/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SampleApp.h" #include "SkCommonFlags.h" #include "OverView.h" #include "Resources.h" #include "SampleCode.h" #include "SkAnimTimer.h" #include "SkCanvas.h" #include "SkColorSpace_XYZ.h" #include "SkCommandLineFlags.h" #include "SkCommonFlagsPathRenderer.h" #include "SkData.h" #include "SkDocument.h" #include "SkGraphics.h" #include "SkOSFile.h" #include "SkOSPath.h" #include "SkPaint.h" #include "SkPaintFilterCanvas.h" #include "SkPicture.h" #include "SkPictureRecorder.h" #include "SkPM4fPriv.h" #include "SkStream.h" #include "SkSurface.h" #include "SkTemplates.h" #include "SkTSort.h" #include "SkTime.h" #include "SkTypeface.h" #include "SkWindow.h" #include "sk_tool_utils.h" #include "SkScan.h" #include "SkClipOpPriv.h" #include "SkThreadedBMPDevice.h" #include "SkReadBuffer.h" #include "SkStream.h" #if defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_IOS) #include "SkCGUtils.h" #endif #define PICTURE_MEANS_PIPE false #define SERIALIZE_PICTURE true #if SK_SUPPORT_GPU # include "gl/GrGLInterface.h" # include "gl/GrGLUtil.h" # include "GrContext.h" # include "SkGr.h" # if SK_ANGLE # include "gl/angle/GLTestContext_angle.h" # endif #else class GrContext; #endif extern bool gSkForceRasterPipelineBlitter; enum OutputColorSpace { kLegacy_OutputColorSpace, kSRGB_OutputColorSpace, kNarrow_OutputColorSpace, kMonitor_OutputColorSpace, }; const struct { SkColorType fColorType; OutputColorSpace fColorSpace; const char* fName; } gConfig[] = { { kN32_SkColorType, kLegacy_OutputColorSpace, "L32" }, { kRGB_565_SkColorType, kLegacy_OutputColorSpace, "L565" }, { kN32_SkColorType, kSRGB_OutputColorSpace, "S32" }, { kRGBA_F16_SkColorType, kSRGB_OutputColorSpace, "F16" }, { kRGBA_F16_SkColorType, kNarrow_OutputColorSpace, "F16 Narrow" }, { kRGBA_F16_SkColorType, kMonitor_OutputColorSpace, "F16 Device" }, }; // Should be 3x + 1 #define kMaxFatBitsScale 28 extern SampleView* CreateSamplePictFileView(const char filename[]); class PictFileFactory : public SkViewFactory { SkString fFilename; public: PictFileFactory(const SkString& filename) : fFilename(filename) {} SkView* operator() () const override { return CreateSamplePictFileView(fFilename.c_str()); } }; extern SampleView* CreateSamplePathFinderView(const char filename[]); class PathFinderFactory : public SkViewFactory { SkString fFilename; public: PathFinderFactory(const SkString& filename) : fFilename(filename) {} SkView* operator() () const override { return CreateSamplePathFinderView(fFilename.c_str()); } }; extern SampleView* CreateSampleSVGFileView(const SkString& filename); class SVGFileFactory : public SkViewFactory { SkString fFilename; public: SVGFileFactory(const SkString& filename) : fFilename(filename) {} SkView* operator() () const override { return CreateSampleSVGFileView(fFilename); } }; #ifdef SAMPLE_PDF_FILE_VIEWER extern SampleView* CreateSamplePdfFileViewer(const char filename[]); class PdfFileViewerFactory : public SkViewFactory { SkString fFilename; public: PdfFileViewerFactory(const SkString& filename) : fFilename(filename) {} SkView* operator() () const override { return CreateSamplePdfFileViewer(fFilename.c_str()); } }; #endif // SAMPLE_PDF_FILE_VIEWER #if SK_ANGLE //#define DEFAULT_TO_ANGLE 1 #else #define DEFAULT_TO_GPU 0 // if 1 default rendering is on GPU #endif #define ANIMATING_EVENTTYPE "nextSample" #define ANIMATING_DELAY 250 #ifdef SK_DEBUG #define FPS_REPEAT_MULTIPLIER 1 #else #define FPS_REPEAT_MULTIPLIER 10 #endif #define FPS_REPEAT_COUNT (10 * FPS_REPEAT_MULTIPLIER) static SampleWindow* gSampleWindow; static bool gShowGMBounds; static void post_event_to_sink(SkEvent* evt, SkEventSink* sink) { evt->setTargetID(sink->getSinkID())->post(); } static SkAnimTimer gAnimTimer; /////////////////////////////////////////////////////////////////////////////// static const char* skip_until(const char* str, const char* skip) { if (!str) { return nullptr; } return strstr(str, skip); } static const char* skip_past(const char* str, const char* skip) { const char* found = skip_until(str, skip); if (!found) { return nullptr; } return found + strlen(skip); } static const char* gPrefFileName = "sampleapp_prefs.txt"; static bool readTitleFromPrefs(SkString* title) { SkFILEStream stream(gPrefFileName); if (!stream.isValid()) { return false; } size_t len = stream.getLength(); SkString data(len); stream.read(data.writable_str(), len); const char* s = data.c_str(); s = skip_past(s, "curr-slide-title"); s = skip_past(s, "="); s = skip_past(s, "\""); const char* stop = skip_until(s, "\""); if (stop > s) { title->set(s, stop - s); return true; } return false; } static void writeTitleToPrefs(const char* title) { SkFILEWStream stream(gPrefFileName); SkString data; data.printf("curr-slide-title = \"%s\"\n", title); stream.write(data.c_str(), data.size()); } /////////////////////////////////////////////////////////////////////////////// class SampleWindow::DefaultDeviceManager : public SampleWindow::DeviceManager { public: DefaultDeviceManager() { #if SK_SUPPORT_GPU fCurContext = nullptr; fCurIntf = nullptr; fMSAASampleCount = 0; fDeepColor = false; fActualColorBits = 0; #endif fBackend = kNone_BackEndType; } ~DefaultDeviceManager() override { #if SK_SUPPORT_GPU SkSafeUnref(fCurContext); SkSafeUnref(fCurIntf); #endif } void setUpBackend(SampleWindow* win, const BackendOptions& backendOptions) override { SkASSERT(kNone_BackEndType == fBackend); fBackend = kNone_BackEndType; #if SK_SUPPORT_GPU switch (win->getDeviceType()) { case kRaster_DeviceType: // fallthrough case kGPU_DeviceType: // all these guys use the native backend fBackend = kNativeGL_BackEndType; break; #if SK_ANGLE case kANGLE_DeviceType: // ANGLE is really the only odd man out fBackend = kANGLE_BackEndType; break; #endif // SK_ANGLE default: SkASSERT(false); break; } AttachmentInfo attachmentInfo; bool result = win->attach(fBackend, backendOptions.fMSAASampleCount, backendOptions.fDeepColor, &attachmentInfo); if (!result) { SkDebugf("Failed to initialize GL"); return; } fMSAASampleCount = backendOptions.fMSAASampleCount; fDeepColor = backendOptions.fDeepColor; // Assume that we have at least 24-bit output, for backends that don't supply this data fActualColorBits = SkTMax(attachmentInfo.fColorBits, 24); SkASSERT(nullptr == fCurIntf); switch (win->getDeviceType()) { case kRaster_DeviceType: // fallthrough case kGPU_DeviceType: // all these guys use the native interface fCurIntf = GrGLCreateNativeInterface(); break; #if SK_ANGLE case kANGLE_DeviceType: fCurIntf = sk_gpu_test::CreateANGLEGLInterface(); break; #endif // SK_ANGLE default: SkASSERT(false); break; } SkASSERT(nullptr == fCurContext); fCurContext = GrContext::MakeGL(fCurIntf, backendOptions.fGrContextOptions).release(); if (nullptr == fCurContext || nullptr == fCurIntf) { // We need some context and interface to see results SkSafeUnref(fCurContext); SkSafeUnref(fCurIntf); fCurContext = nullptr; fCurIntf = nullptr; SkDebugf("Failed to setup 3D"); win->release(); } #endif // SK_SUPPORT_GPU // call windowSizeChanged to create the gpu-backed Surface this->windowSizeChanged(win); } void tearDownBackend(SampleWindow *win) override { #if SK_SUPPORT_GPU if (fCurContext) { // in case we have outstanding refs to this guy (lua?) fCurContext->abandonContext(); fCurContext->unref(); fCurContext = nullptr; } SkSafeUnref(fCurIntf); fCurIntf = nullptr; fGpuSurface = nullptr; #endif win->release(); fBackend = kNone_BackEndType; } sk_sp makeSurface(SampleWindow::DeviceType dType, SampleWindow* win) override { #if SK_SUPPORT_GPU if (IsGpuDeviceType(dType) && fCurContext) { SkSurfaceProps props(win->getSurfaceProps()); if (kRGBA_F16_SkColorType == win->info().colorType() || fActualColorBits > 24) { // If we're rendering to F16, we need an off-screen surface - the current render // target is most likely the wrong format. // // If we're using a deep (10-bit or higher) surface, we probably need an off-screen // surface. 10-bit, in particular, has strange gamma behavior. return SkSurface::MakeRenderTarget(fCurContext, SkBudgeted::kNo, win->info(), fMSAASampleCount, &props); } else { return fGpuSurface; } } #endif return nullptr; } void publishCanvas(SampleWindow::DeviceType dType, SkCanvas* renderingCanvas, SampleWindow* win) override { #if SK_SUPPORT_GPU if (!IsGpuDeviceType(dType) || kRGBA_F16_SkColorType == win->info().colorType() || fActualColorBits > 24) { // We made/have an off-screen surface. Extract the pixels exactly as we rendered them: SkImageInfo info = win->info(); size_t rowBytes = info.minRowBytes(); size_t size = info.getSafeSize(rowBytes); auto data = SkData::MakeUninitialized(size); SkASSERT(data); if (!renderingCanvas->readPixels(info, data->writable_data(), rowBytes, 0, 0)) { SkDEBUGFAIL("Failed to read canvas pixels"); return; } // Now, re-interpret those pixels as sRGB, so they won't be color converted when we // draw then to FBO0. This ensures that if we rendered in any strange gamut, we'll see // the "correct" output (because we generated the pixel values we wanted in the // offscreen canvas). auto colorSpace = kRGBA_F16_SkColorType == info.colorType() ? SkColorSpace::MakeSRGBLinear() : SkColorSpace::MakeSRGB(); auto offscreenImage = SkImage::MakeRasterData(info.makeColorSpace(colorSpace), data, rowBytes); SkCanvas* gpuCanvas = fGpuSurface->getCanvas(); // With ten-bit output, we need to manually apply the gamma of the output device // (unless we're in non-gamma correct mode, in which case our data is already // fake-sRGB, like we're expected to put in the 10-bit buffer): bool doGamma = (fActualColorBits == 30) && win->info().colorSpace(); SkPaint gammaPaint; gammaPaint.setBlendMode(SkBlendMode::kSrc); if (doGamma) { gammaPaint.setColorFilter(SkColorFilter::MakeLinearToSRGBGamma()); } gpuCanvas->drawImage(offscreenImage, 0, 0, &gammaPaint); } fGpuSurface->prepareForExternalIO(); #endif win->present(); } void windowSizeChanged(SampleWindow* win) override { win->resetFPS(); #if SK_SUPPORT_GPU if (fCurContext) { AttachmentInfo attachmentInfo; win->attach(fBackend, fMSAASampleCount, fDeepColor, &attachmentInfo); fActualColorBits = SkTMax(attachmentInfo.fColorBits, 24); fGpuSurface = win->makeGpuBackedSurface(attachmentInfo, fCurIntf, fCurContext); } #endif } GrContext* getGrContext() override { #if SK_SUPPORT_GPU return fCurContext; #else return nullptr; #endif } int numColorSamples() const override { #if SK_SUPPORT_GPU return fMSAASampleCount; #else return 0; #endif } int getColorBits() override { #if SK_SUPPORT_GPU return fActualColorBits; #else return 24; #endif } private: #if SK_SUPPORT_GPU GrContext* fCurContext; const GrGLInterface* fCurIntf; sk_sp fGpuSurface; int fMSAASampleCount; bool fDeepColor; int fActualColorBits; #endif SkOSWindow::SkBackEndTypes fBackend; typedef SampleWindow::DeviceManager INHERITED; }; /////////////// static const char view_inval_msg[] = "view-inval-msg"; void SampleWindow::postInvalDelay() { (new SkEvent(view_inval_msg, this->getSinkID()))->postDelay(1); } static bool isInvalEvent(const SkEvent& evt) { return evt.isType(view_inval_msg); } ////////////////// #include "GMSampleView.h" class AutoUnrefArray { public: AutoUnrefArray() {} ~AutoUnrefArray() { int count = fObjs.count(); for (int i = 0; i < count; ++i) { fObjs[i]->unref(); } } SkRefCnt*& push_back() { return *fObjs.append(); } private: SkTDArray fObjs; }; // registers GMs as Samples // This can't be performed during static initialization because it could be // run before GMRegistry has been fully built. static void SkGMRegistyToSampleRegistry() { static bool gOnce; static AutoUnrefArray fRegisters; if (!gOnce) { const skiagm::GMRegistry* gmreg = skiagm::GMRegistry::Head(); while (gmreg) { fRegisters.push_back() = new SkViewRegister(gmreg->factory()); gmreg = gmreg->next(); } gOnce = true; } } ////////////////////////////////////////////////////////////////////////////// enum FlipAxisEnum { kFlipAxis_X = (1 << 0), kFlipAxis_Y = (1 << 1) }; #include "SkDrawFilter.h" struct HintingState { SkPaint::Hinting hinting; const char* name; const char* label; }; static HintingState gHintingStates[] = { {SkPaint::kNo_Hinting, "Mixed", nullptr }, {SkPaint::kNo_Hinting, "None", "H0 " }, {SkPaint::kSlight_Hinting, "Slight", "Hs " }, {SkPaint::kNormal_Hinting, "Normal", "Hn " }, {SkPaint::kFull_Hinting, "Full", "Hf " }, }; struct PixelGeometryState { SkPixelGeometry pixelGeometry; const char* name; const char* label; }; static PixelGeometryState gPixelGeometryStates[] = { {SkPixelGeometry::kUnknown_SkPixelGeometry, "Mixed", nullptr }, {SkPixelGeometry::kUnknown_SkPixelGeometry, "Flat", "{Flat} " }, {SkPixelGeometry::kRGB_H_SkPixelGeometry, "RGB H", "{RGB H} " }, {SkPixelGeometry::kBGR_H_SkPixelGeometry, "BGR H", "{BGR H} " }, {SkPixelGeometry::kRGB_V_SkPixelGeometry, "RGB_V", "{RGB V} " }, {SkPixelGeometry::kBGR_V_SkPixelGeometry, "BGR_V", "{BGR V} " }, }; struct FilterQualityState { SkFilterQuality fQuality; const char* fName; const char* fLabel; }; static FilterQualityState gFilterQualityStates[] = { { kNone_SkFilterQuality, "Mixed", nullptr }, { kNone_SkFilterQuality, "None", "F0 " }, { kLow_SkFilterQuality, "Low", "F1 " }, { kMedium_SkFilterQuality, "Medium", "F2 " }, { kHigh_SkFilterQuality, "High", "F3 " }, }; class FlagsFilterCanvas : public SkPaintFilterCanvas { public: FlagsFilterCanvas(SkCanvas* canvas, SkOSMenu::TriState lcd, SkOSMenu::TriState aa, SkOSMenu::TriState subpixel, int hinting, int filterQuality) : INHERITED(canvas) , fLCDState(lcd) , fAAState(aa) , fSubpixelState(subpixel) , fHintingState(hinting) , fFilterQualityIndex(filterQuality) { SkASSERT((unsigned)filterQuality < SK_ARRAY_COUNT(gFilterQualityStates)); } protected: bool onFilter(SkTCopyOnFirstWrite* paint, Type t) const override { if (!*paint) { return true; } if (kText_Type == t && SkOSMenu::kMixedState != fLCDState) { paint->writable()->setLCDRenderText(SkOSMenu::kOnState == fLCDState); } if (SkOSMenu::kMixedState != fAAState) { paint->writable()->setAntiAlias(SkOSMenu::kOnState == fAAState); } if (0 != fFilterQualityIndex) { paint->writable()->setFilterQuality(gFilterQualityStates[fFilterQualityIndex].fQuality); } if (SkOSMenu::kMixedState != fSubpixelState) { paint->writable()->setSubpixelText(SkOSMenu::kOnState == fSubpixelState); } if (0 != fHintingState && fHintingState < (int)SK_ARRAY_COUNT(gHintingStates)) { paint->writable()->setHinting(gHintingStates[fHintingState].hinting); } return true; } private: SkOSMenu::TriState fLCDState; SkOSMenu::TriState fAAState; SkOSMenu::TriState fSubpixelState; int fHintingState; int fFilterQualityIndex; typedef SkPaintFilterCanvas INHERITED; }; /////////////////////////////////////////////////////////////////////////////// class SampleTFSerializer : public SkTypefaceSerializer { public: sk_sp serialize(SkTypeface* tf) override { tf->ref(); return SkData::MakeWithCopy(&tf, sizeof(tf)); } }; class SampleTFDeserializer : public SkTypefaceDeserializer { public: sk_sp deserialize(const void* data, size_t size) override { SkASSERT(sizeof(SkTypeface*) == size); SkTypeface* tf; memcpy(&tf, data, size); return sk_sp(tf); // this was ref'd in SampleTFSerializer } }; /////////////////////////////////////////////////////////////////////////////// enum TilingMode { kNo_Tiling, kAbs_128x128_Tiling, kAbs_256x256_Tiling, kRel_4x4_Tiling, kRel_1x16_Tiling, kRel_16x1_Tiling, kLast_TilingMode_Enum }; struct TilingInfo { const char* label; SkScalar w, h; }; static const struct TilingInfo gTilingInfo[] = { { "No tiling", SK_Scalar1 , SK_Scalar1 }, // kNo_Tiling { "128x128" , SkIntToScalar(128), SkIntToScalar(128) }, // kAbs_128x128_Tiling { "256x256" , SkIntToScalar(256), SkIntToScalar(256) }, // kAbs_256x256_Tiling { "1/4x1/4" , SK_Scalar1 / 4 , SK_Scalar1 / 4 }, // kRel_4x4_Tiling { "1/1x1/16" , SK_Scalar1 , SK_Scalar1 / 16 }, // kRel_1x16_Tiling { "1/16x1/1" , SK_Scalar1 / 16 , SK_Scalar1 }, // kRel_16x1_Tiling }; static_assert((SK_ARRAY_COUNT(gTilingInfo) == kLast_TilingMode_Enum), "Incomplete_tiling_labels"); SkSize SampleWindow::tileSize() const { SkASSERT((TilingMode)fTilingMode < kLast_TilingMode_Enum); const struct TilingInfo* info = gTilingInfo + fTilingMode; return SkSize::Make(info->w > SK_Scalar1 ? info->w : this->width() * info->w, info->h > SK_Scalar1 ? info->h : this->height() * info->h); } ////////////////////////////////////////////////////////////////////////////// static SkView* curr_view(SkWindow* wind) { SkView::F2BIter iter(wind); return iter.next(); } static bool curr_title(SkWindow* wind, SkString* title) { SkView* view = curr_view(wind); if (view) { SkEvent evt(gTitleEvtName); if (view->doQuery(&evt)) { title->set(evt.findString(gTitleEvtName)); return true; } } return false; } bool SampleWindow::sendAnimatePulse() { SkView* view = curr_view(this); if (SampleView::IsSampleView(view)) { return ((SampleView*)view)->animate(gAnimTimer); } return false; } void SampleWindow::setZoomCenter(float x, float y) { fZoomCenterX = x; fZoomCenterY = y; } bool SampleWindow::zoomIn() { // Arbitrarily decided if (fFatBitsScale == kMaxFatBitsScale) return false; fFatBitsScale++; this->inval(nullptr); return true; } bool SampleWindow::zoomOut() { if (fFatBitsScale == 1) return false; fFatBitsScale--; this->inval(nullptr); return true; } void SampleWindow::updatePointer(int x, int y) { fMouseX = x; fMouseY = y; if (fShowZoomer) { this->inval(nullptr); } } static inline SampleWindow::DeviceType cycle_devicetype(SampleWindow::DeviceType ct) { static const SampleWindow::DeviceType gCT[] = { SampleWindow::kRaster_DeviceType #if SK_SUPPORT_GPU , SampleWindow::kGPU_DeviceType #if SK_ANGLE , SampleWindow::kANGLE_DeviceType #endif // SK_ANGLE #endif // SK_SUPPORT_GPU }; static_assert(SK_ARRAY_COUNT(gCT) == SampleWindow::kDeviceTypeCnt, "array_size_mismatch"); return gCT[ct]; } static SkString getSampleTitle(const SkViewFactory* sampleFactory) { SkView* view = (*sampleFactory)(); SkString title; SampleCode::RequestTitle(view, &title); view->unref(); return title; } static bool compareSampleTitle(const SkViewFactory* first, const SkViewFactory* second) { return strcmp(getSampleTitle(first).c_str(), getSampleTitle(second).c_str()) < 0; } static int find_by_title(const SkViewFactory* const* factories, int count, const char title[]) { for (int i = 0; i < count; i++) { if (getSampleTitle(factories[i]).equals(title)) { return i; } } return -1; } static void restrict_samples(SkTDArray& factories, const SkString titles[], int count) { int newCount = 0; for (int i = 0; i < count; ++i) { int index = find_by_title(factories.begin(), factories.count(), titles[i].c_str()); if (index >= 0) { SkTSwap(factories.begin()[newCount], factories.begin()[index]); newCount += 1; } } if (newCount) { factories.setCount(newCount); } } DEFINE_string(slide, "", "Start on this sample."); DEFINE_string(pictureDir, "", "Read pictures from here."); DEFINE_string(picture, "", "Path to single picture."); DEFINE_string(pathfinder, "", "SKP file with a single path to isolate."); DEFINE_string(svg, "", "Path to single SVG file."); DEFINE_string(svgDir, "", "Read SVGs from here."); DEFINE_string(sequence, "", "Path to file containing the desired samples/gms to show."); DEFINE_bool(sort, false, "Sort samples by title."); DEFINE_bool(list, false, "List samples?"); DEFINE_bool(startgpu, false, "Start up with gpu?"); DEFINE_bool(redraw, false, "Force continuous redrawing, for profiling or debugging tools."); #ifdef SAMPLE_PDF_FILE_VIEWER DEFINE_string(pdfPath, "", "Path to direcotry of pdf files."); #endif #if SK_SUPPORT_GPU DEFINE_pathrenderer_flag; DEFINE_int32(msaa, 0, "Request multisampling with this count."); DEFINE_bool(deepColor, false, "Request deep color (10-bit/channel or more) display buffer."); #endif DEFINE_int32(backendTiles, 0, "Number of tiles in the experimental threaded backend."); DEFINE_int32(backendThreads, 0, "Number of threads in the experimental threaded backend."); DEFINE_int32(measureMS, 0, "Number of miliseconds to measure the FPS before closing the SampleApp. " "If it's 0, we won't measure the FPS or close SampleApp automatically."); DEFINE_int32(width, 1024, "Width of the window"); DEFINE_int32(height, 768, "Height of the window"); #include "SkTaskGroup.h" SampleWindow::SampleWindow(void* hwnd, int argc, char** argv, DeviceManager* devManager) : INHERITED(hwnd, FLAGS_width, FLAGS_height) , fDevManager(nullptr) { fCurrIndex = -1; if (!FLAGS_pictureDir.isEmpty()) { SkOSFile::Iter iter(FLAGS_pictureDir[0], "skp"); SkString filename; while (iter.next(&filename)) { *fSamples.append() = new PictFileFactory( SkOSPath::Join(FLAGS_pictureDir[0], filename.c_str())); } } if (!FLAGS_picture.isEmpty()) { SkString path(FLAGS_picture[0]); fCurrIndex = fSamples.count(); *fSamples.append() = new PictFileFactory(path); } if (!FLAGS_pathfinder.isEmpty()) { SkString path(FLAGS_pathfinder[0]); fCurrIndex = fSamples.count(); *fSamples.append() = new PathFinderFactory(path); } if (!FLAGS_svg.isEmpty()) { SkString path(FLAGS_svg[0]); fCurrIndex = fSamples.count(); *fSamples.append() = new SVGFileFactory(path); } if (!FLAGS_svgDir.isEmpty()) { SkOSFile::Iter iter(FLAGS_svgDir[0], "svg"); SkString filename; while (iter.next(&filename)) { *fSamples.append() = new SVGFileFactory( SkOSPath::Join(FLAGS_svgDir[0], filename.c_str())); } } #ifdef SAMPLE_PDF_FILE_VIEWER if (!FLAGS_pdfPath.isEmpty()) { SkOSFile::Iter iter(FLAGS_pdfPath[0], "pdf"); SkString filename; while (iter.next(&filename)) { *fSamples.append() = new PdfFileViewerFactory( SkOSPath::Join(FLAGS_pictureDir[0], filename.c_str())); } } #endif SkGMRegistyToSampleRegistry(); { const SkViewRegister* reg = SkViewRegister::Head(); while (reg) { *fSamples.append() = reg->factory(); reg = reg->next(); } } if (!FLAGS_sequence.isEmpty()) { // The sequence file just contains a list (separated by CRs) of the samples or GM:gms // you want to restrict to. Only these will appear when you cycle through. // If none are found, or the file is empty, then it will be ignored, and all samples // will be available. SkFILEStream stream(FLAGS_sequence[0]); if (stream.isValid()) { size_t len = stream.getLength(); SkAutoTMalloc storage(len + 1); char* buffer = storage.get(); stream.read(buffer, len); buffer[len] = 0; SkTArray titles; SkStrSplit(buffer, "\n\r", &titles); restrict_samples(fSamples, titles.begin(), titles.count()); } } if (FLAGS_sort) { // Sort samples, so foo.skp and foo.pdf are consecutive and we can quickly spot where // skp -> pdf -> png fails. SkTQSort(fSamples.begin(), fSamples.end() ? fSamples.end() - 1 : nullptr, compareSampleTitle); } if (!FLAGS_slide.isEmpty()) { fCurrIndex = findByTitle(FLAGS_slide[0]); if (fCurrIndex < 0) { fprintf(stderr, "Unknown sample \"%s\"\n", FLAGS_slide[0]); listTitles(); } } #if SK_SUPPORT_GPU fBackendOptions.fGrContextOptions.fGpuPathRenderers = CollectGpuPathRenderersFromFlags(); fBackendOptions.fMSAASampleCount = FLAGS_msaa; fBackendOptions.fDeepColor = FLAGS_deepColor; #endif fColorConfigIndex = 0; if (FLAGS_list) { listTitles(); } if (fCurrIndex < 0) { SkString title; if (readTitleFromPrefs(&title)) { fCurrIndex = findByTitle(title.c_str()); } } if (fCurrIndex < 0) { fCurrIndex = 0; } static SkTaskGroup::Enabler enabled(-1); gSampleWindow = this; fDeviceType = kRaster_DeviceType; #if SK_SUPPORT_GPU if (FLAGS_startgpu) { fDeviceType = kGPU_DeviceType; } #endif #if DEFAULT_TO_GPU fDeviceType = kGPU_DeviceType; #endif #if SK_ANGLE && DEFAULT_TO_ANGLE fDeviceType = kANGLE_DeviceType; #endif fUseClip = false; fUsePicture = false; fAnimating = false; fRotate = false; fPerspAnim = false; fRequestGrabImage = false; fTilingMode = kNo_Tiling; fMeasureFPS = false; fUseDeferredCanvas = false; fLCDState = SkOSMenu::kMixedState; fAAState = SkOSMenu::kMixedState; fSubpixelState = SkOSMenu::kMixedState; fHintingState = 0; fPixelGeometryIndex = 0; fFilterQualityIndex = 0; fFlipAxis = 0; fMouseX = fMouseY = 0; fFatBitsScale = 8; fTypeface = SkTypeface::MakeFromName("Courier", SkFontStyle(SkFontStyle::kBold_Weight, SkFontStyle::kNormal_Width, SkFontStyle::kUpright_Slant)); fShowZoomer = false; fZoomLevel = 0; fZoomScale = SK_Scalar1; fOffset = { 0, 0 }; fMagnify = false; fSaveToPdf = false; fSaveToSKP = false; gSkUseAnalyticAA = FLAGS_analyticAA; gSkUseDeltaAA = FLAGS_deltaAA; if (FLAGS_forceAnalyticAA) { gSkForceAnalyticAA = true; } if (FLAGS_forceDeltaAA) { gSkForceDeltaAA = true; } fTiles = FLAGS_backendTiles; fThreads = FLAGS_backendThreads; fMeasureMS = FLAGS_measureMS; if (FLAGS_measureMS > 0) { SkASSERT(fMeasureFPS == false); toggleFPS(); } if (true) { fPipeSerializer.setTypefaceSerializer(new SampleTFSerializer); fPipeDeserializer.setTypefaceDeserializer(new SampleTFDeserializer); } int sinkID = this->getSinkID(); fAppMenu = new SkOSMenu; fAppMenu->setTitle("Global Settings"); int itemID; itemID = fAppMenu->appendList("ColorType", "ColorType", sinkID, 0, gConfig[0].fName, gConfig[1].fName, gConfig[2].fName, gConfig[3].fName, gConfig[4].fName, nullptr); fAppMenu->assignKeyEquivalentToItem(itemID, 'C'); itemID = fAppMenu->appendList("Device Type", "Device Type", sinkID, 0, "Raster", "OpenGL", #if SK_ANGLE "ANGLE", #endif nullptr); fAppMenu->assignKeyEquivalentToItem(itemID, 'd'); itemID = fAppMenu->appendTriState("AA", "AA", sinkID, fAAState); fAppMenu->assignKeyEquivalentToItem(itemID, 'b'); itemID = fAppMenu->appendTriState("LCD", "LCD", sinkID, fLCDState); fAppMenu->assignKeyEquivalentToItem(itemID, 'l'); itemID = fAppMenu->appendList("FilterQuality", "FilterQuality", sinkID, fFilterQualityIndex, gFilterQualityStates[0].fName, gFilterQualityStates[1].fName, gFilterQualityStates[2].fName, gFilterQualityStates[3].fName, gFilterQualityStates[4].fName, nullptr); fAppMenu->assignKeyEquivalentToItem(itemID, 'n'); itemID = fAppMenu->appendTriState("Subpixel", "Subpixel", sinkID, fSubpixelState); fAppMenu->assignKeyEquivalentToItem(itemID, 's'); itemID = fAppMenu->appendList("Hinting", "Hinting", sinkID, fHintingState, gHintingStates[0].name, gHintingStates[1].name, gHintingStates[2].name, gHintingStates[3].name, gHintingStates[4].name, nullptr); fAppMenu->assignKeyEquivalentToItem(itemID, 'h'); itemID = fAppMenu->appendList("Pixel Geometry", "Pixel Geometry", sinkID, fPixelGeometryIndex, gPixelGeometryStates[0].name, gPixelGeometryStates[1].name, gPixelGeometryStates[2].name, gPixelGeometryStates[3].name, gPixelGeometryStates[4].name, gPixelGeometryStates[5].name, nullptr); fAppMenu->assignKeyEquivalentToItem(itemID, 'P'); itemID =fAppMenu->appendList("Tiling", "Tiling", sinkID, fTilingMode, gTilingInfo[kNo_Tiling].label, gTilingInfo[kAbs_128x128_Tiling].label, gTilingInfo[kAbs_256x256_Tiling].label, gTilingInfo[kRel_4x4_Tiling].label, gTilingInfo[kRel_1x16_Tiling].label, gTilingInfo[kRel_16x1_Tiling].label, nullptr); fAppMenu->assignKeyEquivalentToItem(itemID, 't'); itemID = fAppMenu->appendSwitch("Slide Show", "Slide Show" , sinkID, false); fAppMenu->assignKeyEquivalentToItem(itemID, 'a'); itemID = fAppMenu->appendSwitch("Clip", "Clip" , sinkID, fUseClip); fAppMenu->assignKeyEquivalentToItem(itemID, 'c'); itemID = fAppMenu->appendSwitch("Flip X", "Flip X" , sinkID, false); fAppMenu->assignKeyEquivalentToItem(itemID, 'x'); itemID = fAppMenu->appendSwitch("Flip Y", "Flip Y" , sinkID, false); fAppMenu->assignKeyEquivalentToItem(itemID, 'y'); itemID = fAppMenu->appendSwitch("Zoomer", "Zoomer" , sinkID, fShowZoomer); fAppMenu->assignKeyEquivalentToItem(itemID, 'z'); itemID = fAppMenu->appendSwitch("Magnify", "Magnify" , sinkID, fMagnify); fAppMenu->assignKeyEquivalentToItem(itemID, 'm'); itemID = fAppMenu->appendAction("Save to PDF", sinkID); fAppMenu->assignKeyEquivalentToItem(itemID, 'e'); this->addMenu(fAppMenu); fSlideMenu = new SkOSMenu; this->addMenu(fSlideMenu); this->setVisibleP(true); this->setClipToBounds(false); this->loadView((*fSamples[fCurrIndex])()); if (nullptr == devManager) { fDevManager = new DefaultDeviceManager(); } else { devManager->ref(); fDevManager = devManager; } fDevManager->setUpBackend(this, fBackendOptions); // If another constructor set our dimensions, ensure that our // onSizeChange gets called. if (this->height() && this->width()) { this->onSizeChange(); } // can't call this synchronously, since it may require a subclass to // to implement, or the caller may need us to have returned from the // constructor first. Hence we post an event to ourselves. // this->updateTitle(); post_event_to_sink(new SkEvent(gUpdateWindowTitleEvtName), this); gAnimTimer.run(); } SampleWindow::~SampleWindow() { if (fMeasureFPS) { SkDebugf("Average frame time of the last slide: %.4f ms\n", fCumulativeFPS_Time / (float)SkTMax(1, fCumulativeFPS_Count)); } SkSafeUnref(fDevManager); } int SampleWindow::findByTitle(const char title[]) { int i, count = fSamples.count(); for (i = 0; i < count; i++) { if (getSampleTitle(i).equals(title)) { return i; } } return -1; } void SampleWindow::listTitles() { int count = fSamples.count(); SkDebugf("All Slides:\n"); for (int i = 0; i < count; i++) { SkDebugf(" %s\n", getSampleTitle(i).c_str()); } } static SkBitmap capture_bitmap(SkCanvas* canvas) { SkBitmap bm; if (bm.tryAllocPixels(canvas->imageInfo())) { canvas->readPixels(bm, 0, 0); } return bm; } static void drawText(SkCanvas* canvas, SkString str, SkScalar left, SkScalar top, SkPaint& paint) { SkColor desiredColor = paint.getColor(); paint.setColor(SK_ColorWHITE); const char* c_str = str.c_str(); size_t size = str.size(); SkRect bounds; paint.measureText(c_str, size, &bounds); bounds.offset(left, top); SkScalar inset = SkIntToScalar(-2); bounds.inset(inset, inset); canvas->drawRect(bounds, paint); paint.setColor(desiredColor); canvas->drawText(c_str, size, left, top, paint); } #define XCLIP_N 8 #define YCLIP_N 8 #include "SkDeferredCanvas.h" #include "SkDumpCanvas.h" void SampleWindow::draw(SkCanvas* canvas) { std::unique_ptr tDev; std::unique_ptr tCanvas; if (fTiles > 0 && fDeviceType == kRaster_DeviceType) { // Temporary hack: let the device create/destroy the thread pool between each frame somehow // makes it faster when we draw the same path 100 times when fMeasureFPS is true. SkExecutor* executor = fMeasureFPS ? nullptr : fExecutor.get(); tDev.reset(new SkThreadedBMPDevice(this->getBitmap(), fTiles, fThreads, executor)); tCanvas.reset(new SkCanvas(tDev.get())); canvas = tCanvas.get(); } gAnimTimer.updateTime(); if (fGesture.isActive()) { this->updateMatrix(); } if (fMeasureFPS) { fMeasureFPS_Time = 0; } SkSize tile = this->tileSize(); if (kNo_Tiling == fTilingMode) { SkDebugfDumper dumper; SkDumpCanvas dump(&dumper); SkDeferredCanvas deferred(canvas, SkDeferredCanvas::kEager); SkCanvas* c = fUseDeferredCanvas ? &deferred : canvas; this->INHERITED::draw(c); // no looping or surfaces needed } else { const SkScalar w = SkScalarCeilToScalar(tile.width()); const SkScalar h = SkScalarCeilToScalar(tile.height()); SkImageInfo info = SkImageInfo::MakeN32Premul(SkScalarTruncToInt(w), SkScalarTruncToInt(h)); auto surface(canvas->makeSurface(info)); SkCanvas* tileCanvas = surface->getCanvas(); for (SkScalar y = 0; y < height(); y += h) { for (SkScalar x = 0; x < width(); x += w) { SkAutoCanvasRestore acr(tileCanvas, true); tileCanvas->translate(-x, -y); tileCanvas->clear(0); this->INHERITED::draw(tileCanvas); surface->draw(canvas, x, y, nullptr); } } // for drawing the borders between tiles SkPaint paint; paint.setColor(0x60FF00FF); paint.setStyle(SkPaint::kStroke_Style); for (SkScalar y = 0; y < height(); y += tile.height()) { for (SkScalar x = 0; x < width(); x += tile.width()) { canvas->drawRect(SkRect::MakeXYWH(x, y, tile.width(), tile.height()), paint); } } } if (fShowZoomer && !fSaveToPdf) { showZoomer(canvas); } if (fMagnify && !fSaveToPdf) { magnify(canvas); } if (fMeasureFPS && fMeasureFPS_Time) { this->updateTitle(); this->postInvalDelay(); } if (this->sendAnimatePulse() || FLAGS_redraw) { this->inval(nullptr); } canvas->flush(); // do this last fDevManager->publishCanvas(fDeviceType, canvas, this); } static float clipW = 200; static float clipH = 200; void SampleWindow::magnify(SkCanvas* canvas) { SkRect r; int count = canvas->save(); SkMatrix m = canvas->getTotalMatrix(); if (!m.invert(&m)) { return; } SkPoint offset, center; SkScalar mouseX = fMouseX * SK_Scalar1; SkScalar mouseY = fMouseY * SK_Scalar1; m.mapXY(mouseX - clipW/2, mouseY - clipH/2, &offset); m.mapXY(mouseX, mouseY, ¢er); r.set(0, 0, clipW * m.getScaleX(), clipH * m.getScaleX()); r.offset(offset.fX, offset.fY); SkPaint paint; paint.setColor(0xFF66AAEE); paint.setStyle(SkPaint::kStroke_Style); paint.setStrokeWidth(10.f * m.getScaleX()); //lense offset //canvas->translate(0, -250); canvas->drawRect(r, paint); canvas->clipRect(r); m = canvas->getTotalMatrix(); m.setTranslate(-center.fX, -center.fY); m.postScale(0.5f * fFatBitsScale, 0.5f * fFatBitsScale); m.postTranslate(center.fX, center.fY); canvas->concat(m); this->INHERITED::draw(canvas); canvas->restoreToCount(count); } static SkPaint& set_color_ref(SkPaint& paint, SkColor c) { paint.setColor(c); return paint; } static void show_lcd_box(SkCanvas* canvas, SkScalar x, SkScalar y, SkColor c, SkScalar sx, SkScalar sy) { const SkScalar w = (1 - 1/sx) / 3; SkPaint paint; SkRect r = SkRect::MakeXYWH(x, y, w, 1 - 1/sy); canvas->drawRect(r, set_color_ref(paint, SkColorSetRGB(SkColorGetR(c), 0, 0))); r.offset(w, 0); canvas->drawRect(r, set_color_ref(paint, SkColorSetRGB(0, SkColorGetG(c), 0))); r.offset(w, 0); canvas->drawRect(r, set_color_ref(paint, SkColorSetRGB(0, 0, SkColorGetB(c)))); } static void show_lcd_circle(SkCanvas* canvas, SkScalar x, SkScalar y, SkColor c, SkScalar, SkScalar) { const SkRect r = SkRect::MakeXYWH(x, y, 1, 1); const SkScalar cx = x + 0.5f; const SkScalar cy = y + 0.5f; SkPaint paint; paint.setAntiAlias(true); SkPath path; path.addArc(r, 0, 120); path.lineTo(cx, cy); canvas->drawPath(path, set_color_ref(paint, SkColorSetRGB(SkColorGetR(c), 0, 0))); path.reset(); path.addArc(r, 120, 120); path.lineTo(cx, cy); canvas->drawPath(path, set_color_ref(paint, SkColorSetRGB(0, SkColorGetG(c), 0))); path.reset(); path.addArc(r, 240, 120); path.lineTo(cx, cy); canvas->drawPath(path, set_color_ref(paint, SkColorSetRGB(0, 0, SkColorGetB(c)))); } typedef void (*ShowLCDProc)(SkCanvas*, SkScalar, SkScalar, SkColor, SkScalar, SkScalar); /* * Like drawBitmapRect but we manually draw each pixels in RGB */ static void show_lcd_grid(SkCanvas* canvas, const SkBitmap& bitmap, const SkIRect& origSrc, const SkRect& dst, ShowLCDProc proc) { SkIRect src; if (!src.intersect(origSrc, bitmap.bounds())) { return; } const SkScalar sx = dst.width() / src.width(); const SkScalar sy = dst.height() / src.height(); SkAutoCanvasRestore acr(canvas, true); canvas->translate(dst.left(), dst.top()); canvas->scale(sx, sy); for (int y = 0; y < src.height(); ++y) { for (int x = 0; x < src.width(); ++x) { proc(canvas, SkIntToScalar(x), SkIntToScalar(y), bitmap.getColor(src.left() + x, src.top() + y), sx, sy); } } } void SampleWindow::showZoomer(SkCanvas* canvas) { int count = canvas->save(); canvas->resetMatrix(); // Ensure the mouse position is on screen. int width = SkScalarRoundToInt(this->width()); int height = SkScalarRoundToInt(this->height()); if (fMouseX >= width) fMouseX = width - 1; else if (fMouseX < 0) fMouseX = 0; if (fMouseY >= height) fMouseY = height - 1; else if (fMouseY < 0) fMouseY = 0; SkBitmap bitmap = capture_bitmap(canvas); // Find the size of the zoomed in view, forced to be odd, so the examined pixel is in the middle. int zoomedWidth = (width >> 1) | 1; int zoomedHeight = (height >> 1) | 1; SkIRect src; src.set(0, 0, zoomedWidth / fFatBitsScale, zoomedHeight / fFatBitsScale); src.offset(fMouseX - (src.width()>>1), fMouseY - (src.height()>>1)); SkRect dest; dest.set(0, 0, SkIntToScalar(zoomedWidth), SkIntToScalar(zoomedHeight)); dest.offset(SkIntToScalar(width - zoomedWidth), SkIntToScalar(height - zoomedHeight)); SkPaint paint; // Clear the background behind our zoomed in view paint.setColor(SK_ColorWHITE); canvas->drawRect(dest, paint); switch (fFatBitsScale) { case kMaxFatBitsScale: show_lcd_grid(canvas, bitmap, src, dest, show_lcd_box); break; case kMaxFatBitsScale - 1: show_lcd_grid(canvas, bitmap, src, dest, show_lcd_circle); break; default: canvas->drawBitmapRect(bitmap, src, dest, nullptr); break; } paint.setColor(SK_ColorBLACK); paint.setStyle(SkPaint::kStroke_Style); // Draw a border around the pixel in the middle SkRect originalPixel; originalPixel.set(SkIntToScalar(fMouseX), SkIntToScalar(fMouseY), SkIntToScalar(fMouseX + 1), SkIntToScalar(fMouseY + 1)); SkMatrix matrix; SkRect scalarSrc; scalarSrc.set(src); SkColor color = bitmap.getColor(fMouseX, fMouseY); if (matrix.setRectToRect(scalarSrc, dest, SkMatrix::kFill_ScaleToFit)) { SkRect pixel; matrix.mapRect(&pixel, originalPixel); // TODO Perhaps measure the values and make the outline white if it's "dark" if (color == SK_ColorBLACK) { paint.setColor(SK_ColorWHITE); } canvas->drawRect(pixel, paint); } paint.setColor(SK_ColorBLACK); // Draw a border around the destination rectangle canvas->drawRect(dest, paint); paint.setStyle(SkPaint::kStrokeAndFill_Style); // Identify the pixel and its color on screen paint.setTypeface(fTypeface); paint.setAntiAlias(true); paint.setTextSize(18); SkScalar lineHeight = paint.getFontMetrics(nullptr); SkString string; string.appendf("(%i, %i)", fMouseX, fMouseY); SkScalar left = dest.fLeft + SkIntToScalar(3); SkScalar i = SK_Scalar1; drawText(canvas, string, left, lineHeight * i + dest.fTop, paint); // Alpha i += SK_Scalar1; string.reset(); string.appendf("A: %X", SkColorGetA(color)); drawText(canvas, string, left, lineHeight * i + dest.fTop, paint); // Red i += SK_Scalar1; string.reset(); string.appendf("R: %X", SkColorGetR(color)); paint.setColor(SK_ColorRED); drawText(canvas, string, left, lineHeight * i + dest.fTop, paint); // Green i += SK_Scalar1; string.reset(); string.appendf("G: %X", SkColorGetG(color)); paint.setColor(0xFF008800); drawText(canvas, string, left, lineHeight * i + dest.fTop, paint); // Blue i += SK_Scalar1; string.reset(); string.appendf("B: %X", SkColorGetB(color)); paint.setColor(SK_ColorBLUE); drawText(canvas, string, left, lineHeight * i + dest.fTop, paint); canvas->restoreToCount(count); } void SampleWindow::onDraw(SkCanvas* canvas) { } #include "SkColorPriv.h" void SampleWindow::saveToPdf() { fSaveToPdf = true; this->inval(nullptr); } SkCanvas* SampleWindow::beforeChildren(SkCanvas* canvas) { if (fSaveToPdf) { SkString name; if (!this->getRawTitle(&name)) { name.set("unknown_sample"); } name.append(".pdf"); #ifdef SK_BUILD_FOR_ANDROID name.prepend("/sdcard/"); #endif fPDFDocument = SkDocument::MakePDF(name.c_str()); canvas = fPDFDocument->beginPage(this->width(), this->height()); } else if (fSaveToSKP) { canvas = fRecorder.beginRecording(9999, 9999, nullptr, 0); } else if (fUsePicture) { if (PICTURE_MEANS_PIPE) { fPipeStream.reset(new SkDynamicMemoryWStream); canvas = fPipeSerializer.beginWrite(SkRect::MakeWH(this->width(), this->height()), fPipeStream.get()); } else { canvas = fRecorder.beginRecording(9999, 9999, nullptr, 0); } } else { canvas = this->INHERITED::beforeChildren(canvas); } if (fUseClip) { canvas->drawColor(0xFFFF88FF); canvas->clipPath(fClipPath, kIntersect_SkClipOp, true); } // Install a flags filter proxy canvas if needed if (fLCDState != SkOSMenu::kMixedState || fAAState != SkOSMenu::kMixedState || fSubpixelState != SkOSMenu::kMixedState || fHintingState > 0 || fFilterQualityIndex > 0) { canvas = new FlagsFilterCanvas(canvas, fLCDState, fAAState, fSubpixelState, fHintingState, fFilterQualityIndex); fFlagsFilterCanvas.reset(canvas); } return canvas; } #include "SkMultiPictureDraw.h" void SampleWindow::afterChildren(SkCanvas* orig) { fFlagsFilterCanvas.reset(nullptr); if (fSaveToPdf) { fSaveToPdf = false; fPDFDocument->endPage(); fPDFDocument.reset(nullptr); // We took over the draw calls in order to create the PDF, so we need // to redraw. this->inval(nullptr); return; } if (fRequestGrabImage) { fRequestGrabImage = false; SkBitmap bmp = capture_bitmap(orig); if (!bmp.isNull()) { static int gSampleGrabCounter; SkString name; name.printf("sample_grab_%d.png", gSampleGrabCounter++); sk_tool_utils::EncodeImageToFile(name.c_str(), bmp, SkEncodedImageFormat::kPNG, 100); } this->inval(nullptr); return; } if (fSaveToSKP) { sk_sp picture(fRecorder.finishRecordingAsPicture()); SkFILEWStream stream("sample_app.skp"); picture->serialize(&stream); fSaveToSKP = false; this->inval(nullptr); return; } if (fUsePicture) { if (PICTURE_MEANS_PIPE) { fPipeSerializer.endWrite(); sk_sp data(fPipeStream->detachAsData()); fPipeDeserializer.playback(data->data(), data->size(), orig); fPipeStream.reset(); } else { sk_sp picture(fRecorder.finishRecordingAsPicture()); if (SERIALIZE_PICTURE) { auto data = picture->serialize(); picture = SkPicture::MakeFromData(data.get(), nullptr); } orig->drawPicture(picture.get()); } } // Do this after presentGL and other finishing, rather than in afterChild if (fMeasureFPS) { orig->flush(); fTimer.end(); fMeasureFPS_Time += fTimer.fWall; fCumulativeFPS_Time += fTimer.fWall; fCumulativeFPS_Count += FPS_REPEAT_COUNT; } } void SampleWindow::beforeChild(SkView* child, SkCanvas* canvas) { if (fRotate) { SkScalar cx = this->width() / 2; SkScalar cy = this->height() / 2; canvas->rotate(gAnimTimer.scaled(10), cx, cy); } if (fPerspAnim) { SkScalar secs = gAnimTimer.scaled(1); static const SkScalar gAnimPeriod = 10 * SK_Scalar1; static const SkScalar gAnimMag = SK_Scalar1 / 1000; SkScalar t = SkScalarMod(secs, gAnimPeriod); if (SkScalarFloorToInt(secs / gAnimPeriod) & 0x1) { t = gAnimPeriod - t; } t = 2 * t - gAnimPeriod; t *= gAnimMag / gAnimPeriod; SkMatrix m; m.reset(); #if 1 m.setPerspY(t); #else m.setPerspY(SK_Scalar1 / 1000); m.setSkewX(8.0f / 25); m.dump(); #endif canvas->concat(m); } if (fMeasureFPS) { (void)SampleView::SetRepeatDraw(child, FPS_REPEAT_COUNT); fTimer.start(); } else { (void)SampleView::SetRepeatDraw(child, 1); } if (fPerspAnim || fRotate) { this->inval(nullptr); } } void SampleWindow::changeOffset(SkVector delta) { fOffset += delta; this->updateMatrix(); } void SampleWindow::changeZoomLevel(float delta) { fZoomLevel += delta; if (fZoomLevel > 0) { fZoomLevel = SkMinScalar(fZoomLevel, MAX_ZOOM_LEVEL); fZoomScale = fZoomLevel + SK_Scalar1; } else if (fZoomLevel < 0) { fZoomLevel = SkMaxScalar(fZoomLevel, MIN_ZOOM_LEVEL); fZoomScale = SK_Scalar1 / (SK_Scalar1 - fZoomLevel); } else { fZoomScale = SK_Scalar1; } this->updateMatrix(); } void SampleWindow::updateMatrix(){ SkMatrix m; m.reset(); if (fZoomLevel) { SkPoint center; //m = this->getLocalMatrix();//.invert(&m); m.mapXY(fZoomCenterX, fZoomCenterY, ¢er); SkScalar cx = center.fX; SkScalar cy = center.fY; m.setTranslate(-cx, -cy); m.postScale(fZoomScale, fZoomScale); m.postTranslate(cx, cy); } m.postTranslate(fOffset.fX, fOffset.fY); if (fFlipAxis) { m.preTranslate(fZoomCenterX, fZoomCenterY); if (fFlipAxis & kFlipAxis_X) { m.preScale(-SK_Scalar1, SK_Scalar1); } if (fFlipAxis & kFlipAxis_Y) { m.preScale(SK_Scalar1, -SK_Scalar1); } m.preTranslate(-fZoomCenterX, -fZoomCenterY); //canvas->concat(m); } // Apply any gesture matrix m.preConcat(fGesture.localM()); m.preConcat(fGesture.globalM()); this->setLocalMatrix(m); this->updateTitle(); this->inval(nullptr); } bool SampleWindow::previousSample() { this->resetFPS(); fCurrIndex = (fCurrIndex - 1 + fSamples.count()) % fSamples.count(); this->loadView((*fSamples[fCurrIndex])()); return true; } #include "SkResourceCache.h" #include "SkGlyphCache.h" bool SampleWindow::nextSample() { this->resetFPS(); fCurrIndex = (fCurrIndex + 1) % fSamples.count(); this->loadView((*fSamples[fCurrIndex])()); if (false) { SkResourceCache::TestDumpMemoryStatistics(); SkGlyphCache::Dump(); SkDebugf("\n"); } return true; } bool SampleWindow::goToSample(int i) { this->resetFPS(); fCurrIndex = (i) % fSamples.count(); this->loadView((*fSamples[fCurrIndex])()); return true; } SkString SampleWindow::getSampleTitle(int i) { return ::getSampleTitle(fSamples[i]); } int SampleWindow::sampleCount() { return fSamples.count(); } void SampleWindow::showOverview() { this->loadView(create_overview(fSamples.count(), fSamples.begin())); } void SampleWindow::postAnimatingEvent() { if (fAnimating) { (new SkEvent(ANIMATING_EVENTTYPE, this->getSinkID()))->postDelay(ANIMATING_DELAY); } } static sk_sp getMonitorColorSpace() { #if defined(SK_BUILD_FOR_MAC) CGColorSpaceRef cs = CGDisplayCopyColorSpace(CGMainDisplayID()); CFDataRef dataRef = CGColorSpaceCopyICCProfile(cs); const uint8_t* data = CFDataGetBytePtr(dataRef); size_t size = CFDataGetLength(dataRef); sk_sp colorSpace = SkColorSpace::MakeICC(data, size); CFRelease(cs); CFRelease(dataRef); return colorSpace; #elif defined(SK_BUILD_FOR_WIN) DISPLAY_DEVICE dd = { sizeof(DISPLAY_DEVICE) }; // Chrome's code for this currently just gets the primary monitor's profile. This code iterates // over all attached monitors, so it's "better" in that sense. Making intelligent use of this // information (via things like MonitorFromWindow or MonitorFromRect to pick the correct // profile for a particular window or region of a window), is an exercise left to the reader. for (int i = 0; EnumDisplayDevices(NULL, i, &dd, 0); ++i) { if (dd.StateFlags & DISPLAY_DEVICE_ATTACHED_TO_DESKTOP) { // There are other helpful things in dd at this point: // dd.DeviceString has a longer name for the adapter // dd.StateFlags indicates primary display, mirroring, etc... HDC dc = CreateDC(NULL, dd.DeviceName, NULL, NULL); if (dc) { char icmPath[MAX_PATH + 1]; DWORD pathLength = MAX_PATH; BOOL success = GetICMProfileA(dc, &pathLength, icmPath); DeleteDC(dc); if (success) { sk_sp iccData = SkData::MakeFromFileName(icmPath); return SkColorSpace::MakeICC(iccData->data(), iccData->size()); } } } } return nullptr; #else return nullptr; #endif } bool SampleWindow::onEvent(const SkEvent& evt) { if (evt.isType(gUpdateWindowTitleEvtName)) { this->updateTitle(); return true; } if (evt.isType(ANIMATING_EVENTTYPE)) { if (fAnimating) { this->nextSample(); this->postAnimatingEvent(); } return true; } if (evt.isType("set-curr-index")) { this->goToSample(evt.getFast32()); return true; } if (isInvalEvent(evt)) { this->inval(nullptr); return true; } int selected = -1; if (SkOSMenu::FindListIndex(evt, "Device Type", &selected)) { this->setDeviceType((DeviceType)selected); return true; } if (SkOSMenu::FindListIndex(evt, "ColorType", &selected)) { fColorConfigIndex = selected; sk_sp colorSpace = nullptr; switch (gConfig[selected].fColorSpace) { case kSRGB_OutputColorSpace: colorSpace = SkColorSpace::MakeSRGB(); break; case kNarrow_OutputColorSpace: { // NarrowGamut RGB (an artifically smaller than sRGB gamut) SkColorSpacePrimaries primaries ={ 0.54f, 0.33f, // Rx, Ry 0.33f, 0.50f, // Gx, Gy 0.25f, 0.20f, // Bx, By 0.3127f, 0.3290f, // Wx, Wy }; SkMatrix44 narrowGamutRGBMatrix(SkMatrix44::kUninitialized_Constructor); primaries.toXYZD50(&narrowGamutRGBMatrix); colorSpace = SkColorSpace::MakeRGB(SkColorSpace::kSRGB_RenderTargetGamma, narrowGamutRGBMatrix); } break; case kMonitor_OutputColorSpace: colorSpace = getMonitorColorSpace(); if (!colorSpace) { // Fallback for platforms / machines where we can't get a monitor profile colorSpace = SkColorSpace::MakeSRGB(); } break; case kLegacy_OutputColorSpace: default: // Do nothing break; } if (kRGBA_F16_SkColorType == gConfig[selected].fColorType) { SkASSERT(colorSpace); SkASSERT(SkColorSpace_Base::Type::kXYZ == as_CSB(colorSpace)->type()); SkColorSpace_XYZ* csXYZ = static_cast(colorSpace.get()); colorSpace = csXYZ->makeLinearGamma(); } this->setDeviceColorType(gConfig[selected].fColorType, colorSpace); return true; } if (SkOSMenu::FindSwitchState(evt, "Slide Show", nullptr)) { this->toggleSlideshow(); return true; } if (SkOSMenu::FindTriState(evt, "AA", &fAAState) || SkOSMenu::FindTriState(evt, "LCD", &fLCDState) || SkOSMenu::FindListIndex(evt, "FilterQuality", &fFilterQualityIndex) || SkOSMenu::FindTriState(evt, "Subpixel", &fSubpixelState) || SkOSMenu::FindListIndex(evt, "Hinting", &fHintingState) || SkOSMenu::FindSwitchState(evt, "Clip", &fUseClip) || SkOSMenu::FindSwitchState(evt, "Zoomer", &fShowZoomer) || SkOSMenu::FindSwitchState(evt, "Magnify", &fMagnify)) { this->inval(nullptr); this->updateTitle(); return true; } if (SkOSMenu::FindListIndex(evt, "Pixel Geometry", &fPixelGeometryIndex)) { this->setPixelGeometry(fPixelGeometryIndex); return true; } if (SkOSMenu::FindListIndex(evt, "Tiling", &fTilingMode)) { if (SampleView::IsSampleView(curr_view(this))) { ((SampleView*)curr_view(this))->onTileSizeChanged(this->tileSize()); } this->inval(nullptr); this->updateTitle(); return true; } if (SkOSMenu::FindSwitchState(evt, "Flip X", nullptr)) { fFlipAxis ^= kFlipAxis_X; this->updateMatrix(); return true; } if (SkOSMenu::FindSwitchState(evt, "Flip Y", nullptr)) { fFlipAxis ^= kFlipAxis_Y; this->updateMatrix(); return true; } if (SkOSMenu::FindAction(evt,"Save to PDF")) { this->saveToPdf(); return true; } return this->INHERITED::onEvent(evt); } bool SampleWindow::onQuery(SkEvent* query) { if (query->isType("get-slide-count")) { query->setFast32(fSamples.count()); return true; } if (query->isType("get-slide-title")) { SkView* view = (*fSamples[query->getFast32()])(); SkEvent evt(gTitleEvtName); if (view->doQuery(&evt)) { query->setString("title", evt.findString(gTitleEvtName)); } SkSafeUnref(view); return true; } if (query->isType("use-fast-text")) { SkEvent evt(gFastTextEvtName); return curr_view(this)->doQuery(&evt); } if (query->isType("ignore-window-bitmap")) { query->setFast32(this->getGrContext() != nullptr); return true; } return this->INHERITED::onQuery(query); } DECLARE_bool(portableFonts); bool SampleWindow::onHandleChar(SkUnichar uni) { { SkView* view = curr_view(this); if (view) { SkEvent evt(gCharEvtName); evt.setFast32(uni); if (view->doQuery(&evt)) { return true; } } } int dx = 0xFF; int dy = 0xFF; switch (uni) { case '5': dx = 0; dy = 0; break; case '8': dx = 0; dy = -1; break; case '6': dx = 1; dy = 0; break; case '2': dx = 0; dy = 1; break; case '4': dx = -1; dy = 0; break; case '7': dx = -1; dy = -1; break; case '9': dx = 1; dy = -1; break; case '3': dx = 1; dy = 1; break; case '1': dx = -1; dy = 1; break; default: break; } if (0xFF != dx && 0xFF != dy) { this->changeOffset({SkIntToScalar(dx / 32.0f), SkIntToScalar(dy / 32.0f)}); return true; } switch (uni) { case 27: // ESC gAnimTimer.stop(); if (this->sendAnimatePulse()) { this->inval(nullptr); } break; case '+': gSampleWindow->setTiles(gSampleWindow->getTiles() + 1); this->inval(nullptr); this->updateTitle(); break; case '-': gSampleWindow->setTiles(SkTMax(0, gSampleWindow->getTiles() - 1)); this->inval(nullptr); this->updateTitle(); break; case '>': gSampleWindow->setThreads(gSampleWindow->getThreads() + 1); this->inval(nullptr); this->updateTitle(); break; case '<': gSampleWindow->setThreads(SkTMax(0, gSampleWindow->getThreads() - 1)); this->inval(nullptr); this->updateTitle(); break; case ' ': gAnimTimer.togglePauseResume(); if (this->sendAnimatePulse()) { this->inval(nullptr); } break; case '0': this->resetFPS(); break; case 'A': if (!gSkUseAnalyticAA) { gSkUseAnalyticAA = true; } else if (!gSkForceAnalyticAA && !gSkUseDeltaAA) { gSkForceAnalyticAA = true; } else if (!gSkUseDeltaAA) { gSkForceAnalyticAA = false; gSkUseDeltaAA = true; } else if (!gSkForceDeltaAA) { gSkForceDeltaAA = true; } else { gSkUseAnalyticAA = gSkForceAnalyticAA = gSkUseDeltaAA = gSkForceDeltaAA = false; } this->inval(nullptr); this->updateTitle(); break; case 'B': post_event_to_sink(new SkEvent("PictFileView::toggleBBox"), curr_view(this)); // Cannot call updateTitle() synchronously, because the toggleBBox event is still in // the queue. post_event_to_sink(new SkEvent(gUpdateWindowTitleEvtName), this); this->inval(nullptr); break; case 'D': toggleDistanceFieldFonts(); break; case 'E': fUseDeferredCanvas = !fUseDeferredCanvas; this->inval(nullptr); break; case 'f': // only toggleFPS(); break; case 'F': FLAGS_portableFonts ^= true; this->inval(nullptr); break; case 'g': fRequestGrabImage = true; this->inval(nullptr); break; case 'G': gShowGMBounds = !gShowGMBounds; post_event_to_sink(GMSampleView::NewShowSizeEvt(gShowGMBounds), curr_view(this)); this->inval(nullptr); break; case 'i': this->zoomIn(); break; case 'o': this->zoomOut(); break; case 'r': fRotate = !fRotate; this->inval(nullptr); this->updateTitle(); return true; case 'R': gSkForceRasterPipelineBlitter = !gSkForceRasterPipelineBlitter; this->inval(nullptr); this->updateTitle(); break; case 'k': fPerspAnim = !fPerspAnim; this->inval(nullptr); this->updateTitle(); return true; case 'K': fSaveToSKP = true; this->inval(nullptr); return true; case 'M': fUsePicture = !fUsePicture; this->inval(nullptr); this->updateTitle(); return true; #if SK_SUPPORT_GPU case 'p': { GrContext* grContext = this->getGrContext(); if (grContext) { size_t cacheBytes; grContext->getResourceCacheUsage(nullptr, &cacheBytes); grContext->freeGpuResources(); SkDebugf("Purged %d bytes from the GPU resource cache.\n", cacheBytes); } } return true; #endif default: break; } if (fAppMenu->handleKeyEquivalent(uni)|| fSlideMenu->handleKeyEquivalent(uni)) { this->onUpdateMenu(fAppMenu); this->onUpdateMenu(fSlideMenu); return true; } return this->INHERITED::onHandleChar(uni); } void SampleWindow::setDeviceType(DeviceType type) { if (type == fDeviceType) return; fDevManager->tearDownBackend(this); fDeviceType = type; fDevManager->setUpBackend(this, fBackendOptions); this->updateTitle(); this->inval(nullptr); } void SampleWindow::setDeviceColorType(SkColorType ct, sk_sp cs) { this->setColorType(ct, std::move(cs)); fDevManager->tearDownBackend(this); fDevManager->setUpBackend(this, fBackendOptions); this->updateTitle(); this->inval(nullptr); } void SampleWindow::toggleSlideshow() { fAnimating = !fAnimating; this->postAnimatingEvent(); this->updateTitle(); } void SampleWindow::toggleRendering() { this->setDeviceType(cycle_devicetype(fDeviceType)); this->updateTitle(); this->inval(nullptr); } void SampleWindow::toggleFPS() { fMeasureFPS = !fMeasureFPS; this->updateTitle(); this->inval(nullptr); } void SampleWindow::resetFPS() { fCumulativeFPS_Time = 0; fCumulativeFPS_Count = 0; } void SampleWindow::toggleDistanceFieldFonts() { SkSurfaceProps props = this->getSurfaceProps(); uint32_t flags = props.flags() ^ SkSurfaceProps::kUseDeviceIndependentFonts_Flag; this->setSurfaceProps(SkSurfaceProps(flags, props.pixelGeometry())); // reset backend fDevManager->tearDownBackend(this); fDevManager->setUpBackend(this, fBackendOptions); this->updateTitle(); this->inval(nullptr); } void SampleWindow::setPixelGeometry(int pixelGeometryIndex) { const SkSurfaceProps& oldProps = this->getSurfaceProps(); SkSurfaceProps newProps(oldProps.flags(), SkSurfaceProps::kLegacyFontHost_InitType); if (pixelGeometryIndex > 0) { newProps = SkSurfaceProps(oldProps.flags(), gPixelGeometryStates[pixelGeometryIndex].pixelGeometry); } this->setSurfaceProps(newProps); // reset backend fDevManager->tearDownBackend(this); fDevManager->setUpBackend(this, fBackendOptions); this->updateTitle(); this->inval(nullptr); } #include "SkDumpCanvas.h" bool SampleWindow::onHandleKey(SkKey key) { { SkView* view = curr_view(this); if (view) { SkEvent evt(gKeyEvtName); evt.setFast32(key); if (view->doQuery(&evt)) { return true; } } } int dx = 0xFF; int dy = 0xFF; switch (key) { case kRight_SkKey: if (this->nextSample()) { return true; } break; case kLeft_SkKey: if (this->previousSample()) { return true; } return true; case kUp_SkKey: this->changeZoomLevel(1.f / 32.f); return true; case kDown_SkKey: this->changeZoomLevel(-1.f / 32.f); return true; case kOK_SkKey: { SkString title; if (curr_title(this, &title)) { writeTitleToPrefs(title.c_str()); } return true; } case kBack_SkKey: this->showOverview(); return true; case k5_SkKey: dx = 0; dy = 0; break; case k8_SkKey: dx = 0; dy = -1; break; case k6_SkKey: dx = 1; dy = 0; break; case k2_SkKey: dx = 0; dy = 1; break; case k4_SkKey: dx = -1; dy = 0; break; case k7_SkKey: dx = -1; dy = -1; break; case k9_SkKey: dx = 1; dy = -1; break; case k3_SkKey: dx = 1; dy = 1; break; case k1_SkKey: dx = -1; dy = 1; break; default: break; } if (0xFF != dx && 0xFF != dy) { this->changeOffset({SkIntToScalar(dx / 32.0f), SkIntToScalar(dy / 32.0f)}); return true; } return this->INHERITED::onHandleKey(key); } /////////////////////////////////////////////////////////////////////////////// static const char gGestureClickType[] = "GestureClickType"; bool SampleWindow::onDispatchClick(int x, int y, Click::State state, void* owner, unsigned modi) { if (Click::kMoved_State == state) { updatePointer(x, y); } int w = SkScalarRoundToInt(this->width()); int h = SkScalarRoundToInt(this->height()); // check for the resize-box if (w - x < 16 && h - y < 16) { return false; // let the OS handle the click } else if (fMagnify) { //it's only necessary to update the drawing if there's a click this->inval(nullptr); return false; //prevent dragging while magnify is enabled } else { // capture control+option, and trigger debugger if ((modi & kControl_SkModifierKey) && (modi & kOption_SkModifierKey)) { if (Click::kDown_State == state) { SkEvent evt("debug-hit-test"); evt.setS32("debug-hit-test-x", x); evt.setS32("debug-hit-test-y", y); curr_view(this)->doEvent(evt); } return true; } else { return this->INHERITED::onDispatchClick(x, y, state, owner, modi); } } } class GestureClick : public SkView::Click { public: GestureClick(SkView* target) : SkView::Click(target) { this->setType(gGestureClickType); } static bool IsGesture(Click* click) { return click->isType(gGestureClickType); } }; SkView::Click* SampleWindow::onFindClickHandler(SkScalar x, SkScalar y, unsigned modi) { return new GestureClick(this); } bool SampleWindow::onClick(Click* click) { if (GestureClick::IsGesture(click)) { float x = static_cast(click->fICurr.fX); float y = static_cast(click->fICurr.fY); switch (click->fState) { case SkView::Click::kDown_State: fGesture.touchBegin(click->fOwner, x, y); break; case SkView::Click::kMoved_State: fGesture.touchMoved(click->fOwner, x, y); this->updateMatrix(); break; case SkView::Click::kUp_State: fGesture.touchEnd(click->fOwner); this->updateMatrix(); break; } return true; } return false; } /////////////////////////////////////////////////////////////////////////////// void SampleWindow::loadView(SkView* view) { SkView::F2BIter iter(this); SkView* prev = iter.next(); if (prev) { prev->detachFromParent(); } view->setVisibleP(true); view->setClipToBounds(false); this->attachChildToFront(view)->unref(); view->setSize(this->width(), this->height()); //repopulate the slide menu when a view is loaded fSlideMenu->reset(); this->onUpdateMenu(fSlideMenu); this->updateTitle(); } static const char* gDeviceTypePrefix[] = { "raster: ", #if SK_SUPPORT_GPU "opengl: ", #if SK_ANGLE "angle: ", #endif // SK_ANGLE #endif // SK_SUPPORT_GPU }; static_assert(SK_ARRAY_COUNT(gDeviceTypePrefix) == SampleWindow::kDeviceTypeCnt, "array_size_mismatch"); static const char* trystate_str(SkOSMenu::TriState state, const char trueStr[], const char falseStr[]) { if (SkOSMenu::kOnState == state) { return trueStr; } else if (SkOSMenu::kOffState == state) { return falseStr; } return nullptr; } bool SampleWindow::getRawTitle(SkString* title) { return curr_title(this, title); } void SampleWindow::updateTitle() { if (fMeasureMS > 0 && (int)gAnimTimer.msec() > fMeasureMS) { this->closeWindow(); } SkString title; if (!this->getRawTitle(&title)) { title.set(""); } title.prepend(gDeviceTypePrefix[fDeviceType]); if (gSampleWindow->getTiles()) { title.prependf("[T%d/%d] ", gSampleWindow->getTiles(), gSampleWindow->getThreads()); } if (gSkUseDeltaAA) { if (gSkForceDeltaAA) { title.prepend(" "); } else { title.prepend(" "); } } else if (gSkUseAnalyticAA) { if (gSkForceAnalyticAA) { title.prepend(" "); } else { title.prepend(" "); } } if (fTilingMode != kNo_Tiling) { title.prependf(" ", gTilingInfo[fTilingMode].label); } if (fAnimating) { title.prepend(" "); } if (fRotate) { title.prepend(" "); } if (fPerspAnim) { title.prepend(" "); } if (this->getSurfaceProps().flags() & SkSurfaceProps::kUseDeviceIndependentFonts_Flag) { title.prepend(" "); } if (fUsePicture) { title.prepend("

"); } if (fUseDeferredCanvas) { title.prepend(" "); } if (gSkForceRasterPipelineBlitter) { title.prepend(" "); } title.prepend(trystate_str(fLCDState, "LCD ", "lcd ")); title.prepend(trystate_str(fAAState, "AA ", "aa ")); title.prepend(gFilterQualityStates[fFilterQualityIndex].fLabel); title.prepend(trystate_str(fSubpixelState, "S ", "s ")); title.prepend(fFlipAxis & kFlipAxis_X ? "X " : nullptr); title.prepend(fFlipAxis & kFlipAxis_Y ? "Y " : nullptr); title.prepend(gHintingStates[fHintingState].label); title.prepend(gPixelGeometryStates[fPixelGeometryIndex].label); if (fOffset.fX || fOffset.fY) { title.prependf("(%.2f, %.2f) ", SkScalarToFloat(fOffset.fX), SkScalarToFloat(fOffset.fY)); } if (fZoomLevel) { title.prependf("{%.2f} ", SkScalarToFloat(fZoomLevel)); } if (fMeasureFPS) { title.appendf(" %8.4f ms", fMeasureFPS_Time / (float)FPS_REPEAT_COUNT); title.appendf(" -> %4.4f ms", fCumulativeFPS_Time / (float)SkTMax(1, fCumulativeFPS_Count)); } #if SK_SUPPORT_GPU if (IsGpuDeviceType(fDeviceType) && fDevManager && fDevManager->numColorSamples() > 0) { title.appendf(" [MSAA: %d]", fDevManager->numColorSamples()); } #endif title.appendf(" %s", gConfig[fColorConfigIndex].fName); if (fDevManager && fDevManager->getColorBits() > 24) { title.appendf(" %d bpc", fDevManager->getColorBits()); } this->setTitle(title.c_str()); } void SampleWindow::onSizeChange() { this->INHERITED::onSizeChange(); SkView::F2BIter iter(this); SkView* view = iter.next(); view->setSize(this->width(), this->height()); // rebuild our clippath { const SkScalar W = this->width(); const SkScalar H = this->height(); fClipPath.reset(); #if 0 for (SkScalar y = SK_Scalar1; y < H; y += SkIntToScalar(32)) { SkRect r; r.set(SK_Scalar1, y, SkIntToScalar(30), y + SkIntToScalar(30)); for (; r.fLeft < W; r.offset(SkIntToScalar(32), 0)) fClipPath.addRect(r); } #else SkRect r; r.set(0, 0, W, H); fClipPath.addRect(r, SkPath::kCCW_Direction); r.set(W/4, H/4, W*3/4, H*3/4); fClipPath.addRect(r, SkPath::kCW_Direction); #endif } fZoomCenterX = SkScalarHalf(this->width()); fZoomCenterY = SkScalarHalf(this->height()); #ifdef SK_BUILD_FOR_ANDROID // FIXME: The first draw after a size change does not work on Android, so // we post an invalidate. this->postInvalDelay(); #endif this->updateTitle(); // to refresh our config fDevManager->windowSizeChanged(this); if (fTilingMode != kNo_Tiling && SampleView::IsSampleView(view)) { ((SampleView*)view)->onTileSizeChanged(this->tileSize()); } } /////////////////////////////////////////////////////////////////////////////// template void SkTBSort(T array[], int count) { for (int i = 1; i < count - 1; i++) { bool didSwap = false; for (int j = count - 1; j > i; --j) { if (array[j] < array[j-1]) { T tmp(array[j-1]); array[j-1] = array[j]; array[j] = tmp; didSwap = true; } } if (!didSwap) { break; } } for (int k = 0; k < count - 1; k++) { SkASSERT(!(array[k+1] < array[k])); } } #include "SkRandom.h" static void rand_rect(SkIRect* rect, SkRandom& rand) { int bits = 8; int shift = 32 - bits; rect->set(rand.nextU() >> shift, rand.nextU() >> shift, rand.nextU() >> shift, rand.nextU() >> shift); rect->sort(); } static void dumpRect(const SkIRect& r) { SkDebugf(" { %d, %d, %d, %d },\n", r.fLeft, r.fTop, r.fRight, r.fBottom); } static void test_rects(const SkIRect rect[], int count) { SkRegion rgn0, rgn1; for (int i = 0; i < count; i++) { rgn0.op(rect[i], SkRegion::kUnion_Op); // dumpRect(rect[i]); } rgn1.setRects(rect, count); if (rgn0 != rgn1) { SkDebugf("\n"); for (int i = 0; i < count; i++) { dumpRect(rect[i]); } SkDebugf("\n"); } } static void test() { size_t i; const SkIRect r0[] = { { 0, 0, 1, 1 }, { 2, 2, 3, 3 }, }; const SkIRect r1[] = { { 0, 0, 1, 3 }, { 1, 1, 2, 2 }, { 2, 0, 3, 3 }, }; const SkIRect r2[] = { { 0, 0, 1, 2 }, { 2, 1, 3, 3 }, { 4, 0, 5, 1 }, { 6, 0, 7, 4 }, }; static const struct { const SkIRect* fRects; int fCount; } gRecs[] = { { r0, SK_ARRAY_COUNT(r0) }, { r1, SK_ARRAY_COUNT(r1) }, { r2, SK_ARRAY_COUNT(r2) }, }; for (i = 0; i < SK_ARRAY_COUNT(gRecs); i++) { test_rects(gRecs[i].fRects, gRecs[i].fCount); } SkRandom rand; for (i = 0; i < 10000; i++) { SkRegion rgn0, rgn1; const int N = 8; SkIRect rect[N]; for (int j = 0; j < N; j++) { rand_rect(&rect[j], rand); } test_rects(rect, N); } } // FIXME: this should be in a header SkOSWindow* create_sk_window(void* hwnd, int argc, char** argv); SkOSWindow* create_sk_window(void* hwnd, int argc, char** argv) { SkCommandLineFlags::Parse(argc, argv); if (false) { // avoid bit rot, suppress warning test(); } return new SampleWindow(hwnd, argc, argv, nullptr); } #ifdef SK_BUILD_FOR_IOS #include "SkApplication.h" IOS_launch_type set_cmd_line_args(int , char *[], const char* resourceDir) { SetResourcePath(resourceDir); return kApplication__iOSLaunchType; } #endif void application_init() { // setenv("ANDROID_ROOT", "../../../data", 0); #ifdef SK_BUILD_FOR_MAC setenv("ANDROID_ROOT", "/android/device/data", 0); #endif SkGraphics::Init(); SkEvent::Init(); } void application_term() { SkEvent::Term(); }