/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkCodec.h" #include "SkMSAN.h" #include "SkJpegCodec.h" #include "SkJpegDecoderMgr.h" #include "SkCodecPriv.h" #include "SkColorPriv.h" #include "SkColorSpace_Base.h" #include "SkStream.h" #include "SkTemplates.h" #include "SkTypes.h" // stdio is needed for libjpeg-turbo #include #include "SkJpegUtility.h" // This warning triggers false postives way too often in here. #if defined(__GNUC__) && !defined(__clang__) #pragma GCC diagnostic ignored "-Wclobbered" #endif extern "C" { #include "jerror.h" #include "jpeglib.h" } bool SkJpegCodec::IsJpeg(const void* buffer, size_t bytesRead) { static const uint8_t jpegSig[] = { 0xFF, 0xD8, 0xFF }; return bytesRead >= 3 && !memcmp(buffer, jpegSig, sizeof(jpegSig)); } static uint32_t get_endian_int(const uint8_t* data, bool littleEndian) { if (littleEndian) { return (data[3] << 24) | (data[2] << 16) | (data[1] << 8) | (data[0]); } return (data[0] << 24) | (data[1] << 16) | (data[2] << 8) | (data[3]); } const uint32_t kExifHeaderSize = 14; const uint32_t kICCHeaderSize = 14; const uint32_t kExifMarker = JPEG_APP0 + 1; const uint32_t kICCMarker = JPEG_APP0 + 2; static bool is_orientation_marker(jpeg_marker_struct* marker, SkCodec::Origin* orientation) { if (kExifMarker != marker->marker || marker->data_length < kExifHeaderSize) { return false; } const uint8_t* data = marker->data; static const uint8_t kExifSig[] { 'E', 'x', 'i', 'f', '\0' }; if (memcmp(data, kExifSig, sizeof(kExifSig))) { return false; } bool littleEndian; if (!is_valid_endian_marker(data + 6, &littleEndian)) { return false; } // Get the offset from the start of the marker. // Account for 'E', 'x', 'i', 'f', '\0', ''. uint32_t offset = get_endian_int(data + 10, littleEndian); offset += sizeof(kExifSig) + 1; // Require that the marker is at least large enough to contain the number of entries. if (marker->data_length < offset + 2) { return false; } uint32_t numEntries = get_endian_short(data + offset, littleEndian); // Tag (2 bytes), Datatype (2 bytes), Number of elements (4 bytes), Data (4 bytes) const uint32_t kEntrySize = 12; numEntries = SkTMin(numEntries, (marker->data_length - offset - 2) / kEntrySize); // Advance the data to the start of the entries. data += offset + 2; const uint16_t kOriginTag = 0x112; const uint16_t kOriginType = 3; for (uint32_t i = 0; i < numEntries; i++, data += kEntrySize) { uint16_t tag = get_endian_short(data, littleEndian); uint16_t type = get_endian_short(data + 2, littleEndian); uint32_t count = get_endian_int(data + 4, littleEndian); if (kOriginTag == tag && kOriginType == type && 1 == count) { uint16_t val = get_endian_short(data + 8, littleEndian); if (0 < val && val <= SkCodec::kLast_Origin) { *orientation = (SkCodec::Origin) val; return true; } } } return false; } static SkCodec::Origin get_exif_orientation(jpeg_decompress_struct* dinfo) { SkCodec::Origin orientation; for (jpeg_marker_struct* marker = dinfo->marker_list; marker; marker = marker->next) { if (is_orientation_marker(marker, &orientation)) { return orientation; } } return SkCodec::kDefault_Origin; } static bool is_icc_marker(jpeg_marker_struct* marker) { if (kICCMarker != marker->marker || marker->data_length < kICCHeaderSize) { return false; } static const uint8_t kICCSig[] { 'I', 'C', 'C', '_', 'P', 'R', 'O', 'F', 'I', 'L', 'E', '\0' }; return !memcmp(marker->data, kICCSig, sizeof(kICCSig)); } /* * ICC profiles may be stored using a sequence of multiple markers. We obtain the ICC profile * in two steps: * (1) Discover all ICC profile markers and verify that they are numbered properly. * (2) Copy the data from each marker into a contiguous ICC profile. */ static sk_sp get_icc_profile(jpeg_decompress_struct* dinfo) { // Note that 256 will be enough storage space since each markerIndex is stored in 8-bits. jpeg_marker_struct* markerSequence[256]; memset(markerSequence, 0, sizeof(markerSequence)); uint8_t numMarkers = 0; size_t totalBytes = 0; // Discover any ICC markers and verify that they are numbered properly. for (jpeg_marker_struct* marker = dinfo->marker_list; marker; marker = marker->next) { if (is_icc_marker(marker)) { // Verify that numMarkers is valid and consistent. if (0 == numMarkers) { numMarkers = marker->data[13]; if (0 == numMarkers) { SkCodecPrintf("ICC Profile Error: numMarkers must be greater than zero.\n"); return nullptr; } } else if (numMarkers != marker->data[13]) { SkCodecPrintf("ICC Profile Error: numMarkers must be consistent.\n"); return nullptr; } // Verify that the markerIndex is valid and unique. Note that zero is not // a valid index. uint8_t markerIndex = marker->data[12]; if (markerIndex == 0 || markerIndex > numMarkers) { SkCodecPrintf("ICC Profile Error: markerIndex is invalid.\n"); return nullptr; } if (markerSequence[markerIndex]) { SkCodecPrintf("ICC Profile Error: Duplicate value of markerIndex.\n"); return nullptr; } markerSequence[markerIndex] = marker; SkASSERT(marker->data_length >= kICCHeaderSize); totalBytes += marker->data_length - kICCHeaderSize; } } if (0 == totalBytes) { // No non-empty ICC profile markers were found. return nullptr; } // Combine the ICC marker data into a contiguous profile. sk_sp iccData = SkData::MakeUninitialized(totalBytes); void* dst = iccData->writable_data(); for (uint32_t i = 1; i <= numMarkers; i++) { jpeg_marker_struct* marker = markerSequence[i]; if (!marker) { SkCodecPrintf("ICC Profile Error: Missing marker %d of %d.\n", i, numMarkers); return nullptr; } void* src = SkTAddOffset(marker->data, kICCHeaderSize); size_t bytes = marker->data_length - kICCHeaderSize; memcpy(dst, src, bytes); dst = SkTAddOffset(dst, bytes); } return iccData; } bool SkJpegCodec::ReadHeader(SkStream* stream, SkCodec** codecOut, JpegDecoderMgr** decoderMgrOut) { // Create a JpegDecoderMgr to own all of the decompress information std::unique_ptr decoderMgr(new JpegDecoderMgr(stream)); // libjpeg errors will be caught and reported here if (setjmp(decoderMgr->getJmpBuf())) { return decoderMgr->returnFalse("ReadHeader"); } // Initialize the decompress info and the source manager decoderMgr->init(); // Instruct jpeg library to save the markers that we care about. Since // the orientation and color profile will not change, we can skip this // step on rewinds. if (codecOut) { jpeg_save_markers(decoderMgr->dinfo(), kExifMarker, 0xFFFF); jpeg_save_markers(decoderMgr->dinfo(), kICCMarker, 0xFFFF); } // Read the jpeg header if (JPEG_HEADER_OK != jpeg_read_header(decoderMgr->dinfo(), true)) { return decoderMgr->returnFalse("ReadHeader"); } if (codecOut) { // Get the encoded color type SkEncodedInfo::Color color; if (!decoderMgr->getEncodedColor(&color)) { return false; } // Create image info object and the codec SkEncodedInfo info = SkEncodedInfo::Make(color, SkEncodedInfo::kOpaque_Alpha, 8); Origin orientation = get_exif_orientation(decoderMgr->dinfo()); sk_sp iccData = get_icc_profile(decoderMgr->dinfo()); sk_sp colorSpace = nullptr; if (iccData) { SkColorSpace_Base::InputColorFormat inputColorFormat = SkColorSpace_Base::InputColorFormat::kRGB; switch (decoderMgr->dinfo()->jpeg_color_space) { case JCS_CMYK: case JCS_YCCK: inputColorFormat = SkColorSpace_Base::InputColorFormat::kCMYK; break; case JCS_GRAYSCALE: inputColorFormat = SkColorSpace_Base::InputColorFormat::kGray; break; default: break; } colorSpace = SkColorSpace_Base::MakeICC(iccData->data(), iccData->size(), inputColorFormat); if (!colorSpace) { SkCodecPrintf("Could not create SkColorSpace from ICC data.\n"); } } if (!colorSpace) { // Treat unmarked jpegs as sRGB. colorSpace = SkColorSpace::MakeNamed(SkColorSpace::kSRGB_Named); } const int width = decoderMgr->dinfo()->image_width; const int height = decoderMgr->dinfo()->image_height; *codecOut = new SkJpegCodec(width, height, info, stream, decoderMgr.release(), std::move(colorSpace), orientation); } else { SkASSERT(nullptr != decoderMgrOut); *decoderMgrOut = decoderMgr.release(); } return true; } SkCodec* SkJpegCodec::NewFromStream(SkStream* stream) { std::unique_ptr streamDeleter(stream); SkCodec* codec = nullptr; if (ReadHeader(stream, &codec, nullptr)) { // Codec has taken ownership of the stream, we do not need to delete it SkASSERT(codec); streamDeleter.release(); return codec; } return nullptr; } SkJpegCodec::SkJpegCodec(int width, int height, const SkEncodedInfo& info, SkStream* stream, JpegDecoderMgr* decoderMgr, sk_sp colorSpace, Origin origin) : INHERITED(width, height, info, stream, std::move(colorSpace), origin) , fDecoderMgr(decoderMgr) , fReadyState(decoderMgr->dinfo()->global_state) , fSwizzleSrcRow(nullptr) , fColorXformSrcRow(nullptr) , fSwizzlerSubset(SkIRect::MakeEmpty()) {} /* * Return the row bytes of a particular image type and width */ static size_t get_row_bytes(const j_decompress_ptr dinfo) { const size_t colorBytes = (dinfo->out_color_space == JCS_RGB565) ? 2 : dinfo->out_color_components; return dinfo->output_width * colorBytes; } /* * Calculate output dimensions based on the provided factors. * * Not to be used on the actual jpeg_decompress_struct used for decoding, since it will * incorrectly modify num_components. */ void calc_output_dimensions(jpeg_decompress_struct* dinfo, unsigned int num, unsigned int denom) { dinfo->num_components = 0; dinfo->scale_num = num; dinfo->scale_denom = denom; jpeg_calc_output_dimensions(dinfo); } /* * Return a valid set of output dimensions for this decoder, given an input scale */ SkISize SkJpegCodec::onGetScaledDimensions(float desiredScale) const { // libjpeg-turbo supports scaling by 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, and 1/1, so we will // support these as well unsigned int num; unsigned int denom = 8; if (desiredScale >= 0.9375) { num = 8; } else if (desiredScale >= 0.8125) { num = 7; } else if (desiredScale >= 0.6875f) { num = 6; } else if (desiredScale >= 0.5625f) { num = 5; } else if (desiredScale >= 0.4375f) { num = 4; } else if (desiredScale >= 0.3125f) { num = 3; } else if (desiredScale >= 0.1875f) { num = 2; } else { num = 1; } // Set up a fake decompress struct in order to use libjpeg to calculate output dimensions jpeg_decompress_struct dinfo; sk_bzero(&dinfo, sizeof(dinfo)); dinfo.image_width = this->getInfo().width(); dinfo.image_height = this->getInfo().height(); dinfo.global_state = fReadyState; calc_output_dimensions(&dinfo, num, denom); // Return the calculated output dimensions for the given scale return SkISize::Make(dinfo.output_width, dinfo.output_height); } bool SkJpegCodec::onRewind() { JpegDecoderMgr* decoderMgr = nullptr; if (!ReadHeader(this->stream(), nullptr, &decoderMgr)) { return fDecoderMgr->returnFalse("onRewind"); } SkASSERT(nullptr != decoderMgr); fDecoderMgr.reset(decoderMgr); fSwizzler.reset(nullptr); fSwizzleSrcRow = nullptr; fColorXformSrcRow = nullptr; fStorage.reset(); return true; } /* * Checks if the conversion between the input image and the requested output * image has been implemented * Sets the output color space */ bool SkJpegCodec::setOutputColorSpace(const SkImageInfo& dstInfo) { if (kUnknown_SkAlphaType == dstInfo.alphaType()) { return false; } if (kOpaque_SkAlphaType != dstInfo.alphaType()) { SkCodecPrintf("Warning: an opaque image should be decoded as opaque " "- it is being decoded as non-opaque, which will draw slower\n"); } // Check if we will decode to CMYK. libjpeg-turbo does not convert CMYK to RGBA, so // we must do it ourselves. J_COLOR_SPACE encodedColorType = fDecoderMgr->dinfo()->jpeg_color_space; bool isCMYK = (JCS_CMYK == encodedColorType || JCS_YCCK == encodedColorType); // Check for valid color types and set the output color space switch (dstInfo.colorType()) { case kRGBA_8888_SkColorType: if (isCMYK) { fDecoderMgr->dinfo()->out_color_space = JCS_CMYK; } else { fDecoderMgr->dinfo()->out_color_space = JCS_EXT_RGBA; } return true; case kBGRA_8888_SkColorType: if (isCMYK) { fDecoderMgr->dinfo()->out_color_space = JCS_CMYK; } else if (this->colorXform()) { // Always using RGBA as the input format for color xforms makes the // implementation a little simpler. fDecoderMgr->dinfo()->out_color_space = JCS_EXT_RGBA; } else { fDecoderMgr->dinfo()->out_color_space = JCS_EXT_BGRA; } return true; case kRGB_565_SkColorType: if (this->colorXform()) { return false; } if (isCMYK) { fDecoderMgr->dinfo()->out_color_space = JCS_CMYK; } else { fDecoderMgr->dinfo()->dither_mode = JDITHER_NONE; fDecoderMgr->dinfo()->out_color_space = JCS_RGB565; } return true; case kGray_8_SkColorType: if (this->colorXform() || JCS_GRAYSCALE != encodedColorType) { return false; } fDecoderMgr->dinfo()->out_color_space = JCS_GRAYSCALE; return true; case kRGBA_F16_SkColorType: SkASSERT(this->colorXform()); if (!dstInfo.colorSpace()->gammaIsLinear()) { return false; } if (isCMYK) { fDecoderMgr->dinfo()->out_color_space = JCS_CMYK; } else { fDecoderMgr->dinfo()->out_color_space = JCS_EXT_RGBA; } return true; default: return false; } } /* * Checks if we can natively scale to the requested dimensions and natively scales the * dimensions if possible */ bool SkJpegCodec::onDimensionsSupported(const SkISize& size) { if (setjmp(fDecoderMgr->getJmpBuf())) { return fDecoderMgr->returnFalse("onDimensionsSupported"); } const unsigned int dstWidth = size.width(); const unsigned int dstHeight = size.height(); // Set up a fake decompress struct in order to use libjpeg to calculate output dimensions // FIXME: Why is this necessary? jpeg_decompress_struct dinfo; sk_bzero(&dinfo, sizeof(dinfo)); dinfo.image_width = this->getInfo().width(); dinfo.image_height = this->getInfo().height(); dinfo.global_state = fReadyState; // libjpeg-turbo can scale to 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, and 1/1 unsigned int num = 8; const unsigned int denom = 8; calc_output_dimensions(&dinfo, num, denom); while (dinfo.output_width != dstWidth || dinfo.output_height != dstHeight) { // Return a failure if we have tried all of the possible scales if (1 == num || dstWidth > dinfo.output_width || dstHeight > dinfo.output_height) { return false; } // Try the next scale num -= 1; calc_output_dimensions(&dinfo, num, denom); } fDecoderMgr->dinfo()->scale_num = num; fDecoderMgr->dinfo()->scale_denom = denom; return true; } int SkJpegCodec::readRows(const SkImageInfo& dstInfo, void* dst, size_t rowBytes, int count) { // Set the jump location for libjpeg-turbo errors if (setjmp(fDecoderMgr->getJmpBuf())) { return 0; } // When fSwizzleSrcRow is non-null, it means that we need to swizzle. In this case, // we will always decode into fSwizzlerSrcRow before swizzling into the next buffer. // We can never swizzle "in place" because the swizzler may perform sampling and/or // subsetting. // When fColorXformSrcRow is non-null, it means that we need to color xform and that // we cannot color xform "in place" (many times we can, but not when the dst is F16). // In this case, we will color xform from fColorXformSrcRow into the dst. JSAMPLE* decodeDst = (JSAMPLE*) dst; uint32_t* swizzleDst = (uint32_t*) dst; size_t decodeDstRowBytes = rowBytes; size_t swizzleDstRowBytes = rowBytes; int dstWidth = dstInfo.width(); if (fSwizzleSrcRow && fColorXformSrcRow) { decodeDst = (JSAMPLE*) fSwizzleSrcRow; swizzleDst = fColorXformSrcRow; decodeDstRowBytes = 0; swizzleDstRowBytes = 0; dstWidth = fSwizzler->swizzleWidth(); } else if (fColorXformSrcRow) { decodeDst = (JSAMPLE*) fColorXformSrcRow; swizzleDst = fColorXformSrcRow; decodeDstRowBytes = 0; swizzleDstRowBytes = 0; } else if (fSwizzleSrcRow) { decodeDst = (JSAMPLE*) fSwizzleSrcRow; decodeDstRowBytes = 0; dstWidth = fSwizzler->swizzleWidth(); } for (int y = 0; y < count; y++) { uint32_t lines = jpeg_read_scanlines(fDecoderMgr->dinfo(), &decodeDst, 1); size_t srcRowBytes = get_row_bytes(fDecoderMgr->dinfo()); sk_msan_mark_initialized(decodeDst, decodeDst + srcRowBytes, "skbug.com/4550"); if (0 == lines) { return y; } if (fSwizzler) { fSwizzler->swizzle(swizzleDst, decodeDst); } if (this->colorXform()) { SkAssertResult(this->colorXform()->apply(select_xform_format(dstInfo.colorType()), dst, SkColorSpaceXform::kRGBA_8888_ColorFormat, swizzleDst, dstWidth, kOpaque_SkAlphaType)); dst = SkTAddOffset(dst, rowBytes); } decodeDst = SkTAddOffset(decodeDst, decodeDstRowBytes); swizzleDst = SkTAddOffset(swizzleDst, swizzleDstRowBytes); } return count; } /* * Performs the jpeg decode */ SkCodec::Result SkJpegCodec::onGetPixels(const SkImageInfo& dstInfo, void* dst, size_t dstRowBytes, const Options& options, SkPMColor*, int*, int* rowsDecoded) { if (options.fSubset) { // Subsets are not supported. return kUnimplemented; } // Get a pointer to the decompress info since we will use it quite frequently jpeg_decompress_struct* dinfo = fDecoderMgr->dinfo(); // Set the jump location for libjpeg errors if (setjmp(fDecoderMgr->getJmpBuf())) { return fDecoderMgr->returnFailure("setjmp", kInvalidInput); } if (!this->initializeColorXform(dstInfo)) { return kInvalidConversion; } // Check if we can decode to the requested destination and set the output color space if (!this->setOutputColorSpace(dstInfo)) { return fDecoderMgr->returnFailure("setOutputColorSpace", kInvalidConversion); } if (!jpeg_start_decompress(dinfo)) { return fDecoderMgr->returnFailure("startDecompress", kInvalidInput); } // The recommended output buffer height should always be 1 in high quality modes. // If it's not, we want to know because it means our strategy is not optimal. SkASSERT(1 == dinfo->rec_outbuf_height); J_COLOR_SPACE colorSpace = dinfo->out_color_space; if (JCS_CMYK == colorSpace && nullptr == this->colorXform()) { this->initializeSwizzler(dstInfo, options); } this->allocateStorage(dstInfo); int rows = this->readRows(dstInfo, dst, dstRowBytes, dstInfo.height()); if (rows < dstInfo.height()) { *rowsDecoded = rows; return fDecoderMgr->returnFailure("Incomplete image data", kIncompleteInput); } return kSuccess; } void SkJpegCodec::allocateStorage(const SkImageInfo& dstInfo) { int dstWidth = dstInfo.width(); size_t swizzleBytes = 0; if (fSwizzler) { swizzleBytes = get_row_bytes(fDecoderMgr->dinfo()); dstWidth = fSwizzler->swizzleWidth(); SkASSERT(!this->colorXform() || SkIsAlign4(swizzleBytes)); } size_t xformBytes = 0; if (kRGBA_F16_SkColorType == dstInfo.colorType()) { SkASSERT(this->colorXform()); xformBytes = dstWidth * sizeof(uint32_t); } size_t totalBytes = swizzleBytes + xformBytes; if (totalBytes > 0) { fStorage.reset(totalBytes); fSwizzleSrcRow = (swizzleBytes > 0) ? fStorage.get() : nullptr; fColorXformSrcRow = (xformBytes > 0) ? SkTAddOffset(fStorage.get(), swizzleBytes) : nullptr; } } void SkJpegCodec::initializeSwizzler(const SkImageInfo& dstInfo, const Options& options) { // libjpeg-turbo may have already performed color conversion. We must indicate the // appropriate format to the swizzler. SkEncodedInfo swizzlerInfo = this->getEncodedInfo(); bool preSwizzled = true; if (JCS_CMYK == fDecoderMgr->dinfo()->out_color_space) { preSwizzled = false; swizzlerInfo = SkEncodedInfo::Make(SkEncodedInfo::kInvertedCMYK_Color, swizzlerInfo.alpha(), swizzlerInfo.bitsPerComponent()); } Options swizzlerOptions = options; if (options.fSubset) { // Use fSwizzlerSubset if this is a subset decode. This is necessary in the case // where libjpeg-turbo provides a subset and then we need to subset it further. // Also, verify that fSwizzlerSubset is initialized and valid. SkASSERT(!fSwizzlerSubset.isEmpty() && fSwizzlerSubset.x() <= options.fSubset->x() && fSwizzlerSubset.width() == options.fSubset->width()); swizzlerOptions.fSubset = &fSwizzlerSubset; } fSwizzler.reset(SkSwizzler::CreateSwizzler(swizzlerInfo, nullptr, dstInfo, swizzlerOptions, nullptr, preSwizzled)); SkASSERT(fSwizzler); } SkSampler* SkJpegCodec::getSampler(bool createIfNecessary) { if (!createIfNecessary || fSwizzler) { SkASSERT(!fSwizzler || (fSwizzleSrcRow && fStorage.get() == fSwizzleSrcRow)); return fSwizzler.get(); } this->initializeSwizzler(this->dstInfo(), this->options()); this->allocateStorage(this->dstInfo()); return fSwizzler.get(); } SkCodec::Result SkJpegCodec::onStartScanlineDecode(const SkImageInfo& dstInfo, const Options& options, SkPMColor ctable[], int* ctableCount) { // Set the jump location for libjpeg errors if (setjmp(fDecoderMgr->getJmpBuf())) { SkCodecPrintf("setjmp: Error from libjpeg\n"); return kInvalidInput; } if (!this->initializeColorXform(dstInfo)) { return kInvalidConversion; } // Check if we can decode to the requested destination and set the output color space if (!this->setOutputColorSpace(dstInfo)) { return fDecoderMgr->returnFailure("setOutputColorSpace", kInvalidConversion); } if (!jpeg_start_decompress(fDecoderMgr->dinfo())) { SkCodecPrintf("start decompress failed\n"); return kInvalidInput; } if (options.fSubset) { uint32_t startX = options.fSubset->x(); uint32_t width = options.fSubset->width(); // libjpeg-turbo may need to align startX to a multiple of the IDCT // block size. If this is the case, it will decrease the value of // startX to the appropriate alignment and also increase the value // of width so that the right edge of the requested subset remains // the same. jpeg_crop_scanline(fDecoderMgr->dinfo(), &startX, &width); SkASSERT(startX <= (uint32_t) options.fSubset->x()); SkASSERT(width >= (uint32_t) options.fSubset->width()); SkASSERT(startX + width >= (uint32_t) options.fSubset->right()); // Instruct the swizzler (if it is necessary) to further subset the // output provided by libjpeg-turbo. // // We set this here (rather than in the if statement below), so that // if (1) we don't need a swizzler for the subset, and (2) we need a // swizzler for CMYK, the swizzler will still use the proper subset // dimensions. // // Note that the swizzler will ignore the y and height parameters of // the subset. Since the scanline decoder (and the swizzler) handle // one row at a time, only the subsetting in the x-dimension matters. fSwizzlerSubset.setXYWH(options.fSubset->x() - startX, 0, options.fSubset->width(), options.fSubset->height()); // We will need a swizzler if libjpeg-turbo cannot provide the exact // subset that we request. if (startX != (uint32_t) options.fSubset->x() || width != (uint32_t) options.fSubset->width()) { this->initializeSwizzler(dstInfo, options); } } // Make sure we have a swizzler if we are converting from CMYK. if (!fSwizzler && JCS_CMYK == fDecoderMgr->dinfo()->out_color_space) { this->initializeSwizzler(dstInfo, options); } this->allocateStorage(dstInfo); return kSuccess; } int SkJpegCodec::onGetScanlines(void* dst, int count, size_t dstRowBytes) { int rows = this->readRows(this->dstInfo(), dst, dstRowBytes, count); if (rows < count) { // This allows us to skip calling jpeg_finish_decompress(). fDecoderMgr->dinfo()->output_scanline = this->dstInfo().height(); } return rows; } bool SkJpegCodec::onSkipScanlines(int count) { // Set the jump location for libjpeg errors if (setjmp(fDecoderMgr->getJmpBuf())) { return fDecoderMgr->returnFalse("onSkipScanlines"); } return (uint32_t) count == jpeg_skip_scanlines(fDecoderMgr->dinfo(), count); } static bool is_yuv_supported(jpeg_decompress_struct* dinfo) { // Scaling is not supported in raw data mode. SkASSERT(dinfo->scale_num == dinfo->scale_denom); // I can't imagine that this would ever change, but we do depend on it. static_assert(8 == DCTSIZE, "DCTSIZE (defined in jpeg library) should always be 8."); if (JCS_YCbCr != dinfo->jpeg_color_space) { return false; } SkASSERT(3 == dinfo->num_components); SkASSERT(dinfo->comp_info); // It is possible to perform a YUV decode for any combination of // horizontal and vertical sampling that is supported by // libjpeg/libjpeg-turbo. However, we will start by supporting only the // common cases (where U and V have samp_factors of one). // // The definition of samp_factor is kind of the opposite of what SkCodec // thinks of as a sampling factor. samp_factor is essentially a // multiplier, and the larger the samp_factor is, the more samples that // there will be. Ex: // U_plane_width = image_width * (U_h_samp_factor / max_h_samp_factor) // // Supporting cases where the samp_factors for U or V were larger than // that of Y would be an extremely difficult change, given that clients // allocate memory as if the size of the Y plane is always the size of the // image. However, this case is very, very rare. if ((1 != dinfo->comp_info[1].h_samp_factor) || (1 != dinfo->comp_info[1].v_samp_factor) || (1 != dinfo->comp_info[2].h_samp_factor) || (1 != dinfo->comp_info[2].v_samp_factor)) { return false; } // Support all common cases of Y samp_factors. // TODO (msarett): As mentioned above, it would be possible to support // more combinations of samp_factors. The issues are: // (1) Are there actually any images that are not covered // by these cases? // (2) How much complexity would be added to the // implementation in order to support these rare // cases? int hSampY = dinfo->comp_info[0].h_samp_factor; int vSampY = dinfo->comp_info[0].v_samp_factor; return (1 == hSampY && 1 == vSampY) || (2 == hSampY && 1 == vSampY) || (2 == hSampY && 2 == vSampY) || (1 == hSampY && 2 == vSampY) || (4 == hSampY && 1 == vSampY) || (4 == hSampY && 2 == vSampY); } bool SkJpegCodec::onQueryYUV8(SkYUVSizeInfo* sizeInfo, SkYUVColorSpace* colorSpace) const { jpeg_decompress_struct* dinfo = fDecoderMgr->dinfo(); if (!is_yuv_supported(dinfo)) { return false; } sizeInfo->fSizes[SkYUVSizeInfo::kY].set(dinfo->comp_info[0].downsampled_width, dinfo->comp_info[0].downsampled_height); sizeInfo->fSizes[SkYUVSizeInfo::kU].set(dinfo->comp_info[1].downsampled_width, dinfo->comp_info[1].downsampled_height); sizeInfo->fSizes[SkYUVSizeInfo::kV].set(dinfo->comp_info[2].downsampled_width, dinfo->comp_info[2].downsampled_height); sizeInfo->fWidthBytes[SkYUVSizeInfo::kY] = dinfo->comp_info[0].width_in_blocks * DCTSIZE; sizeInfo->fWidthBytes[SkYUVSizeInfo::kU] = dinfo->comp_info[1].width_in_blocks * DCTSIZE; sizeInfo->fWidthBytes[SkYUVSizeInfo::kV] = dinfo->comp_info[2].width_in_blocks * DCTSIZE; if (colorSpace) { *colorSpace = kJPEG_SkYUVColorSpace; } return true; } SkCodec::Result SkJpegCodec::onGetYUV8Planes(const SkYUVSizeInfo& sizeInfo, void* planes[3]) { SkYUVSizeInfo defaultInfo; // This will check is_yuv_supported(), so we don't need to here. bool supportsYUV = this->onQueryYUV8(&defaultInfo, nullptr); if (!supportsYUV || sizeInfo.fSizes[SkYUVSizeInfo::kY] != defaultInfo.fSizes[SkYUVSizeInfo::kY] || sizeInfo.fSizes[SkYUVSizeInfo::kU] != defaultInfo.fSizes[SkYUVSizeInfo::kU] || sizeInfo.fSizes[SkYUVSizeInfo::kV] != defaultInfo.fSizes[SkYUVSizeInfo::kV] || sizeInfo.fWidthBytes[SkYUVSizeInfo::kY] < defaultInfo.fWidthBytes[SkYUVSizeInfo::kY] || sizeInfo.fWidthBytes[SkYUVSizeInfo::kU] < defaultInfo.fWidthBytes[SkYUVSizeInfo::kU] || sizeInfo.fWidthBytes[SkYUVSizeInfo::kV] < defaultInfo.fWidthBytes[SkYUVSizeInfo::kV]) { return fDecoderMgr->returnFailure("onGetYUV8Planes", kInvalidInput); } // Set the jump location for libjpeg errors if (setjmp(fDecoderMgr->getJmpBuf())) { return fDecoderMgr->returnFailure("setjmp", kInvalidInput); } // Get a pointer to the decompress info since we will use it quite frequently jpeg_decompress_struct* dinfo = fDecoderMgr->dinfo(); dinfo->raw_data_out = TRUE; if (!jpeg_start_decompress(dinfo)) { return fDecoderMgr->returnFailure("startDecompress", kInvalidInput); } // A previous implementation claims that the return value of is_yuv_supported() // may change after calling jpeg_start_decompress(). It looks to me like this // was caused by a bug in the old code, but we'll be safe and check here. SkASSERT(is_yuv_supported(dinfo)); // Currently, we require that the Y plane dimensions match the image dimensions // and that the U and V planes are the same dimensions. SkASSERT(sizeInfo.fSizes[SkYUVSizeInfo::kU] == sizeInfo.fSizes[SkYUVSizeInfo::kV]); SkASSERT((uint32_t) sizeInfo.fSizes[SkYUVSizeInfo::kY].width() == dinfo->output_width && (uint32_t) sizeInfo.fSizes[SkYUVSizeInfo::kY].height() == dinfo->output_height); // Build a JSAMPIMAGE to handle output from libjpeg-turbo. A JSAMPIMAGE has // a 2-D array of pixels for each of the components (Y, U, V) in the image. // Cheat Sheet: // JSAMPIMAGE == JSAMPLEARRAY* == JSAMPROW** == JSAMPLE*** JSAMPARRAY yuv[3]; // Set aside enough space for pointers to rows of Y, U, and V. JSAMPROW rowptrs[2 * DCTSIZE + DCTSIZE + DCTSIZE]; yuv[0] = &rowptrs[0]; // Y rows (DCTSIZE or 2 * DCTSIZE) yuv[1] = &rowptrs[2 * DCTSIZE]; // U rows (DCTSIZE) yuv[2] = &rowptrs[3 * DCTSIZE]; // V rows (DCTSIZE) // Initialize rowptrs. int numYRowsPerBlock = DCTSIZE * dinfo->comp_info[0].v_samp_factor; for (int i = 0; i < numYRowsPerBlock; i++) { rowptrs[i] = SkTAddOffset(planes[SkYUVSizeInfo::kY], i * sizeInfo.fWidthBytes[SkYUVSizeInfo::kY]); } for (int i = 0; i < DCTSIZE; i++) { rowptrs[i + 2 * DCTSIZE] = SkTAddOffset(planes[SkYUVSizeInfo::kU], i * sizeInfo.fWidthBytes[SkYUVSizeInfo::kU]); rowptrs[i + 3 * DCTSIZE] = SkTAddOffset(planes[SkYUVSizeInfo::kV], i * sizeInfo.fWidthBytes[SkYUVSizeInfo::kV]); } // After each loop iteration, we will increment pointers to Y, U, and V. size_t blockIncrementY = numYRowsPerBlock * sizeInfo.fWidthBytes[SkYUVSizeInfo::kY]; size_t blockIncrementU = DCTSIZE * sizeInfo.fWidthBytes[SkYUVSizeInfo::kU]; size_t blockIncrementV = DCTSIZE * sizeInfo.fWidthBytes[SkYUVSizeInfo::kV]; uint32_t numRowsPerBlock = numYRowsPerBlock; // We intentionally round down here, as this first loop will only handle // full block rows. As a special case at the end, we will handle any // remaining rows that do not make up a full block. const int numIters = dinfo->output_height / numRowsPerBlock; for (int i = 0; i < numIters; i++) { JDIMENSION linesRead = jpeg_read_raw_data(dinfo, yuv, numRowsPerBlock); if (linesRead < numRowsPerBlock) { // FIXME: Handle incomplete YUV decodes without signalling an error. return kInvalidInput; } // Update rowptrs. for (int i = 0; i < numYRowsPerBlock; i++) { rowptrs[i] += blockIncrementY; } for (int i = 0; i < DCTSIZE; i++) { rowptrs[i + 2 * DCTSIZE] += blockIncrementU; rowptrs[i + 3 * DCTSIZE] += blockIncrementV; } } uint32_t remainingRows = dinfo->output_height - dinfo->output_scanline; SkASSERT(remainingRows == dinfo->output_height % numRowsPerBlock); SkASSERT(dinfo->output_scanline == numIters * numRowsPerBlock); if (remainingRows > 0) { // libjpeg-turbo needs memory to be padded by the block sizes. We will fulfill // this requirement using a dummy row buffer. // FIXME: Should SkCodec have an extra memory buffer that can be shared among // all of the implementations that use temporary/garbage memory? SkAutoTMalloc dummyRow(sizeInfo.fWidthBytes[SkYUVSizeInfo::kY]); for (int i = remainingRows; i < numYRowsPerBlock; i++) { rowptrs[i] = dummyRow.get(); } int remainingUVRows = dinfo->comp_info[1].downsampled_height - DCTSIZE * numIters; for (int i = remainingUVRows; i < DCTSIZE; i++) { rowptrs[i + 2 * DCTSIZE] = dummyRow.get(); rowptrs[i + 3 * DCTSIZE] = dummyRow.get(); } JDIMENSION linesRead = jpeg_read_raw_data(dinfo, yuv, numRowsPerBlock); if (linesRead < remainingRows) { // FIXME: Handle incomplete YUV decodes without signalling an error. return kInvalidInput; } } return kSuccess; }