/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SampleCode.h" #include "SkAnimTimer.h" #include "SkCanvas.h" #include "SkGlyphCache.h" #include "SkPaint.h" #include "SkPath.h" #include "SkRandom.h" #include "SkStrikeCache.h" #include "SkTaskGroup.h" #include "sk_tool_utils.h" //////////////////////////////////////////////////////////////////////////////////////////////////// // Static text from paths. class PathText : public SampleView { public: constexpr static int kNumPaths = 1500; virtual const char* getName() const { return "PathText"; } PathText() { SkPaint defaultPaint; auto cache = SkStrikeCache::FindOrCreateStrikeExclusive(defaultPaint); SkPath glyphPaths[52]; for (int i = 0; i < 52; ++i) { // I and l are rects on OS X ... char c = "aQCDEFGH7JKLMNOPBRZTUVWXYSAbcdefghijk1mnopqrstuvwxyz"[i]; SkPackedGlyphID id(cache->unicharToGlyph(c)); sk_ignore_unused_variable(cache->getScalerContext()->getPath(id, &glyphPaths[i])); } for (int i = 0; i < kNumPaths; ++i) { const SkPath& p = glyphPaths[i % 52]; fGlyphs[i].init(fRand, p); } } virtual void reset() { for (Glyph& glyph : fGlyphs) { glyph.reset(fRand, this->width(), this->height()); } } void onOnceBeforeDraw() final { this->INHERITED::onOnceBeforeDraw(); this->reset(); } void onSizeChange() final { this->INHERITED::onSizeChange(); this->reset(); } bool onQuery(SkEvent* evt) final { if (SampleCode::TitleQ(*evt)) { SampleCode::TitleR(evt, this->getName()); return true; } SkUnichar unichar; if (SampleCode::CharQ(*evt, &unichar)) { if (unichar == 'X') { fDoClip = !fDoClip; return true; } } return this->INHERITED::onQuery(evt); } void onDrawContent(SkCanvas* canvas) override { if (fDoClip) { SkPath deviceSpaceClipPath = fClipPath; deviceSpaceClipPath.transform(SkMatrix::MakeScale(this->width(), this->height())); canvas->save(); canvas->clipPath(deviceSpaceClipPath, SkClipOp::kDifference, true); canvas->clear(SK_ColorBLACK); canvas->restore(); canvas->clipPath(deviceSpaceClipPath, SkClipOp::kIntersect, true); } this->drawGlyphs(canvas); } virtual void drawGlyphs(SkCanvas* canvas) { for (Glyph& glyph : fGlyphs) { SkAutoCanvasRestore acr(canvas, true); canvas->translate(glyph.fPosition.x(), glyph.fPosition.y()); canvas->scale(glyph.fZoom, glyph.fZoom); canvas->rotate(glyph.fSpin); canvas->translate(-glyph.fMidpt.x(), -glyph.fMidpt.y()); canvas->drawPath(glyph.fPath, glyph.fPaint); } } protected: struct Glyph { void init(SkRandom& rand, const SkPath& path); void reset(SkRandom& rand, int w, int h); SkPath fPath; SkPaint fPaint; SkPoint fPosition; SkScalar fZoom; SkScalar fSpin; SkPoint fMidpt; }; Glyph fGlyphs[kNumPaths]; SkRandom fRand{25}; SkPath fClipPath = sk_tool_utils::make_star(SkRect{0,0,1,1}, 11, 3); bool fDoClip = false; typedef SampleView INHERITED; }; void PathText::Glyph::init(SkRandom& rand, const SkPath& path) { fPath = path; fPaint.setAntiAlias(true); fPaint.setColor(rand.nextU() | 0x80808080); } void PathText::Glyph::reset(SkRandom& rand, int w, int h) { int screensize = SkTMax(w, h); const SkRect& bounds = fPath.getBounds(); SkScalar t; fPosition = {rand.nextF() * w, rand.nextF() * h}; t = pow(rand.nextF(), 100); fZoom = ((1 - t) * screensize / 50 + t * screensize / 3) / SkTMax(bounds.width(), bounds.height()); fSpin = rand.nextF() * 360; fMidpt = {bounds.centerX(), bounds.centerY()}; } //////////////////////////////////////////////////////////////////////////////////////////////////// // Text from paths with animated transformation matrices. class MovingPathText : public PathText { public: const char* getName() const override { return "MovingPathText"; } MovingPathText() : fFrontMatrices(kNumPaths) , fBackMatrices(kNumPaths) { } ~MovingPathText() override { fBackgroundAnimationTask.wait(); } void reset() override { const SkScalar screensize = static_cast(SkTMax(this->width(), this->height())); this->INHERITED::reset(); for (auto& v : fVelocities) { for (SkScalar* d : {&v.fDx, &v.fDy}) { SkScalar t = pow(fRand.nextF(), 3); *d = ((1 - t) / 60 + t / 10) * (fRand.nextBool() ? screensize : -screensize); } SkScalar t = pow(fRand.nextF(), 25); v.fDSpin = ((1 - t) * 360 / 7.5 + t * 360 / 1.5) * (fRand.nextBool() ? 1 : -1); } // Get valid front data. fBackgroundAnimationTask.wait(); this->runAnimationTask(0, 0, this->width(), this->height()); memcpy(fFrontMatrices, fBackMatrices, kNumPaths * sizeof(SkMatrix)); fLastTick = 0; } bool onAnimate(const SkAnimTimer& timer) final { fBackgroundAnimationTask.wait(); this->swapAnimationBuffers(); const double tsec = timer.secs(); const double dt = fLastTick ? (timer.secs() - fLastTick) : 0; fBackgroundAnimationTask.add(std::bind(&MovingPathText::runAnimationTask, this, tsec, dt, this->width(), this->height())); fLastTick = timer.secs(); return true; } /** * Called on a background thread. Here we can only modify fBackMatrices. */ virtual void runAnimationTask(double t, double dt, int w, int h) { for (int idx = 0; idx < kNumPaths; ++idx) { Velocity* v = &fVelocities[idx]; Glyph* glyph = &fGlyphs[idx]; SkMatrix* backMatrix = &fBackMatrices[idx]; glyph->fPosition.fX += v->fDx * dt; if (glyph->fPosition.x() < 0) { glyph->fPosition.fX -= 2 * glyph->fPosition.x(); v->fDx = -v->fDx; } else if (glyph->fPosition.x() > w) { glyph->fPosition.fX -= 2 * (glyph->fPosition.x() - w); v->fDx = -v->fDx; } glyph->fPosition.fY += v->fDy * dt; if (glyph->fPosition.y() < 0) { glyph->fPosition.fY -= 2 * glyph->fPosition.y(); v->fDy = -v->fDy; } else if (glyph->fPosition.y() > h) { glyph->fPosition.fY -= 2 * (glyph->fPosition.y() - h); v->fDy = -v->fDy; } glyph->fSpin += v->fDSpin * dt; backMatrix->setTranslate(glyph->fPosition.x(), glyph->fPosition.y()); backMatrix->preScale(glyph->fZoom, glyph->fZoom); backMatrix->preRotate(glyph->fSpin); backMatrix->preTranslate(-glyph->fMidpt.x(), -glyph->fMidpt.y()); } } virtual void swapAnimationBuffers() { std::swap(fFrontMatrices, fBackMatrices); } void drawGlyphs(SkCanvas* canvas) override { for (int i = 0; i < kNumPaths; ++i) { SkAutoCanvasRestore acr(canvas, true); canvas->concat(fFrontMatrices[i]); canvas->drawPath(fGlyphs[i].fPath, fGlyphs[i].fPaint); } } protected: struct Velocity { SkScalar fDx, fDy; SkScalar fDSpin; }; Velocity fVelocities[kNumPaths]; SkAutoTMalloc fFrontMatrices; SkAutoTMalloc fBackMatrices; SkTaskGroup fBackgroundAnimationTask; double fLastTick; typedef PathText INHERITED; }; //////////////////////////////////////////////////////////////////////////////////////////////////// // Text from paths with animated control points. class WavyPathText : public MovingPathText { public: const char* getName() const override { return "WavyPathText"; } WavyPathText() : fFrontPaths(kNumPaths) , fBackPaths(kNumPaths) {} ~WavyPathText() override { fBackgroundAnimationTask.wait(); } void reset() override { fWaves.reset(fRand, this->width(), this->height()); this->INHERITED::reset(); std::copy(fBackPaths.get(), fBackPaths.get() + kNumPaths, fFrontPaths.get()); } /** * Called on a background thread. Here we can only modify fBackPaths. */ void runAnimationTask(double t, double dt, int w, int h) override { const float tsec = static_cast(t); this->INHERITED::runAnimationTask(t, 0.5 * dt, w, h); for (int i = 0; i < kNumPaths; ++i) { const Glyph& glyph = fGlyphs[i]; const SkMatrix& backMatrix = fBackMatrices[i]; const Sk2f matrix[3] = { Sk2f(backMatrix.getScaleX(), backMatrix.getSkewY()), Sk2f(backMatrix.getSkewX(), backMatrix.getScaleY()), Sk2f(backMatrix.getTranslateX(), backMatrix.getTranslateY()) }; SkPath* backpath = &fBackPaths[i]; backpath->reset(); backpath->setFillType(SkPath::kEvenOdd_FillType); SkPath::RawIter iter(glyph.fPath); SkPath::Verb verb; SkPoint pts[4]; while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { switch (verb) { case SkPath::kMove_Verb: { SkPoint pt = fWaves.apply(tsec, matrix, pts[0]); backpath->moveTo(pt.x(), pt.y()); break; } case SkPath::kLine_Verb: { SkPoint endpt = fWaves.apply(tsec, matrix, pts[1]); backpath->lineTo(endpt.x(), endpt.y()); break; } case SkPath::kQuad_Verb: { SkPoint controlPt = fWaves.apply(tsec, matrix, pts[1]); SkPoint endpt = fWaves.apply(tsec, matrix, pts[2]); backpath->quadTo(controlPt.x(), controlPt.y(), endpt.x(), endpt.y()); break; } case SkPath::kClose_Verb: { backpath->close(); break; } case SkPath::kCubic_Verb: case SkPath::kConic_Verb: case SkPath::kDone_Verb: SK_ABORT("Unexpected path verb"); break; } } } } void swapAnimationBuffers() override { this->INHERITED::swapAnimationBuffers(); std::swap(fFrontPaths, fBackPaths); } void drawGlyphs(SkCanvas* canvas) override { for (int i = 0; i < kNumPaths; ++i) { canvas->drawPath(fFrontPaths[i], fGlyphs[i].fPaint); } } private: /** * Describes 4 stacked sine waves that can offset a point as a function of wall time. */ class Waves { public: void reset(SkRandom& rand, int w, int h); SkPoint apply(float tsec, const Sk2f matrix[3], const SkPoint& pt) const; private: constexpr static double kAverageAngle = SK_ScalarPI / 8.0; constexpr static double kMaxOffsetAngle = SK_ScalarPI / 3.0; float fAmplitudes[4]; float fFrequencies[4]; float fDirsX[4]; float fDirsY[4]; float fSpeeds[4]; float fOffsets[4]; }; SkAutoTArray fFrontPaths; SkAutoTArray fBackPaths; Waves fWaves; typedef MovingPathText INHERITED; }; void WavyPathText::Waves::reset(SkRandom& rand, int w, int h) { const double pixelsPerMeter = 0.06 * SkTMax(w, h); const double medianWavelength = 8 * pixelsPerMeter; const double medianWaveAmplitude = 0.05 * 4 * pixelsPerMeter; const double gravity = 9.8 * pixelsPerMeter; for (int i = 0; i < 4; ++i) { const double offsetAngle = (rand.nextF() * 2 - 1) * kMaxOffsetAngle; const double intensity = pow(2, rand.nextF() * 2 - 1); const double wavelength = intensity * medianWavelength; fAmplitudes[i] = intensity * medianWaveAmplitude; fFrequencies[i] = 2 * SK_ScalarPI / wavelength; fDirsX[i] = cosf(kAverageAngle + offsetAngle); fDirsY[i] = sinf(kAverageAngle + offsetAngle); fSpeeds[i] = -sqrt(gravity * 2 * SK_ScalarPI / wavelength); fOffsets[i] = rand.nextF() * 2 * SK_ScalarPI; } } SkPoint WavyPathText::Waves::apply(float tsec, const Sk2f matrix[3], const SkPoint& pt) const { constexpr static int kTablePeriod = 1 << 12; static float sin2table[kTablePeriod + 1]; static SkOnce initTable; initTable([]() { for (int i = 0; i <= kTablePeriod; ++i) { const double sintheta = sin(i * (SK_ScalarPI / kTablePeriod)); sin2table[i] = static_cast(sintheta * sintheta - 0.5); } }); const Sk4f amplitudes = Sk4f::Load(fAmplitudes); const Sk4f frequencies = Sk4f::Load(fFrequencies); const Sk4f dirsX = Sk4f::Load(fDirsX); const Sk4f dirsY = Sk4f::Load(fDirsY); const Sk4f speeds = Sk4f::Load(fSpeeds); const Sk4f offsets = Sk4f::Load(fOffsets); float devicePt[2]; (matrix[0] * pt.x() + matrix[1] * pt.y() + matrix[2]).store(devicePt); const Sk4f t = (frequencies * (dirsX * devicePt[0] + dirsY * devicePt[1]) + speeds * tsec + offsets).abs() * (float(kTablePeriod) / float(SK_ScalarPI)); const Sk4i ipart = SkNx_cast(t); const Sk4f fpart = t - SkNx_cast(ipart); int32_t indices[4]; (ipart & (kTablePeriod-1)).store(indices); const Sk4f left(sin2table[indices[0]], sin2table[indices[1]], sin2table[indices[2]], sin2table[indices[3]]); const Sk4f right(sin2table[indices[0] + 1], sin2table[indices[1] + 1], sin2table[indices[2] + 1], sin2table[indices[3] + 1]); const Sk4f height = amplitudes * (left * (1.f - fpart) + right * fpart); Sk4f dy = height * dirsY; Sk4f dx = height * dirsX; float offsetY[4], offsetX[4]; (dy + SkNx_shuffle<2,3,0,1>(dy)).store(offsetY); // accumulate. (dx + SkNx_shuffle<2,3,0,1>(dx)).store(offsetX);; return {devicePt[0] + offsetY[0] + offsetY[1], devicePt[1] - offsetX[0] - offsetX[1]}; } //////////////////////////////////////////////////////////////////////////////////////////////////// DEF_SAMPLE( return new WavyPathText; ) DEF_SAMPLE( return new MovingPathText; ) DEF_SAMPLE( return new PathText; )