/* * Copyright 2008 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkWriter32_DEFINED #define SkWriter32_DEFINED #include "SkMatrix.h" #include "SkPath.h" #include "SkPoint.h" #include "SkRRect.h" #include "SkRect.h" #include "SkRegion.h" #include "SkScalar.h" #include "SkStream.h" #include "SkTDArray.h" #include "SkTypes.h" class SkWriter32 : SkNoncopyable { public: /** * The caller can specify an initial block of storage, which the caller manages. * * SkWriter32 will try to back reserve and write calls with this external storage until the * first time an allocation doesn't fit. From then it will use dynamically allocated storage. * This used to be optional behavior, but pipe now relies on it. */ SkWriter32(void* external = NULL, size_t externalBytes = 0) { this->reset(external, externalBytes); } // return the current offset (will always be a multiple of 4) size_t bytesWritten() const { return fCount * 4; } SK_ATTR_DEPRECATED("use bytesWritten") size_t size() const { return this->bytesWritten(); } void reset(void* external = NULL, size_t externalBytes = 0) { SkASSERT(SkIsAlign4((uintptr_t)external)); SkASSERT(SkIsAlign4(externalBytes)); fExternal = (uint32_t*)external; fExternalLimit = externalBytes/4; fCount = 0; fInternal.rewind(); } // If all data written is contiguous, then this returns a pointer to it, otherwise NULL. // This will work if we've only written to the externally supplied block of storage, or if we've // only written to our internal dynamic storage, but will fail if we have written into both. const uint32_t* contiguousArray() const { if (this->externalCount() == 0) { return fInternal.begin(); } else if (fInternal.isEmpty()) { return fExternal; } return NULL; } // size MUST be multiple of 4 uint32_t* reserve(size_t size) { SkASSERT(SkAlign4(size) == size); const int count = size/4; uint32_t* p; // Once we start writing to fInternal, we never write to fExternal again. // This simplifies tracking what data is where. if (fInternal.isEmpty() && this->externalCount() + count <= fExternalLimit) { p = fExternal + fCount; } else { p = fInternal.append(count); } fCount += count; return p; } // return the address of the 4byte int at the specified offset (which must // be a multiple of 4. This does not allocate any new space, so the returned // address is only valid for 1 int. uint32_t* peek32(size_t offset) { SkASSERT(SkAlign4(offset) == offset); const int count = offset/4; SkASSERT(count < fCount); if (count < this->externalCount()) { return fExternal + count; } return &fInternal[count - this->externalCount()]; } bool writeBool(bool value) { this->write32(value); return value; } void writeInt(int32_t value) { this->write32(value); } void write8(int32_t value) { *(int32_t*)this->reserve(sizeof(value)) = value & 0xFF; } void write16(int32_t value) { *(int32_t*)this->reserve(sizeof(value)) = value & 0xFFFF; } void write32(int32_t value) { *(int32_t*)this->reserve(sizeof(value)) = value; } void writePtr(void* value) { *(void**)this->reserve(sizeof(value)) = value; } void writeScalar(SkScalar value) { *(SkScalar*)this->reserve(sizeof(value)) = value; } void writePoint(const SkPoint& pt) { *(SkPoint*)this->reserve(sizeof(pt)) = pt; } void writeRect(const SkRect& rect) { *(SkRect*)this->reserve(sizeof(rect)) = rect; } void writeIRect(const SkIRect& rect) { *(SkIRect*)this->reserve(sizeof(rect)) = rect; } void writeRRect(const SkRRect& rrect) { rrect.writeToMemory(this->reserve(SkRRect::kSizeInMemory)); } void writePath(const SkPath& path) { size_t size = path.writeToMemory(NULL); SkASSERT(SkAlign4(size) == size); path.writeToMemory(this->reserve(size)); } void writeMatrix(const SkMatrix& matrix) { size_t size = matrix.writeToMemory(NULL); SkASSERT(SkAlign4(size) == size); matrix.writeToMemory(this->reserve(size)); } void writeRegion(const SkRegion& rgn) { size_t size = rgn.writeToMemory(NULL); SkASSERT(SkAlign4(size) == size); rgn.writeToMemory(this->reserve(size)); } // write count bytes (must be a multiple of 4) void writeMul4(const void* values, size_t size) { this->write(values, size); } /** * Write size bytes from values. size must be a multiple of 4, though * values need not be 4-byte aligned. */ void write(const void* values, size_t size) { SkASSERT(SkAlign4(size) == size); // TODO: If we're going to spill from fExternal to fInternal, we might want to fill // fExternal as much as possible before writing to fInternal. memcpy(this->reserve(size), values, size); } /** * Reserve size bytes. Does not need to be 4 byte aligned. The remaining space (if any) will be * filled in with zeroes. */ uint32_t* reservePad(size_t size) { uint32_t* p = this->reserve(SkAlign4(size)); uint8_t* tail = (uint8_t*)p + size; switch (SkAlign4(size) - size) { default: SkDEBUGFAIL("SkAlign4(x) - x should always be 0, 1, 2, or 3."); case 3: *tail++ = 0x00; // fallthrough is intentional case 2: *tail++ = 0x00; // fallthrough is intentional case 1: *tail++ = 0x00; case 0: ;/*nothing to do*/ } return p; } /** * Write size bytes from src, and pad to 4 byte alignment with zeroes. */ void writePad(const void* src, size_t size) { memcpy(this->reservePad(size), src, size); } /** * Writes a string to the writer, which can be retrieved with * SkReader32::readString(). * The length can be specified, or if -1 is passed, it will be computed by * calling strlen(). The length must be < max size_t. * * If you write NULL, it will be read as "". */ void writeString(const char* str, size_t len = (size_t)-1); /** * Computes the size (aligned to multiple of 4) need to write the string * in a call to writeString(). If the length is not specified, it will be * computed by calling strlen(). */ static size_t WriteStringSize(const char* str, size_t len = (size_t)-1); /** * Move the cursor back to offset bytes from the beginning. * This has the same restrictions as peek32: offset must be <= size() and * offset must be a multiple of 4. */ void rewindToOffset(size_t offset) { SkASSERT(SkAlign4(offset) == offset); const int count = offset/4; if (count < this->externalCount()) { fInternal.setCount(0); } else { fInternal.setCount(count - this->externalCount()); } fCount = count; } // copy into a single buffer (allocated by caller). Must be at least size() void flatten(void* dst) const { const size_t externalBytes = this->externalCount()*4; memcpy(dst, fExternal, externalBytes); dst = (uint8_t*)dst + externalBytes; memcpy(dst, fInternal.begin(), fInternal.bytes()); } bool writeToStream(SkWStream* stream) const { return stream->write(fExternal, this->externalCount()*4) && stream->write(fInternal.begin(), fInternal.bytes()); } // read from the stream, and write up to length bytes. Return the actual // number of bytes written. size_t readFromStream(SkStream* stream, size_t length) { return stream->read(this->reservePad(length), length); } private: // Number of uint32_t written into fExternal. <= fExternalLimit. int externalCount() const { return fCount - fInternal.count(); } int fCount; // Total number of uint32_t written. int fExternalLimit; // Number of uint32_t we can write to fExternal. uint32_t* fExternal; // Unmanaged memory block. SkTDArray fInternal; // Managed memory block. }; /** * Helper class to allocated SIZE bytes as part of the writer, and to provide * that storage to the constructor as its initial storage buffer. * * This wrapper ensures proper alignment rules are met for the storage. */ template class SkSWriter32 : public SkWriter32 { public: SkSWriter32() : SkWriter32(fData.fStorage, SIZE) {} private: union { void* fPtrAlignment; double fDoubleAlignment; char fStorage[SIZE]; } fData; }; #endif