/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkTypes.h" #if SK_SUPPORT_GPU #include "GrContextPriv.h" #include "GrPathUtils.h" #include "GrRenderTargetContext.h" #include "GrRenderTargetContextPriv.h" #include "GrResourceProvider.h" #include "SampleCode.h" #include "SkCanvas.h" #include "SkMakeUnique.h" #include "SkPaint.h" #include "SkPath.h" #include "SkView.h" #include "ccpr/GrCCPRCoverageProcessor.h" #include "ccpr/GrCCPRGeometry.h" #include "gl/GrGLGpu.cpp" #include "ops/GrDrawOp.h" using TriangleInstance = GrCCPRCoverageProcessor::TriangleInstance; using CurveInstance = GrCCPRCoverageProcessor::CurveInstance; using RenderPass = GrCCPRCoverageProcessor::RenderPass; static constexpr float kDebugBloat = 40; static int num_points(RenderPass renderPass) { return renderPass >= RenderPass::kSerpentineHulls ? 4 : 3; } static int is_quadratic(RenderPass renderPass) { return renderPass >= RenderPass::kQuadraticHulls && renderPass < RenderPass::kSerpentineHulls; } /** * This sample visualizes the AA bloat geometry generated by the ccpr geometry shaders. It * increases the AA bloat by 50x and outputs color instead of coverage (coverage=+1 -> green, * coverage=0 -> black, coverage=-1 -> red). Use the keys 1-7 to cycle through the different * geometry processors. */ class CCPRGeometryView : public SampleView { public: CCPRGeometryView() { this->updateGpuData(); } void onDrawContent(SkCanvas*) override; SkView::Click* onFindClickHandler(SkScalar x, SkScalar y, unsigned) override; bool onClick(SampleView::Click*) override; bool onQuery(SkEvent* evt) override; private: class Click; class Op; void updateAndInval() { this->updateGpuData(); this->inval(nullptr); } void updateGpuData(); RenderPass fRenderPass = RenderPass::kTriangleHulls; SkMatrix fCubicKLM; SkPoint fPoints[4] = { {100.05f, 100.05f}, {400.75f, 100.05f}, {400.75f, 300.95f}, {100.05f, 300.95f} }; SkTArray fGpuPoints; SkTArray fInstanceData; int fInstanceCount; typedef SampleView INHERITED; }; class CCPRGeometryView::Op : public GrDrawOp { DEFINE_OP_CLASS_ID public: Op(CCPRGeometryView* view) : INHERITED(ClassID()) , fView(view) { this->setBounds(SkRect::MakeLargest(), GrOp::HasAABloat::kNo, GrOp::IsZeroArea::kNo); } const char* name() const override { return "[Testing/Sample code] CCPRGeometryView::Op"; } private: FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; } RequiresDstTexture finalize(const GrCaps&, const GrAppliedClip*, GrPixelConfigIsClamped) override { return RequiresDstTexture::kNo; } bool onCombineIfPossible(GrOp* other, const GrCaps& caps) override { return false; } void onPrepare(GrOpFlushState*) override {} void onExecute(GrOpFlushState*) override; CCPRGeometryView* fView; typedef GrDrawOp INHERITED; }; static void draw_klm_line(int w, int h, SkCanvas* canvas, const SkScalar line[3], SkColor color) { SkPoint p1, p2; if (SkScalarAbs(line[1]) > SkScalarAbs(line[0])) { // Draw from vertical edge to vertical edge. p1 = {0, -line[2] / line[1]}; p2 = {(SkScalar) w, (-line[2] - w * line[0]) / line[1]}; } else { // Draw from horizontal edge to horizontal edge. p1 = {-line[2] / line[0], 0}; p2 = {(-line[2] - h * line[1]) / line[0], (SkScalar) h}; } SkPaint linePaint; linePaint.setColor(color); linePaint.setAlpha(128); linePaint.setStyle(SkPaint::kStroke_Style); linePaint.setStrokeWidth(0); linePaint.setAntiAlias(true); canvas->drawLine(p1, p2, linePaint); } void CCPRGeometryView::onDrawContent(SkCanvas* canvas) { SkAutoCanvasRestore acr(canvas, true); canvas->setMatrix(SkMatrix::I()); SkPath outline; outline.moveTo(fPoints[0]); if (4 == num_points(fRenderPass)) { outline.cubicTo(fPoints[1], fPoints[2], fPoints[3]); } else if (is_quadratic(fRenderPass)) { outline.quadTo(fPoints[1], fPoints[3]); } else { outline.lineTo(fPoints[1]); outline.lineTo(fPoints[3]); outline.close(); } SkPaint outlinePaint; outlinePaint.setColor(0x30000000); outlinePaint.setStyle(SkPaint::kStroke_Style); outlinePaint.setStrokeWidth(0); outlinePaint.setAntiAlias(true); canvas->drawPath(outline, outlinePaint); #if 0 SkPaint gridPaint; gridPaint.setColor(0x10000000); gridPaint.setStyle(SkPaint::kStroke_Style); gridPaint.setStrokeWidth(0); gridPaint.setAntiAlias(true); for (int y = 0; y < this->height(); y += kDebugBloat) { canvas->drawLine(0, y, this->width(), y, gridPaint); } for (int x = 0; x < this->width(); x += kDebugBloat) { canvas->drawLine(x, 0, x, this->height(), outlinePaint); } #endif const char* caption = "Use GPU backend to visualize geometry."; if (GrRenderTargetContext* rtc = canvas->internal_private_accessTopLayerRenderTargetContext()) { rtc->priv().testingOnly_addDrawOp(skstd::make_unique(this)); caption = GrCCPRCoverageProcessor::GetRenderPassName(fRenderPass); } SkPaint pointsPaint; pointsPaint.setColor(SK_ColorBLUE); pointsPaint.setStrokeWidth(8); pointsPaint.setAntiAlias(true); if (4 == num_points(fRenderPass)) { int w = this->width(), h = this->height(); canvas->drawPoints(SkCanvas::kPoints_PointMode, 4, fPoints, pointsPaint); draw_klm_line(w, h, canvas, &fCubicKLM[0], SK_ColorYELLOW); draw_klm_line(w, h, canvas, &fCubicKLM[3], SK_ColorBLUE); draw_klm_line(w, h, canvas, &fCubicKLM[6], SK_ColorRED); } else { canvas->drawPoints(SkCanvas::kPoints_PointMode, 2, fPoints, pointsPaint); canvas->drawPoints(SkCanvas::kPoints_PointMode, 1, fPoints + 3, pointsPaint); } SkPaint captionPaint; captionPaint.setTextSize(20); captionPaint.setColor(SK_ColorBLACK); captionPaint.setAntiAlias(true); canvas->drawText(caption, strlen(caption), 10, 30, captionPaint); } void CCPRGeometryView::updateGpuData() { int vertexCount = num_points(fRenderPass); fGpuPoints.reset(); fInstanceData.reset(); fInstanceCount = 0; if (4 == vertexCount) { double t[2], s[2]; SkCubicType type = GrPathUtils::getCubicKLM(fPoints, &fCubicKLM, t, s); if (RenderPass::kSerpentineHulls == fRenderPass && SkCubicType::kLoop == type) { fRenderPass = RenderPass::kLoopHulls; } if (RenderPass::kSerpentineCorners == fRenderPass && SkCubicType::kLoop == type) { fRenderPass = RenderPass::kLoopCorners; } if (RenderPass::kLoopHulls == fRenderPass && SkCubicType::kLoop != type) { fRenderPass = RenderPass::kSerpentineHulls; } if (RenderPass::kLoopCorners == fRenderPass && SkCubicType::kLoop != type) { fRenderPass = RenderPass::kSerpentineCorners; } GrCCPRGeometry geometry; geometry.beginContour(fPoints[0]); geometry.cubicTo(fPoints[1], fPoints[2], fPoints[3], kDebugBloat/2, kDebugBloat/2); geometry.endContour(); fGpuPoints.push_back_n(geometry.points().count(), geometry.points().begin()); int ptsIdx = 0; for (GrCCPRGeometry::Verb verb : geometry.verbs()) { switch (verb) { case GrCCPRGeometry::Verb::kLineTo: ++ptsIdx; continue; case GrCCPRGeometry::Verb::kMonotonicQuadraticTo: ptsIdx += 2; continue; case GrCCPRGeometry::Verb::kMonotonicSerpentineTo: case GrCCPRGeometry::Verb::kMonotonicLoopTo: fInstanceData.push_back(ptsIdx); fInstanceData.push_back(0); // Atlas offset. ptsIdx += 3; ++fInstanceCount; continue; default: continue; } } } else if (is_quadratic(fRenderPass)) { GrCCPRGeometry geometry; geometry.beginContour(fPoints[0]); geometry.quadraticTo(fPoints[1], fPoints[3]); geometry.endContour(); fGpuPoints.push_back_n(geometry.points().count(), geometry.points().begin()); for (GrCCPRGeometry::Verb verb : geometry.verbs()) { if (GrCCPRGeometry::Verb::kBeginContour == verb || GrCCPRGeometry::Verb::kEndOpenContour == verb || GrCCPRGeometry::Verb::kEndClosedContour == verb) { continue; } SkASSERT(GrCCPRGeometry::Verb::kMonotonicQuadraticTo == verb); fInstanceData.push_back(2 * fInstanceCount++); // Pts idx. fInstanceData.push_back(0); // Atlas offset. } } else { fGpuPoints.push_back(fPoints[0]); fGpuPoints.push_back(fPoints[1]); fGpuPoints.push_back(fPoints[3]); fInstanceData.push_back(0); fInstanceData.push_back(1); fInstanceData.push_back(2); fInstanceData.push_back(0); // Atlas offset. fInstanceCount = 1; } } void CCPRGeometryView::Op::onExecute(GrOpFlushState* state) { if (fView->fInstanceData.empty()) { return; } GrResourceProvider* rp = state->resourceProvider(); GrContext* context = state->gpu()->getContext(); GrGLGpu* glGpu = kOpenGL_GrBackend == context->contextPriv().getBackend() ? static_cast(state->gpu()) : nullptr; int vertexCount = num_points(fView->fRenderPass); sk_sp pointsBuffer(rp->createBuffer(fView->fGpuPoints.count() * sizeof(SkPoint), kTexel_GrBufferType, kDynamic_GrAccessPattern, GrResourceProvider::kNoPendingIO_Flag | GrResourceProvider::kRequireGpuMemory_Flag, fView->fGpuPoints.begin())); if (!pointsBuffer) { return; } sk_sp instanceBuffer(rp->createBuffer(fView->fInstanceData.count() * sizeof(int), kVertex_GrBufferType, kDynamic_GrAccessPattern, GrResourceProvider::kNoPendingIO_Flag | GrResourceProvider::kRequireGpuMemory_Flag, fView->fInstanceData.begin())); if (!instanceBuffer) { return; } GrPipeline pipeline(state->drawOpArgs().fProxy, GrPipeline::ScissorState::kDisabled, SkBlendMode::kSrcOver); GrCCPRCoverageProcessor ccprProc(fView->fRenderPass, pointsBuffer.get()); SkDEBUGCODE(ccprProc.enableDebugVisualizations(kDebugBloat);) GrMesh mesh(4 == vertexCount ? GrPrimitiveType::kLinesAdjacency : GrPrimitiveType::kTriangles); mesh.setInstanced(instanceBuffer.get(), fView->fInstanceCount, 0, vertexCount); if (glGpu) { glGpu->handleDirtyContext(); GR_GL_CALL(glGpu->glInterface(), PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_LINE)); GR_GL_CALL(glGpu->glInterface(), Enable(GR_GL_LINE_SMOOTH)); } state->rtCommandBuffer()->draw(pipeline, ccprProc, &mesh, nullptr, 1, this->bounds()); if (glGpu) { context->resetContext(kMisc_GrGLBackendState); } } class CCPRGeometryView::Click : public SampleView::Click { public: Click(SkView* target, int ptIdx) : SampleView::Click(target), fPtIdx(ptIdx) {} void doClick(SkPoint points[]) { if (fPtIdx >= 0) { this->dragPoint(points, fPtIdx); } else { for (int i = 0; i < 4; ++i) { this->dragPoint(points, i); } } } private: void dragPoint(SkPoint points[], int idx) { SkIPoint delta = fICurr - fIPrev; points[idx] += SkPoint::Make(delta.x(), delta.y()); } int fPtIdx; }; SkView::Click* CCPRGeometryView::onFindClickHandler(SkScalar x, SkScalar y, unsigned) { for (int i = 0; i < 4; ++i) { if (4 != num_points(fRenderPass) && 2 == i) { continue; } if (fabs(x - fPoints[i].x()) < 20 && fabsf(y - fPoints[i].y()) < 20) { return new Click(this, i); } } return new Click(this, -1); } bool CCPRGeometryView::onClick(SampleView::Click* click) { Click* myClick = (Click*) click; myClick->doClick(fPoints); this->updateAndInval(); return true; } bool CCPRGeometryView::onQuery(SkEvent* evt) { if (SampleCode::TitleQ(*evt)) { SampleCode::TitleR(evt, "CCPRGeometry"); return true; } SkUnichar unichar; if (SampleCode::CharQ(*evt, &unichar)) { if (unichar >= '1' && unichar <= '7') { fRenderPass = RenderPass(unichar - '1'); if (fRenderPass >= RenderPass::kLoopHulls) { // '6' -> kSerpentineHulls, '7' -> kSerpentineCorners. updateGpuData converts to // kLoop* if needed. fRenderPass = RenderPass(int(fRenderPass) + 1); } this->updateAndInval(); return true; } if (unichar == 'D') { SkDebugf(" SkPoint fPoints[4] = {\n"); SkDebugf(" {%ff, %ff},\n", fPoints[0].x(), fPoints[0].y()); SkDebugf(" {%ff, %ff},\n", fPoints[1].x(), fPoints[1].y()); SkDebugf(" {%ff, %ff},\n", fPoints[2].x(), fPoints[2].y()); SkDebugf(" {%ff, %ff}\n", fPoints[3].x(), fPoints[3].y()); SkDebugf(" };\n"); return true; } } return this->INHERITED::onQuery(evt); } DEF_SAMPLE( return new CCPRGeometryView; ) #endif // SK_SUPPORT_GPU