/* * Copyright (C) 2006 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef SkTemplates_DEFINED #define SkTemplates_DEFINED #include "SkTypes.h" /** \file SkTemplates.h This file contains light-weight template classes for type-safe and exception-safe resource management. */ /** \class SkAutoTCallVProc Call a function when this goes out of scope. The template uses two parameters, the object, and a function that is to be called in the destructor. If detach() is called, the object reference is set to null. If the object reference is null when the destructor is called, we do not call the function. */ template class SkAutoTCallVProc : SkNoncopyable { public: SkAutoTCallVProc(T* obj): fObj(obj) {} ~SkAutoTCallVProc() { if (fObj) P(fObj); } T* detach() { T* obj = fObj; fObj = NULL; return obj; } private: T* fObj; }; /** \class SkAutoTCallIProc Call a function when this goes out of scope. The template uses two parameters, the object, and a function that is to be called in the destructor. If detach() is called, the object reference is set to null. If the object reference is null when the destructor is called, we do not call the function. */ template class SkAutoTCallIProc : SkNoncopyable { public: SkAutoTCallIProc(T* obj): fObj(obj) {} ~SkAutoTCallIProc() { if (fObj) P(fObj); } T* detach() { T* obj = fObj; fObj = NULL; return obj; } private: T* fObj; }; template class SkAutoTDelete : SkNoncopyable { public: SkAutoTDelete(T* obj) : fObj(obj) {} ~SkAutoTDelete() { delete fObj; } T* get() const { return fObj; } void free() { delete fObj; fObj = NULL; } T* detach() { T* obj = fObj; fObj = NULL; return obj; } private: T* fObj; }; template class SkAutoTDeleteArray : SkNoncopyable { public: SkAutoTDeleteArray(T array[]) : fArray(array) {} ~SkAutoTDeleteArray() { delete[] fArray; } T* get() const { return fArray; } void free() { delete[] fArray; fArray = NULL; } T* detach() { T* array = fArray; fArray = NULL; return array; } private: T* fArray; }; /** Allocate an array of T elements, and free the array in the destructor */ template class SkAutoTArray : SkNoncopyable { public: /** Allocate count number of T elements */ SkAutoTArray(size_t count) { fArray = NULL; if (count) { fArray = new T[count]; } SkDEBUGCODE(fCount = count;) } ~SkAutoTArray() { delete[] fArray; } /** Return the array of T elements. Will be NULL if count == 0 */ T* get() const { return fArray; } /** Return the nth element in the array */ T& operator[](int index) const { SkASSERT((unsigned)index < fCount); return fArray[index]; } private: T* fArray; SkDEBUGCODE(size_t fCount;) }; /** Wraps SkAutoTArray, with room for up to N elements preallocated */ template class SkAutoSTArray : SkNoncopyable { public: /** Allocate count number of T elements */ SkAutoSTArray(size_t count) { if (count > N) { fArray = new T[count]; } else if (count) { fArray = new (fStorage) T[count]; } else { fArray = NULL; } fCount = count; } ~SkAutoSTArray() { if (fCount > N) { delete[] fArray; } else { T* start = fArray; T* iter = start + fCount; while (iter > start) { (--iter)->~T(); } } } /** Return the number of T elements in the array */ size_t count() const { return fCount; } /** Return the array of T elements. Will be NULL if count == 0 */ T* get() const { return fArray; } /** Return the nth element in the array */ T& operator[](int index) const { SkASSERT((unsigned)index < fCount); return fArray[index]; } private: size_t fCount; T* fArray; // since we come right after fArray, fStorage should be properly aligned char fStorage[N * sizeof(T)]; }; /** Allocate a temp array on the stack/heap. Does NOT call any constructors/destructors on T (i.e. T must be POD) */ template class SkAutoTMalloc : SkNoncopyable { public: SkAutoTMalloc(size_t count) { fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW | SK_MALLOC_TEMP); } ~SkAutoTMalloc() { sk_free(fPtr); } T* get() const { return fPtr; } private: T* fPtr; }; template class SkAutoSTMalloc : SkNoncopyable { public: SkAutoSTMalloc(size_t count) { if (count <= N) fPtr = fTStorage; else fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW | SK_MALLOC_TEMP); } ~SkAutoSTMalloc() { if (fPtr != fTStorage) sk_free(fPtr); } T* get() const { return fPtr; } private: T* fPtr; union { uint32_t fStorage32[(N*sizeof(T) + 3) >> 2]; T fTStorage[1]; // do NOT want to invoke T::T() }; }; #endif