Color Correct Skia ================== Why is Skia Color Correct? -------------------------- A color space is a **gamut** and a **transfer function**. Gamut refers to the **available range of colors** in an image or on a display device. Being gamut correct means that we will display colors as the designer intended and consistently across display devices. A common problem with new “wide gamut” devices and uncorrected colors is illustrated below. Device Dependent Color (Wrong) Gamut Corrected Color Transfer function refers to **a non-linear encoding of pixel values**. A common transfer function is shown below. If we ignore the transfer function and treat non-linear values as if they are linear (when filtering, blending, anti-aliasing, multiplying), everything gets “too dark”. For example, we should see yellow (not brown) as the average of red and green light. Ignore Transfer Function Apply Transfer Function Also, we should maintain fine detail when anti-aliasing (or downscaling). Ignore Transfer Function Apply Transfer Function Skia Architecture for Color Correctness --------------------------------------- The major stages of the Skia drawing pipeline (premultiplication, filtering, blending) all assume linear inputs and linear outputs. Also, because they are linear operations, they are interchangeable. The gamut transform is a new operation (3x3 matrix) in the pipeline, but with similar properties: it is a linear operation with linear inputs and linear outputs. The important shift in logic from the legacy pipeline is that we actually apply the transfer function to transform the pixels to linear values before performing the linear operations. The most common transfer function, sRGB, is actually free on GPU! GPU hardware can transform sRGB to linear on reads and linear to sRGB on writes. Best Practices for Color Correct Skia ------------------------------------- In order to perform color correct rendering, Skia needs to know the **SkColorSpace** of the content that you draw and the **SkColorSpace** of the surface that you draw to. There are useful factories to make color spaces. // Really common color spaces sk_sp MakeSRGB(); sk_sp MakeSRGBLinear(); // Choose a common gamut and a common transfer function sk_sp MakeRGB(RenderTargetGamma, Gamut); // Create a color space from an ICC profile sk_sp MakeICC(); Starting with **sources** (the things that you draw), there are a number of ways to make sure that they are tagged with a color space. **SkColor** (stored on **SkPaint**) is assumed to be in the sRGB color space - meaning that it is in the sRGB gamut and encoded with the sRGB transfer function. **SkShaders** (also stored on **SkPaint**) can be used to create more complex colors. Color and gradient shaders typically accept **SkColor4f** (float colors). These high precision colors can be in any gamut, but must have a linear transfer function. // Create a high precision color in a particular color space sk_sp MakeColorShader(const SkColor4f&, sk_sp); // Create a gradient shader in a particular color space sk_sp MakeLinear(const SkPoint pts[2], const SkColor4f colors[2], sk_sp, ...); // Many more variations of shaders... // Remember that SkColor is always assumed to be sRGB as a convenience **SkImage** is the preferred representation for image sources. It is easy to create **SkImages** that are tagged with color spaces. // Create an image from encoded data (jpeg, png, etc.) // Will be tagged with the color space of the encoded data sk_sp MakeFromEncoded(sk_sp encoded); // Create an image from a texture in a particular color space sk_sp MakeFromTexture(GrContext*, const GrBackendTexture&, GrSurfaceOrigin, SkAlphaType, sk_sp, ...); **SkBitmap** is another (not preferred) representation for image sources. Be careful to not forget the color space. SkBitmap bitmap; bitmap.allocN32Pixels(); // Bad: What is the color space? SkBitmap bitmap; SkImageInfo info = SkImageInfo::MakeN32Premul(width, height); bitmap.allocPixels(info); // Bad: N32 is shorthand for 8888, no color space SkBitmap bitmap; SkImageInfo info = SkImageInfo::MakeS32(width, height, kPremul_SkAlphaType); bitmap.allocPixels(info); // Good: S32 is shorthand for 8888, sRGB **SkImageInfo** is a useful struct for providing information about pixel buffers. Remember to use the color correct variants. // sRGB, 8888 SkImageInfo MakeS32(int width, int height, SkAlphaType); // Create an SkImageInfo in a particular color space SkImageInfo Make(int width, int height, SkColorType, SkAlphaType, sk_sp); Moving to **destinations** (the surfaces that you draw to), there are also constructors that allow them to be tagged with color spaces. // Raster backed: Make sure |info| has a non-null color space sk_sp MakeRaster(const SkImageInfo& info); // Gpu backed: Make sure |info| has a non-null color space sk_sp SkSurface::MakeRenderTarget(GrContext, SkBudgeted, const SkImageInfo& info); Opting In To Color Correct Skia ------------------------------- By itself, **adding a color space tag to a source will not change draw behavior**. In fact, tagging sources with color spaces is always a best practice, regardless of whether or not we want Skia's color correct behavior. Adding a color space tag to the **destination is the trigger that turns on Skia color correct behavior**. Drawing a source without a color space to a destination with a color space is undefined. Skia cannot know how to draw without knowing the color space of the source.
Source SkColorSpace Destination SkColorSpace Behavior
Non-null Non-null Color Correct Skia
Null Non-null Undefined
Non-null Null Legacy Skia
Null Null Legacy Skia
It is possible to create **an object that is both a source and destination**, if Skia will both draw into it and then draw it somewhere else. The same rules from above still apply, but it is subtle that the color space tag could have an effect (or no effect) depending on how the object is used.