/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkTypes.h" #if SK_SUPPORT_GPU #include "GrContextPriv.h" #include "GrRenderTargetContext.h" #include "GrRenderTargetContextPriv.h" #include "GrResourceProvider.h" #include "SampleCode.h" #include "SkCanvas.h" #include "SkGeometry.h" #include "SkMakeUnique.h" #include "SkPaint.h" #include "SkPath.h" #include "SkView.h" #include "ccpr/GrCCPRCoverageProcessor.h" #include "ccpr/GrCCPRGeometry.h" #include "gl/GrGLGpu.cpp" #include "ops/GrDrawOp.h" using PrimitiveInstance = GrCCPRCoverageProcessor::PrimitiveInstance; using Mode = GrCCPRCoverageProcessor::Mode; static int num_points(Mode mode) { return mode >= GrCCPRCoverageProcessor::Mode::kSerpentineInsets ? 4 : 3; } static int is_curve(Mode mode) { return mode >= GrCCPRCoverageProcessor::Mode::kQuadraticHulls; } /** * This sample visualizes the AA bloat geometry generated by the ccpr geometry shaders. It * increases the AA bloat by 50x and outputs color instead of coverage (coverage=+1 -> green, * coverage=0 -> black, coverage=-1 -> red). Use the keys 1-7 to cycle through the different * geometry processors. */ class CCPRGeometryView : public SampleView { public: CCPRGeometryView() { this->updateGpuData(); } void onDrawContent(SkCanvas*) override; SkView::Click* onFindClickHandler(SkScalar x, SkScalar y, unsigned) override; bool onClick(SampleView::Click*) override; bool onQuery(SkEvent* evt) override; private: class Click; class Op; void updateAndInval() { this->updateGpuData(); this->inval(nullptr); } void updateGpuData(); Mode fMode = Mode::kTriangleHulls; SkPoint fPoints[4] = { {100.05f, 100.05f}, {100.05f, 300.95f}, {400.75f, 300.95f}, {400.75f, 100.05f} }; SkSTArray<16, SkPoint> fGpuPoints; SkSTArray<3, PrimitiveInstance> fGpuInstances; typedef SampleView INHERITED; }; class CCPRGeometryView::Op : public GrDrawOp { DEFINE_OP_CLASS_ID public: Op(CCPRGeometryView* view) : INHERITED(ClassID()) , fView(view) { this->setBounds(SkRect::MakeLargest(), GrOp::HasAABloat::kNo, GrOp::IsZeroArea::kNo); } const char* name() const override { return "[Testing/Sample code] CCPRGeometryView::Op"; } private: FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; } RequiresDstTexture finalize(const GrCaps&, const GrAppliedClip*) override { return RequiresDstTexture::kNo; } bool onCombineIfPossible(GrOp* other, const GrCaps& caps) override { return false; } void onPrepare(GrOpFlushState*) override {} void onExecute(GrOpFlushState*) override; CCPRGeometryView* fView; typedef GrDrawOp INHERITED; }; void CCPRGeometryView::onDrawContent(SkCanvas* canvas) { SkAutoCanvasRestore acr(canvas, true); canvas->setMatrix(SkMatrix::I()); SkPath outline; outline.moveTo(fPoints[0]); if (4 == num_points(fMode)) { outline.cubicTo(fPoints[1], fPoints[2], fPoints[3]); } else if (is_curve(fMode)) { outline.quadTo(fPoints[1], fPoints[3]); } else { outline.lineTo(fPoints[1]); outline.lineTo(fPoints[3]); } outline.close(); SkPaint outlinePaint; outlinePaint.setColor(0x30000000); outlinePaint.setStyle(SkPaint::kStroke_Style); outlinePaint.setStrokeWidth(0); outlinePaint.setAntiAlias(true); canvas->drawPath(outline, outlinePaint); const char* caption = "Use GPU backend to visualize geometry."; if (GrRenderTargetContext* rtc = canvas->internal_private_accessTopLayerRenderTargetContext()) { rtc->priv().testingOnly_addDrawOp(skstd::make_unique(this)); caption = GrCCPRCoverageProcessor::GetProcessorName(fMode); } SkPaint pointsPaint; pointsPaint.setColor(SK_ColorBLUE); pointsPaint.setStrokeWidth(8); pointsPaint.setAntiAlias(true); if (4 == num_points(fMode)) { canvas->drawPoints(SkCanvas::kPoints_PointMode, 4, fPoints, pointsPaint); } else { canvas->drawPoints(SkCanvas::kPoints_PointMode, 2, fPoints, pointsPaint); canvas->drawPoints(SkCanvas::kPoints_PointMode, 1, fPoints + 3, pointsPaint); } SkPaint captionPaint; captionPaint.setTextSize(20); captionPaint.setColor(SK_ColorBLACK); captionPaint.setAntiAlias(true); canvas->drawText(caption, strlen(caption), 10, 30, captionPaint); } void CCPRGeometryView::updateGpuData() { int vertexCount = num_points(fMode); fGpuPoints.reset(); fGpuInstances.reset(); if (4 == vertexCount) { double t[2], s[2]; SkCubicType type = SkClassifyCubic(fPoints, t, s); SkSTArray<2, float> chops; for (int i = 0; i < 2; ++i) { float chop = t[i] / s[i]; if (chop > 0 && chop < 1) { chops.push_back(chop); } } int instanceCount = chops.count() + 1; SkPoint chopped[10]; SkChopCubicAt(fPoints, chopped, chops.begin(), chops.count()); // Endpoints first, then control points. for (int i = 0; i <= instanceCount; ++i) { fGpuPoints.push_back(chopped[3*i]); } if (3 == instanceCount && SkCubicType::kLoop == type) { fGpuPoints[2] = fGpuPoints[1]; // Account for floating point error. } for (int i = 0; i < instanceCount; ++i) { fGpuPoints.push_back(chopped[3*i + 1]); fGpuPoints.push_back(chopped[3*i + 2]); // FIXME: we don't bother to send down the correct KLM t,s roots. fGpuPoints.push_back({0, 0}); fGpuPoints.push_back({0, 0}); } if (fMode < Mode::kLoopInsets && SkCubicType::kLoop == type) { fMode = (Mode) ((int) fMode + 2); } if (fMode >= Mode::kLoopInsets && SkCubicType::kLoop != type) { fMode = (Mode) ((int) fMode - 2); } int controlPointsIdx = instanceCount + 1; for (int i = 0; i < instanceCount; ++i) { fGpuInstances.push_back().fCubicData = {controlPointsIdx + i * 4, i}; } } else if (is_curve(fMode)) { SkPoint chopped[5]; fGpuPoints.push_back(fPoints[0]); if (GrCCPRChopMonotonicQuadratics(fPoints[0], fPoints[1], fPoints[3], chopped)) { // Endpoints. fGpuPoints.push_back(chopped[2]); fGpuPoints.push_back(chopped[4]); // Control points. fGpuPoints.push_back(chopped[1]); fGpuPoints.push_back(chopped[3]); fGpuInstances.push_back().fQuadraticData = {3, 0}; fGpuInstances.push_back().fQuadraticData = {4, 1}; } else { fGpuPoints.push_back(fPoints[3]); fGpuPoints.push_back(fPoints[1]); fGpuInstances.push_back().fQuadraticData = {2, 0}; } } else { fGpuPoints.push_back(fPoints[0]); fGpuPoints.push_back(fPoints[3]); fGpuPoints.push_back(fPoints[1]); fGpuInstances.push_back().fTriangleData = {0, 2, 1}; // Texel buffer has endpoints first. } for (PrimitiveInstance& instance : fGpuInstances) { instance.fPackedAtlasOffset = 0; } } void CCPRGeometryView::Op::onExecute(GrOpFlushState* state) { GrResourceProvider* rp = state->resourceProvider(); GrContext* context = state->gpu()->getContext(); GrGLGpu* glGpu = kOpenGL_GrBackend == context->contextPriv().getBackend() ? static_cast(state->gpu()) : nullptr; int vertexCount = num_points(fView->fMode); sk_sp pointsBuffer(rp->createBuffer(fView->fGpuPoints.count() * sizeof(SkPoint), kTexel_GrBufferType, kDynamic_GrAccessPattern, GrResourceProvider::kNoPendingIO_Flag | GrResourceProvider::kRequireGpuMemory_Flag, fView->fGpuPoints.begin())); if (!pointsBuffer) { return; } sk_sp instanceBuffer(rp->createBuffer(fView->fGpuInstances.count() * 4 * sizeof(int), kVertex_GrBufferType, kDynamic_GrAccessPattern, GrResourceProvider::kNoPendingIO_Flag | GrResourceProvider::kRequireGpuMemory_Flag, fView->fGpuInstances.begin())); if (!instanceBuffer) { return; } GrPipeline pipeline(state->drawOpArgs().fProxy, GrPipeline::ScissorState::kDisabled, SkBlendMode::kSrcOver); GrCCPRCoverageProcessor ccprProc(fView->fMode, pointsBuffer.get()); SkDEBUGCODE(ccprProc.enableDebugVisualizations();) GrMesh mesh(4 == vertexCount ? GrPrimitiveType::kLinesAdjacency : GrPrimitiveType::kTriangles); mesh.setInstanced(instanceBuffer.get(), fView->fGpuInstances.count(), 0, vertexCount); if (glGpu) { glGpu->handleDirtyContext(); GR_GL_CALL(glGpu->glInterface(), PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_LINE)); GR_GL_CALL(glGpu->glInterface(), Enable(GR_GL_LINE_SMOOTH)); } state->rtCommandBuffer()->draw(pipeline, ccprProc, &mesh, nullptr, 1, this->bounds()); if (glGpu) { context->resetContext(kMisc_GrGLBackendState); } } class CCPRGeometryView::Click : public SampleView::Click { public: Click(SkView* target, int ptIdx) : SampleView::Click(target), fPtIdx(ptIdx) {} void doClick(SkPoint points[]) { if (fPtIdx >= 0) { this->dragPoint(points, fPtIdx); } else { for (int i = 0; i < 4; ++i) { this->dragPoint(points, i); } } } private: void dragPoint(SkPoint points[], int idx) { SkIPoint delta = fICurr - fIPrev; points[idx] += SkPoint::Make(delta.x(), delta.y()); } int fPtIdx; }; SkView::Click* CCPRGeometryView::onFindClickHandler(SkScalar x, SkScalar y, unsigned) { for (int i = 0; i < 4; ++i) { if (4 != num_points(fMode) && 2 == i) { continue; } if (fabs(x - fPoints[i].x()) < 20 && fabsf(y - fPoints[i].y()) < 20) { return new Click(this, i); } } return new Click(this, -1); } bool CCPRGeometryView::onClick(SampleView::Click* click) { Click* myClick = (Click*) click; myClick->doClick(fPoints); this->updateAndInval(); return true; } bool CCPRGeometryView::onQuery(SkEvent* evt) { if (SampleCode::TitleQ(*evt)) { SampleCode::TitleR(evt, "CCPRGeometry"); return true; } SkUnichar unichar; if (SampleCode::CharQ(*evt, &unichar)) { if (unichar >= '1' && unichar <= '7') { fMode = Mode(unichar - '1'); if (fMode >= Mode::kCombinedTriangleHullsAndEdges) { fMode = Mode(int(fMode) + 1); } this->updateAndInval(); return true; } if (unichar == 'D') { SkDebugf(" SkPoint fPoints[4] = {\n"); SkDebugf(" {%f, %f},\n", fPoints[0].x(), fPoints[0].y()); SkDebugf(" {%f, %f},\n", fPoints[1].x(), fPoints[1].y()); SkDebugf(" {%f, %f},\n", fPoints[2].x(), fPoints[2].y()); SkDebugf(" {%f, %f}\n", fPoints[3].x(), fPoints[3].y()); SkDebugf(" };\n"); return true; } } return this->INHERITED::onQuery(evt); } DEF_SAMPLE( return new CCPRGeometryView; ) #endif // SK_SUPPORT_GPU