/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBmpRLECodec.h" #include "SkCodecPriv.h" #include "SkColorPriv.h" #include "SkScanlineDecoder.h" #include "SkStream.h" /* * Checks if the conversion between the input image and the requested output * image has been implemented */ static bool conversion_possible(const SkImageInfo& dst, const SkImageInfo& src) { // Ensure that the profile type is unchanged if (dst.profileType() != src.profileType()) { return false; } // Ensure the alpha type is valid if (!valid_alpha(dst.alphaType(), src.alphaType())) { return false; } // Check for supported color types switch (dst.colorType()) { // Allow output to kN32 from any type of input case kN32_SkColorType: return true; // Allow output to kIndex_8 from compatible inputs case kIndex_8_SkColorType: return kIndex_8_SkColorType == src.colorType(); default: return false; } } /* * Creates an instance of the decoder * Called only by NewFromStream */ SkBmpRLECodec::SkBmpRLECodec(const SkImageInfo& info, SkStream* stream, uint16_t bitsPerPixel, uint32_t numColors, uint32_t bytesPerColor, uint32_t offset, SkBmpCodec::RowOrder rowOrder, size_t RLEBytes) : INHERITED(info, stream, bitsPerPixel, rowOrder) , fColorTable(NULL) , fNumColors(this->computeNumColors(numColors)) , fBytesPerColor(bytesPerColor) , fOffset(offset) , fStreamBuffer(SkNEW_ARRAY(uint8_t, RLEBytes)) , fRLEBytes(RLEBytes) , fCurrRLEByte(0) {} /* * Initiates the bitmap decode */ SkCodec::Result SkBmpRLECodec::onGetPixels(const SkImageInfo& dstInfo, void* dst, size_t dstRowBytes, const Options& opts, SkPMColor* inputColorPtr, int* inputColorCount) { if (!this->rewindIfNeeded()) { return kCouldNotRewind; } if (opts.fSubset) { // Subsets are not supported. return kUnimplemented; } if (dstInfo.dimensions() != this->getInfo().dimensions()) { SkCodecPrintf("Error: scaling not supported.\n"); return kInvalidScale; } if (!conversion_possible(dstInfo, this->getInfo())) { SkCodecPrintf("Error: cannot convert input type to output type.\n"); return kInvalidConversion; } // Create the color table if necessary and prepare the stream for decode // Note that if it is non-NULL, inputColorCount will be modified if (!this->createColorTable(inputColorCount)) { SkCodecPrintf("Error: could not create color table.\n"); return kInvalidInput; } // Copy the color table to the client if necessary copy_color_table(dstInfo, fColorTable, inputColorPtr, inputColorCount); // Initialize a swizzler if necessary if (!this->initializeStreamBuffer()) { SkCodecPrintf("Error: cannot initialize swizzler.\n"); return kInvalidConversion; } // Perform the decode return decode(dstInfo, dst, dstRowBytes, opts); } /* * Process the color table for the bmp input */ bool SkBmpRLECodec::createColorTable(int* numColors) { // Allocate memory for color table uint32_t colorBytes = 0; SkPMColor colorTable[256]; if (this->bitsPerPixel() <= 8) { // Inform the caller of the number of colors uint32_t maxColors = 1 << this->bitsPerPixel(); if (NULL != numColors) { // We set the number of colors to maxColors in order to ensure // safe memory accesses. Otherwise, an invalid pixel could // access memory outside of our color table array. *numColors = maxColors; } // Read the color table from the stream colorBytes = fNumColors * fBytesPerColor; SkAutoTDeleteArray cBuffer(SkNEW_ARRAY(uint8_t, colorBytes)); if (stream()->read(cBuffer.get(), colorBytes) != colorBytes) { SkCodecPrintf("Error: unable to read color table.\n"); return false; } // Fill in the color table uint32_t i = 0; for (; i < fNumColors; i++) { uint8_t blue = get_byte(cBuffer.get(), i*fBytesPerColor); uint8_t green = get_byte(cBuffer.get(), i*fBytesPerColor + 1); uint8_t red = get_byte(cBuffer.get(), i*fBytesPerColor + 2); colorTable[i] = SkPackARGB32NoCheck(0xFF, red, green, blue); } // To avoid segmentation faults on bad pixel data, fill the end of the // color table with black. This is the same the behavior as the // chromium decoder. for (; i < maxColors; i++) { colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0); } // Set the color table fColorTable.reset(SkNEW_ARGS(SkColorTable, (colorTable, maxColors))); } // Check that we have not read past the pixel array offset if(fOffset < colorBytes) { // This may occur on OS 2.1 and other old versions where the color // table defaults to max size, and the bmp tries to use a smaller // color table. This is invalid, and our decision is to indicate // an error, rather than try to guess the intended size of the // color table. SkCodecPrintf("Error: pixel data offset less than color table size.\n"); return false; } // After reading the color table, skip to the start of the pixel array if (stream()->skip(fOffset - colorBytes) != fOffset - colorBytes) { SkCodecPrintf("Error: unable to skip to image data.\n"); return false; } // Return true on success return true; } bool SkBmpRLECodec::initializeStreamBuffer() { // Setup a buffer to contain the full input stream size_t totalBytes = this->stream()->read(fStreamBuffer.get(), fRLEBytes); if (totalBytes < fRLEBytes) { fRLEBytes = totalBytes; SkCodecPrintf("Warning: incomplete RLE file.\n"); } if (fRLEBytes == 0) { SkCodecPrintf("Error: could not read RLE image data.\n"); return false; } return true; } /* * Before signalling kIncompleteInput, we should attempt to load the * stream buffer with additional data. * * @return the number of bytes remaining in the stream buffer after * attempting to read more bytes from the stream */ size_t SkBmpRLECodec::checkForMoreData() { const size_t remainingBytes = fRLEBytes - fCurrRLEByte; uint8_t* buffer = fStreamBuffer.get(); // We will be reusing the same buffer, starting over from the beginning. // Move any remaining bytes to the start of the buffer. // We use memmove() instead of memcpy() because there is risk that the dst // and src memory will overlap in corrupt images. memmove(buffer, SkTAddOffset(buffer, fCurrRLEByte), remainingBytes); // Adjust the buffer ptr to the start of the unfilled data. buffer += remainingBytes; // Try to read additional bytes from the stream. There are fCurrRLEByte // bytes of additional space remaining in the buffer, assuming that we // have already copied remainingBytes to the start of the buffer. size_t additionalBytes = this->stream()->read(buffer, fCurrRLEByte); // Update counters and return the number of bytes we currently have // available. We are at the start of the buffer again. fCurrRLEByte = 0; // If we were unable to fill the buffer, fRLEBytes is no longer equal to // the size of the buffer. There will be unused space at the end. This // should be fine, given that there are no more bytes in the stream. fRLEBytes = remainingBytes + additionalBytes; return fRLEBytes; } /* * Set an RLE pixel using the color table */ void SkBmpRLECodec::setPixel(void* dst, size_t dstRowBytes, const SkImageInfo& dstInfo, uint32_t x, uint32_t y, uint8_t index) { // Set the row int height = dstInfo.height(); int row; if (SkBmpCodec::kBottomUp_RowOrder == this->rowOrder()) { row = height - y - 1; } else { row = y; } // Set the pixel based on destination color type switch (dstInfo.colorType()) { case kN32_SkColorType: { SkPMColor* dstRow = SkTAddOffset((SkPMColor*) dst, row * (int) dstRowBytes); dstRow[x] = fColorTable->operator[](index); break; } default: // This case should not be reached. We should catch an invalid // color type when we check that the conversion is possible. SkASSERT(false); break; } } /* * Set an RLE pixel from R, G, B values */ void SkBmpRLECodec::setRGBPixel(void* dst, size_t dstRowBytes, const SkImageInfo& dstInfo, uint32_t x, uint32_t y, uint8_t red, uint8_t green, uint8_t blue) { // Set the row int height = dstInfo.height(); int row; if (SkBmpCodec::kBottomUp_RowOrder == this->rowOrder()) { row = height - y - 1; } else { row = y; } // Set the pixel based on destination color type switch (dstInfo.colorType()) { case kN32_SkColorType: { SkPMColor* dstRow = SkTAddOffset((SkPMColor*) dst, row * (int) dstRowBytes); dstRow[x] = SkPackARGB32NoCheck(0xFF, red, green, blue); break; } default: // This case should not be reached. We should catch an invalid // color type when we check that the conversion is possible. SkASSERT(false); break; } } /* * Performs the bitmap decoding for RLE input format * RLE decoding is performed all at once, rather than a one row at a time */ SkCodec::Result SkBmpRLECodec::decode(const SkImageInfo& dstInfo, void* dst, size_t dstRowBytes, const Options& opts) { // Set RLE flags static const uint8_t RLE_ESCAPE = 0; static const uint8_t RLE_EOL = 0; static const uint8_t RLE_EOF = 1; static const uint8_t RLE_DELTA = 2; // Set constant values const int width = dstInfo.width(); const int height = dstInfo.height(); // Destination parameters int x = 0; int y = 0; // Set the background as transparent. Then, if the RLE code skips pixels, // the skipped pixels will be transparent. // Because of the need for transparent pixels, kN32 is the only color // type that makes sense for the destination format. SkASSERT(kN32_SkColorType == dstInfo.colorType()); if (kNo_ZeroInitialized == opts.fZeroInitialized) { SkSwizzler::Fill(dst, dstInfo, dstRowBytes, height, SK_ColorTRANSPARENT, NULL); } while (true) { // If we have reached a row that is beyond the requested height, we have // succeeded. if (y >= height) { // It would be better to check for the EOF marker before returning // success, but we may be performing a scanline decode, which // may require us to stop before decoding the full height. return kSuccess; } // Every entry takes at least two bytes if ((int) fRLEBytes - fCurrRLEByte < 2) { SkCodecPrintf("Warning: might be incomplete RLE input.\n"); if (this->checkForMoreData() < 2) { return kIncompleteInput; } } // Read the next two bytes. These bytes have different meanings // depending on their values. In the first interpretation, the first // byte is an escape flag and the second byte indicates what special // task to perform. const uint8_t flag = fStreamBuffer.get()[fCurrRLEByte++]; const uint8_t task = fStreamBuffer.get()[fCurrRLEByte++]; // Perform decoding if (RLE_ESCAPE == flag) { switch (task) { case RLE_EOL: x = 0; y++; break; case RLE_EOF: return kSuccess; case RLE_DELTA: { // Two bytes are needed to specify delta if ((int) fRLEBytes - fCurrRLEByte < 2) { SkCodecPrintf("Warning: might be incomplete RLE input.\n"); if (this->checkForMoreData() < 2) { return kIncompleteInput; } } // Modify x and y const uint8_t dx = fStreamBuffer.get()[fCurrRLEByte++]; const uint8_t dy = fStreamBuffer.get()[fCurrRLEByte++]; x += dx; y += dy; if (x > width || y > height) { SkCodecPrintf("Warning: invalid RLE input.\n"); return kInvalidInput; } break; } default: { // If task does not match any of the above signals, it // indicates that we have a sequence of non-RLE pixels. // Furthermore, the value of task is equal to the number // of pixels to interpret. uint8_t numPixels = task; const size_t rowBytes = compute_row_bytes(numPixels, this->bitsPerPixel()); // Abort if setting numPixels moves us off the edge of the // image. if (x + numPixels > width) { SkCodecPrintf("Warning: invalid RLE input.\n"); return kInvalidInput; } // Also abort if there are not enough bytes // remaining in the stream to set numPixels. if ((int) fRLEBytes - fCurrRLEByte < SkAlign2(rowBytes)) { SkCodecPrintf("Warning: might be incomplete RLE input.\n"); if (this->checkForMoreData() < SkAlign2(rowBytes)) { return kIncompleteInput; } } // Set numPixels number of pixels while (numPixels > 0) { switch(this->bitsPerPixel()) { case 4: { SkASSERT(fCurrRLEByte < fRLEBytes); uint8_t val = fStreamBuffer.get()[fCurrRLEByte++]; setPixel(dst, dstRowBytes, dstInfo, x++, y, val >> 4); numPixels--; if (numPixels != 0) { setPixel(dst, dstRowBytes, dstInfo, x++, y, val & 0xF); numPixels--; } break; } case 8: SkASSERT(fCurrRLEByte < fRLEBytes); setPixel(dst, dstRowBytes, dstInfo, x++, y, fStreamBuffer.get()[fCurrRLEByte++]); numPixels--; break; case 24: { SkASSERT(fCurrRLEByte + 2 < fRLEBytes); uint8_t blue = fStreamBuffer.get()[fCurrRLEByte++]; uint8_t green = fStreamBuffer.get()[fCurrRLEByte++]; uint8_t red = fStreamBuffer.get()[fCurrRLEByte++]; setRGBPixel(dst, dstRowBytes, dstInfo, x++, y, red, green, blue); numPixels--; } default: SkASSERT(false); return kInvalidInput; } } // Skip a byte if necessary to maintain alignment if (!SkIsAlign2(rowBytes)) { fCurrRLEByte++; } break; } } } else { // If the first byte read is not a flag, it indicates the number of // pixels to set in RLE mode. const uint8_t numPixels = flag; const int endX = SkTMin(x + numPixels, width); if (24 == this->bitsPerPixel()) { // In RLE24, the second byte read is part of the pixel color. // There are two more required bytes to finish encoding the // color. if ((int) fRLEBytes - fCurrRLEByte < 2) { SkCodecPrintf("Warning: might be incomplete RLE input.\n"); if (this->checkForMoreData() < 2) { return kIncompleteInput; } } // Fill the pixels up to endX with the specified color uint8_t blue = task; uint8_t green = fStreamBuffer.get()[fCurrRLEByte++]; uint8_t red = fStreamBuffer.get()[fCurrRLEByte++]; while (x < endX) { setRGBPixel(dst, dstRowBytes, dstInfo, x++, y, red, green, blue); } } else { // In RLE8 or RLE4, the second byte read gives the index in the // color table to look up the pixel color. // RLE8 has one color index that gets repeated // RLE4 has two color indexes in the upper and lower 4 bits of // the bytes, which are alternated uint8_t indices[2] = { task, task }; if (4 == this->bitsPerPixel()) { indices[0] >>= 4; indices[1] &= 0xf; } // Set the indicated number of pixels for (int which = 0; x < endX; x++) { setPixel(dst, dstRowBytes, dstInfo, x, y, indices[which]); which = !which; } } } } }