMColor ctable[], int* ctableCount) override { if (!conversion_possible(dstInfo, this->getInfo())) { return kInvalidConversion; } const Result result = this->initializeSwizzler(dstInfo, options, ctable, ctableCount); if (result != kSuccess) { return result; } fStorage.reset(this->getInfo().width() * SkSwizzler::BytesPerPixel(this->srcConfig())); fSrcRow = fStorage.get(); return kSuccess; } int onGetScanlines(void* dst, int count, size_t rowBytes) override { // Assume that an error in libpng indicates an incomplete input. int row = 0; if (setjmp(png_jmpbuf(this->png_ptr()))) { SkCodecPrintf("setjmp long jump!\n"); return row; } void* dstRow = dst; for (; row < count; row++) { png_read_row(this->png_ptr(), fSrcRow, nullptr); this->swizzler()->swizzle(dstRow, fSrcRow); dstRow = SkTAddOffset(dstRow, rowBytes); } return row; } bool onSkipScanlines(int count) override { // Assume that an error in libpng indicates an incomplete input. if (setjmp(png_jmpbuf(this->png_ptr()))) { SkCodecPrintf("setjmp long jump!\n"); return false; } for (int row = 0; row < count; row++) { png_read_row(this->png_ptr(), fSrcRow, nullptr); } return true; } private: SkAutoTMalloc fStorage; uint8_t* fSrcRow; typedef SkPngCodec INHERITED; }; class SkPngInterlacedScanlineDecoder : public SkPngCodec { public: SkPngInterlacedScanlineDecoder(const SkImageInfo& srcInfo, SkStream* stream, SkPngChunkReader* chunkReader, png_structp png_ptr, png_infop info_ptr, int bitDepth, int numberPasses, sk_sp colorSpace) : INHERITED(srcInfo, stream, chunkReader, png_ptr, info_ptr, bitDepth, numberPasses, colorSpace) , fHeight(-1) , fCanSkipRewind(false) { SkASSERT(numberPasses != 1); } Result onStartScanlineDecode(const SkImageInfo& dstInfo, const Options& options, SkPMColor ctable[], int* ctableCount) override { if (!conversion_possible(dstInfo, this->getInfo())) { return kInvalidConversion; } const Result result = this->initializeSwizzler(dstInfo, options, ctable, ctableCount); if (result != kSuccess) { return result; } fHeight = dstInfo.height(); // FIXME: This need not be called on a second call to onStartScanlineDecode. fSrcRowBytes = this->getInfo().width() * SkSwizzler::BytesPerPixel(this->srcConfig()); fGarbageRow.reset(fSrcRowBytes); fGarbageRowPtr = static_cast(fGarbageRow.get()); fCanSkipRewind = true; return SkCodec::kSuccess; } int onGetScanlines(void* dst, int count, size_t dstRowBytes) override { // rewind stream if have previously called onGetScanlines, // since we need entire progressive image to get scanlines if (fCanSkipRewind) { // We already rewound in onStartScanlineDecode, so there is no reason to rewind. // Next time onGetScanlines is called, we will need to rewind. fCanSkipRewind = false; } else { // rewindIfNeeded resets fCurrScanline, since it assumes that start // needs to be called again before scanline decoding. PNG scanline // decoding is the exception, since it needs to rewind between // calls to getScanlines. Keep track of fCurrScanline, to undo the // reset. const int currScanline = this->nextScanline(); // This method would never be called if currScanline is -1 SkASSERT(currScanline != -1); if (!this->rewindIfNeeded()) { return kCouldNotRewind; } this->updateCurrScanline(currScanline); } if (setjmp(png_jmpbuf(this->png_ptr()))) { SkCodecPrintf("setjmp long jump!\n"); // FIXME (msarett): Returning 0 is pessimistic. If we can complete a single pass, // we may be able to report that all of the memory has been initialized. Even if we // fail on the first pass, we can still report than some scanlines are initialized. return 0; } SkAutoTMalloc storage(count * fSrcRowBytes); uint8_t* storagePtr = storage.get(); uint8_t* srcRow; const int startRow = this->nextScanline(); for (int i = 0; i < this->numberPasses(); i++) { // read rows we planned to skip into garbage row for (int y = 0; y < startRow; y++){ png_read_row(this->png_ptr(), fGarbageRowPtr, nullptr); } // read rows we care about into buffer srcRow = storagePtr; for (int y = 0; y < count; y++) { png_read_row(this->png_ptr(), srcRow, nullptr); srcRow += fSrcRowBytes; } // read rows we don't want into garbage buffer for (int y = 0; y < fHeight - startRow - count; y++) { png_read_row(this->png_ptr(), fGarbageRowPtr, nullptr); } } //swizzle the rows we care about srcRow = storagePtr; void* dstRow = dst; for (int y = 0; y < count; y++) { this->swizzler()->swizzle(dstRow, srcRow); dstRow = SkTAddOffset(dstRow, dstRowBytes); srcRow += fSrcRowBytes; } return count; } bool onSkipScanlines(int count) override { // The non-virtual version will update fCurrScanline. return true; } SkScanlineOrder onGetScanlineOrder() const override { return kNone_SkScanlineOrder; } private: int fHeight; size_t fSrcRowBytes; SkAutoMalloc fGarbageRow; uint8_t* fGarbageRowPtr; // FIXME: This imitates behavior in SkCodec::rewindIfNeeded. That function // is called whenever some action is taken that reads the stream and // therefore the next call will require a rewind. So it modifies a boolean // to note that the *next* time it is called a rewind is needed. // SkPngInterlacedScanlineDecoder has an extra wrinkle - calling // onStartScanlineDecode followed by onGetScanlines does *not* require a // rewind. Since rewindIfNeeded does not have this flexibility, we need to // add another layer. bool fCanSkipRewind; typedef SkPngCodec INHERITED; }; SkCodec* SkPngCodec::NewFromStream(SkStream* stream, SkPngChunkReader* chunkReader) { SkAutoTDelete streamDeleter(stream); png_structp png_ptr; png_infop info_ptr; SkImageInfo imageInfo; int bitDepth; int numberPasses; if (!read_header(stream, chunkReader, &png_ptr, &info_ptr, &imageInfo, &bitDepth, &numberPasses)) { return nullptr; } auto colorSpace = read_color_space(png_ptr, info_ptr); if (1 == numberPasses) { return new SkPngScanlineDecoder(imageInfo, streamDeleter.release(), chunkReader, png_ptr, info_ptr, bitDepth, colorSpace); } return new SkPngInterlacedScanlineDecoder(imageInfo, streamDeleter.release(), chunkReader, png_ptr, info_ptr, bitDepth, numberPasses, colorSpace); }