/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkTypes_DEFINED #define SkTypes_DEFINED // IWYU pragma: begin_exports // In at least two known scenarios when using GCC with libc++: // * GCC 4.8 targeting ARMv7 with NEON // * GCC 4.9 targeting ARMv8 64 bit // we need to typedef float float32_t (or include which does that) // before #including . This makes no sense. I'm not very interested in // understanding why... these are old, bizarre platform configuration that we // should just let die. // See https://llvm.org/bugs/show_bug.cgi?id=25608 . #include // Include something innocuous to define _LIBCPP_VERISON if it's libc++. #if defined(__GNUC__) && __GNUC__ == 4 \ && ((defined(__arm__) && (defined(__ARM_NEON__) || defined(__ARM_NEON))) || defined(__aarch64__)) \ && defined(_LIBCPP_VERSION) typedef float float32_t; #include #endif #include "SkPreConfig.h" #include "SkUserConfig.h" #include "SkPostConfig.h" #include #include // IWYU pragma: end_exports #include /** * sk_careful_memcpy() is just like memcpy(), but guards against undefined behavior. * * It is undefined behavior to call memcpy() with null dst or src, even if len is 0. * If an optimizer is "smart" enough, it can exploit this to do unexpected things. * memcpy(dst, src, 0); * if (src) { * printf("%x\n", *src); * } * In this code the compiler can assume src is not null and omit the if (src) {...} check, * unconditionally running the printf, crashing the program if src really is null. * Of the compilers we pay attention to only GCC performs this optimization in practice. */ static inline void* sk_careful_memcpy(void* dst, const void* src, size_t len) { // When we pass >0 len we had better already be passing valid pointers. // So we just need to skip calling memcpy when len == 0. if (len) { memcpy(dst,src,len); } return dst; } /** \file SkTypes.h */ /** See SkGraphics::GetVersion() to retrieve these at runtime */ #define SKIA_VERSION_MAJOR 1 #define SKIA_VERSION_MINOR 0 #define SKIA_VERSION_PATCH 0 /* memory wrappers to be implemented by the porting layer (platform) */ /** Called internally if we run out of memory. The platform implementation must not return, but should either throw an exception or otherwise exit. */ SK_API extern void sk_out_of_memory(void); /** Called internally if we hit an unrecoverable error. The platform implementation must not return, but should either throw an exception or otherwise exit. */ SK_API extern void sk_abort_no_print(void); enum { SK_MALLOC_TEMP = 0x01, //!< hint to sk_malloc that the requested memory will be freed in the scope of the stack frame SK_MALLOC_THROW = 0x02 //!< instructs sk_malloc to call sk_throw if the memory cannot be allocated. }; /** Return a block of memory (at least 4-byte aligned) of at least the specified size. If the requested memory cannot be returned, either return null (if SK_MALLOC_TEMP bit is clear) or throw an exception (if SK_MALLOC_TEMP bit is set). To free the memory, call sk_free(). */ SK_API extern void* sk_malloc_flags(size_t size, unsigned flags); /** Same as sk_malloc(), but hard coded to pass SK_MALLOC_THROW as the flag */ SK_API extern void* sk_malloc_throw(size_t size); /** Same as standard realloc(), but this one never returns null on failure. It will throw an exception if it fails. */ SK_API extern void* sk_realloc_throw(void* buffer, size_t size); /** Free memory returned by sk_malloc(). It is safe to pass null. */ SK_API extern void sk_free(void*); /** Much like calloc: returns a pointer to at least size zero bytes, or NULL on failure. */ SK_API extern void* sk_calloc(size_t size); /** Same as sk_calloc, but throws an exception instead of returning NULL on failure. */ SK_API extern void* sk_calloc_throw(size_t size); // bzero is safer than memset, but we can't rely on it, so... sk_bzero() static inline void sk_bzero(void* buffer, size_t size) { // Please c.f. sk_careful_memcpy. It's undefined behavior to call memset(null, 0, 0). if (size) { memset(buffer, 0, size); } } /////////////////////////////////////////////////////////////////////////////// #ifdef override_GLOBAL_NEW #include inline void* operator new(size_t size) { return sk_malloc_throw(size); } inline void operator delete(void* p) { sk_free(p); } #endif /////////////////////////////////////////////////////////////////////////////// #define SK_INIT_TO_AVOID_WARNING = 0 #ifndef SkDebugf SK_API void SkDebugf(const char format[], ...); #endif #define SkREQUIRE_SEMICOLON_AFTER(code) do { code } while (false) #define SkASSERT_RELEASE(cond) \ SkREQUIRE_SEMICOLON_AFTER(if (!(cond)) { SK_ABORT(#cond); } ) #ifdef SK_DEBUG #define SkASSERT(cond) \ SkREQUIRE_SEMICOLON_AFTER(if (!(cond)) { SK_ABORT("assert(" #cond ")"); }) #define SkASSERTF(cond, fmt, ...) \ SkREQUIRE_SEMICOLON_AFTER(if (!(cond)) { \ SkDebugf(fmt"\n", __VA_ARGS__); \ SK_ABORT("assert(" #cond ")"); \ }) #define SkDEBUGFAIL(message) SK_ABORT(message) #define SkDEBUGFAILF(fmt, ...) SkASSERTF(false, fmt, ##__VA_ARGS__) #define SkDEBUGCODE(...) __VA_ARGS__ #define SkDECLAREPARAM(type, var) , type var #define SkPARAM(var) , var #define SkDEBUGF(args ) SkDebugf args #define SkAssertResult(cond) SkASSERT(cond) #else #define SkASSERT(cond) #define SkASSERTF(cond, fmt, ...) #define SkDEBUGFAIL(message) #define SkDEBUGFAILF(fmt, ...) #define SkDEBUGCODE(...) #define SkDEBUGF(args) #define SkDECLAREPARAM(type, var) #define SkPARAM(var) // unlike SkASSERT, this guy executes its condition in the non-debug build. // The if is present so that this can be used with functions marked SK_WARN_UNUSED_RESULT. #define SkAssertResult(cond) if (cond) {} do {} while(false) #endif // Legacy macro names for SK_ABORT #define SkFAIL(message) SK_ABORT(message) #define sk_throw() SK_ABORT("sk_throw") #ifdef SK_IGNORE_TO_STRING #define SK_TO_STRING_NONVIRT() #define SK_TO_STRING_VIRT() #define SK_TO_STRING_PUREVIRT() #define SK_TO_STRING_OVERRIDE() #else class SkString; // the 'toString' helper functions convert Sk* objects to human-readable // form in developer mode #define SK_TO_STRING_NONVIRT() void toString(SkString* str) const; #define SK_TO_STRING_VIRT() virtual void toString(SkString* str) const; #define SK_TO_STRING_PUREVIRT() virtual void toString(SkString* str) const = 0; #define SK_TO_STRING_OVERRIDE() void toString(SkString* str) const override; #endif /* * Usage: SK_MACRO_CONCAT(a, b) to construct the symbol ab * * SK_MACRO_CONCAT_IMPL_PRIV just exists to make this work. Do not use directly * */ #define SK_MACRO_CONCAT(X, Y) SK_MACRO_CONCAT_IMPL_PRIV(X, Y) #define SK_MACRO_CONCAT_IMPL_PRIV(X, Y) X ## Y /* * Usage: SK_MACRO_APPEND_LINE(foo) to make foo123, where 123 is the current * line number. Easy way to construct * unique names for local functions or * variables. */ #define SK_MACRO_APPEND_LINE(name) SK_MACRO_CONCAT(name, __LINE__) /** * For some classes, it's almost always an error to instantiate one without a name, e.g. * { * SkAutoMutexAcquire(&mutex); * * } * In this case, the writer meant to hold mutex while the rest of the code in the block runs, * but instead the mutex is acquired and then immediately released. The correct usage is * { * SkAutoMutexAcquire lock(&mutex); * * } * * To prevent callers from instantiating your class without a name, use SK_REQUIRE_LOCAL_VAR * like this: * class classname { * * }; * #define classname(...) SK_REQUIRE_LOCAL_VAR(classname) * * This won't work with templates, and you must inline the class' constructors and destructors. * Take a look at SkAutoFree and SkAutoMalloc in this file for examples. */ #define SK_REQUIRE_LOCAL_VAR(classname) \ static_assert(false, "missing name for " #classname) /////////////////////////////////////////////////////////////////////// /** * Fast type for signed 8 bits. Use for parameter passing and local variables, * not for storage. */ typedef int S8CPU; /** * Fast type for unsigned 8 bits. Use for parameter passing and local * variables, not for storage */ typedef unsigned U8CPU; /** * Fast type for signed 16 bits. Use for parameter passing and local variables, * not for storage */ typedef int S16CPU; /** * Fast type for unsigned 16 bits. Use for parameter passing and local * variables, not for storage */ typedef unsigned U16CPU; /** * Meant to be a small version of bool, for storage purposes. Will be 0 or 1 */ typedef uint8_t SkBool8; #include "../private/SkTFitsIn.h" template D SkTo(S s) { SkASSERT(SkTFitsIn(s)); return static_cast(s); } #define SkToS8(x) SkTo(x) #define SkToU8(x) SkTo(x) #define SkToS16(x) SkTo(x) #define SkToU16(x) SkTo(x) #define SkToS32(x) SkTo(x) #define SkToU32(x) SkTo(x) #define SkToInt(x) SkTo(x) #define SkToUInt(x) SkTo(x) #define SkToSizeT(x) SkTo(x) /** Returns 0 or 1 based on the condition */ #define SkToBool(cond) ((cond) != 0) #define SK_MaxS16 32767 #define SK_MinS16 -32767 #define SK_MaxU16 0xFFFF #define SK_MinU16 0 #define SK_MaxS32 0x7FFFFFFF #define SK_MinS32 -SK_MaxS32 #define SK_MaxU32 0xFFFFFFFF #define SK_MinU32 0 #define SK_NaN32 ((int) (1U << 31)) /** Returns true if the value can be represented with signed 16bits */ static inline bool SkIsS16(long x) { return (int16_t)x == x; } /** Returns true if the value can be represented with unsigned 16bits */ static inline bool SkIsU16(long x) { return (uint16_t)x == x; } static inline int32_t SkLeftShift(int32_t value, int32_t shift) { return (int32_t) ((uint32_t) value << shift); } static inline int64_t SkLeftShift(int64_t value, int32_t shift) { return (int64_t) ((uint64_t) value << shift); } ////////////////////////////////////////////////////////////////////////////// /** Returns the number of entries in an array (not a pointer) */ template char (&SkArrayCountHelper(T (&array)[N]))[N]; #define SK_ARRAY_COUNT(array) (sizeof(SkArrayCountHelper(array))) // Can be used to bracket data types that must be dense, e.g. hash keys. #if defined(__clang__) // This should work on GCC too, but GCC diagnostic pop didn't seem to work! #define SK_BEGIN_REQUIRE_DENSE _Pragma("GCC diagnostic push") \ _Pragma("GCC diagnostic error \"-Wpadded\"") #define SK_END_REQUIRE_DENSE _Pragma("GCC diagnostic pop") #else #define SK_BEGIN_REQUIRE_DENSE #define SK_END_REQUIRE_DENSE #endif #define SkAlign2(x) (((x) + 1) >> 1 << 1) #define SkIsAlign2(x) (0 == ((x) & 1)) #define SkAlign4(x) (((x) + 3) >> 2 << 2) #define SkIsAlign4(x) (0 == ((x) & 3)) #define SkAlign8(x) (((x) + 7) >> 3 << 3) #define SkIsAlign8(x) (0 == ((x) & 7)) #define SkAlign16(x) (((x) + 15) >> 4 << 4) #define SkIsAlign16(x) (0 == ((x) & 15)) #define SkAlignPtr(x) (sizeof(void*) == 8 ? SkAlign8(x) : SkAlign4(x)) #define SkIsAlignPtr(x) (sizeof(void*) == 8 ? SkIsAlign8(x) : SkIsAlign4(x)) typedef uint32_t SkFourByteTag; #define SkSetFourByteTag(a, b, c, d) (((a) << 24) | ((b) << 16) | ((c) << 8) | (d)) /** 32 bit integer to hold a unicode value */ typedef int32_t SkUnichar; /** 16 bit unsigned integer to hold a glyph index */ typedef uint16_t SkGlyphID; /** 32 bit value to hold a millisecond duration * Note that SK_MSecMax is about 25 days. */ typedef uint32_t SkMSec; /** 1 second measured in milliseconds */ #define SK_MSec1 1000 /** maximum representable milliseconds; 24d 20h 31m 23.647s. */ #define SK_MSecMax 0x7FFFFFFF /** Returns a < b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0 */ #define SkMSec_LT(a, b) ((int32_t)(a) - (int32_t)(b) < 0) /** Returns a <= b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0 */ #define SkMSec_LE(a, b) ((int32_t)(a) - (int32_t)(b) <= 0) /** The generation IDs in Skia reserve 0 has an invalid marker. */ #define SK_InvalidGenID 0 /** The unique IDs in Skia reserve 0 has an invalid marker. */ #define SK_InvalidUniqueID 0 /**************************************************************************** The rest of these only build with C++ */ #ifdef __cplusplus /** Faster than SkToBool for integral conditions. Returns 0 or 1 */ static inline constexpr int Sk32ToBool(uint32_t n) { return (n | (0-n)) >> 31; } /** Generic swap function. Classes with efficient swaps should specialize this function to take their fast path. This function is used by SkTSort. */ template static inline void SkTSwap(T& a, T& b) { T c(std::move(a)); a = std::move(b); b = std::move(c); } static inline int32_t SkAbs32(int32_t value) { SkASSERT(value != SK_NaN32); // The most negative int32_t can't be negated. if (value < 0) { value = -value; } return value; } template static inline T SkTAbs(T value) { if (value < 0) { value = -value; } return value; } static inline int32_t SkMax32(int32_t a, int32_t b) { if (a < b) a = b; return a; } static inline int32_t SkMin32(int32_t a, int32_t b) { if (a > b) a = b; return a; } template constexpr const T& SkTMin(const T& a, const T& b) { return (a < b) ? a : b; } template constexpr const T& SkTMax(const T& a, const T& b) { return (b < a) ? a : b; } static inline int32_t SkSign32(int32_t a) { return (a >> 31) | ((unsigned) -a >> 31); } static inline int32_t SkFastMin32(int32_t value, int32_t max) { if (value > max) { value = max; } return value; } /** Returns value pinned between min and max, inclusively. */ template static constexpr const T& SkTPin(const T& value, const T& min, const T& max) { return SkTMax(SkTMin(value, max), min); } /////////////////////////////////////////////////////////////////////////////// /** * Indicates whether an allocation should count against a cache budget. */ enum class SkBudgeted : bool { kNo = false, kYes = true }; /** * Indicates whether a backing store needs to be an exact match or can be larger * than is strictly necessary */ enum class SkBackingFit { kApprox, kExact }; /////////////////////////////////////////////////////////////////////////////// /** Use to combine multiple bits in a bitmask in a type safe way. */ template T SkTBitOr(T a, T b) { return (T)(a | b); } /** * Use to cast a pointer to a different type, and maintaining strict-aliasing */ template Dst SkTCast(const void* ptr) { union { const void* src; Dst dst; } data; data.src = ptr; return data.dst; } ////////////////////////////////////////////////////////////////////////////// /** \class SkNoncopyable SkNoncopyable is the base class for objects that do not want to be copied. It hides its copy-constructor and its assignment-operator. */ class SK_API SkNoncopyable { public: SkNoncopyable() {} private: SkNoncopyable(const SkNoncopyable&); SkNoncopyable& operator=(const SkNoncopyable&); }; class SkAutoFree : SkNoncopyable { public: SkAutoFree() : fPtr(NULL) {} explicit SkAutoFree(void* ptr) : fPtr(ptr) {} ~SkAutoFree() { sk_free(fPtr); } /** Return the currently allocate buffer, or null */ void* get() const { return fPtr; } /** Assign a new ptr allocated with sk_malloc (or null), and return the previous ptr. Note it is the caller's responsibility to sk_free the returned ptr. */ void* set(void* ptr) { void* prev = fPtr; fPtr = ptr; return prev; } /** Transfer ownership of the current ptr to the caller, setting the internal reference to null. Note the caller is reponsible for calling sk_free on the returned address. */ void* release() { return this->set(NULL); } /** Free the current buffer, and set the internal reference to NULL. Same as calling sk_free(release()) */ void reset() { sk_free(fPtr); fPtr = NULL; } private: void* fPtr; // illegal SkAutoFree(const SkAutoFree&); SkAutoFree& operator=(const SkAutoFree&); }; #define SkAutoFree(...) SK_REQUIRE_LOCAL_VAR(SkAutoFree) /** * Manage an allocated block of heap memory. This object is the sole manager of * the lifetime of the block, so the caller must not call sk_free() or delete * on the block, unless release() was called. */ class SkAutoMalloc : SkNoncopyable { public: explicit SkAutoMalloc(size_t size = 0) { fPtr = size ? sk_malloc_throw(size) : NULL; fSize = size; } ~SkAutoMalloc() { sk_free(fPtr); } /** * Passed to reset to specify what happens if the requested size is smaller * than the current size (and the current block was dynamically allocated). */ enum OnShrink { /** * If the requested size is smaller than the current size, and the * current block is dynamically allocated, free the old block and * malloc a new block of the smaller size. */ kAlloc_OnShrink, /** * If the requested size is smaller than the current size, and the * current block is dynamically allocated, just return the old * block. */ kReuse_OnShrink }; /** * Reallocates the block to a new size. The ptr may or may not change. */ void* reset(size_t size = 0, OnShrink shrink = kAlloc_OnShrink, bool* didChangeAlloc = NULL) { if (size == fSize || (kReuse_OnShrink == shrink && size < fSize)) { if (didChangeAlloc) { *didChangeAlloc = false; } return fPtr; } sk_free(fPtr); fPtr = size ? sk_malloc_throw(size) : NULL; fSize = size; if (didChangeAlloc) { *didChangeAlloc = true; } return fPtr; } /** * Return the allocated block. */ void* get() { return fPtr; } const void* get() const { return fPtr; } /** Transfer ownership of the current ptr to the caller, setting the internal reference to null. Note the caller is reponsible for calling sk_free on the returned address. */ void* release() { void* ptr = fPtr; fPtr = NULL; fSize = 0; return ptr; } private: void* fPtr; size_t fSize; // can be larger than the requested size (see kReuse) }; #define SkAutoMalloc(...) SK_REQUIRE_LOCAL_VAR(SkAutoMalloc) /** * Manage an allocated block of memory. If the requested size is <= kSizeRequested (or slightly * more), then the allocation will come from the stack rather than the heap. This object is the * sole manager of the lifetime of the block, so the caller must not call sk_free() or delete on * the block. */ template class SkAutoSMalloc : SkNoncopyable { public: /** * Creates initially empty storage. get() returns a ptr, but it is to a zero-byte allocation. * Must call reset(size) to return an allocated block. */ SkAutoSMalloc() { fPtr = fStorage; fSize = kSize; } /** * Allocate a block of the specified size. If size <= kSizeRequested (or slightly more), then * the allocation will come from the stack, otherwise it will be dynamically allocated. */ explicit SkAutoSMalloc(size_t size) { fPtr = fStorage; fSize = kSize; this->reset(size); } /** * Free the allocated block (if any). If the block was small enough to have been allocated on * the stack, then this does nothing. */ ~SkAutoSMalloc() { if (fPtr != (void*)fStorage) { sk_free(fPtr); } } /** * Return the allocated block. May return non-null even if the block is of zero size. Since * this may be on the stack or dynamically allocated, the caller must not call sk_free() on it, * but must rely on SkAutoSMalloc to manage it. */ void* get() const { return fPtr; } /** * Return a new block of the requested size, freeing (as necessary) any previously allocated * block. As with the constructor, if size <= kSizeRequested (or slightly more) then the return * block may be allocated locally, rather than from the heap. */ void* reset(size_t size, SkAutoMalloc::OnShrink shrink = SkAutoMalloc::kAlloc_OnShrink, bool* didChangeAlloc = NULL) { size = (size < kSize) ? kSize : size; bool alloc = size != fSize && (SkAutoMalloc::kAlloc_OnShrink == shrink || size > fSize); if (didChangeAlloc) { *didChangeAlloc = alloc; } if (alloc) { if (fPtr != (void*)fStorage) { sk_free(fPtr); } if (size == kSize) { SkASSERT(fPtr != fStorage); // otherwise we lied when setting didChangeAlloc. fPtr = fStorage; } else { fPtr = sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_TEMP); } fSize = size; } SkASSERT(fSize >= size && fSize >= kSize); SkASSERT((fPtr == fStorage) || fSize > kSize); return fPtr; } private: // Align up to 32 bits. static const size_t kSizeAlign4 = SkAlign4(kSizeRequested); #if defined(GOOGLE3) // Stack frame size is limited for GOOGLE3. 4k is less than the actual max, but some functions // have multiple large stack allocations. static const size_t kMaxBytes = 4 * 1024; static const size_t kSize = kSizeRequested > kMaxBytes ? kMaxBytes : kSizeAlign4; #else static const size_t kSize = kSizeAlign4; #endif void* fPtr; size_t fSize; // can be larger than the requested size (see kReuse) uint32_t fStorage[kSize >> 2]; }; // Can't guard the constructor because it's a template class. #endif /* C++ */ #endif