/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkOnce_DEFINED #define SkOnce_DEFINED // SkOnce.h defines SK_DECLARE_STATIC_ONCE and SkOnce(), which you can use // together to create a threadsafe way to call a function just once. This // is particularly useful for lazy singleton initialization. E.g. // // static void set_up_my_singleton(Singleton** singleton) { // *singleton = new Singleton(...); // } // ... // const Singleton& GetSingleton() { // static Singleton* singleton = NULL; // SK_DECLARE_STATIC_ONCE(once); // SkOnce(&once, set_up_my_singleton, &singleton); // SkASSERT(NULL != singleton); // return *singleton; // } // // OnceTest.cpp also should serve as a few other simple examples. // // You may optionally pass SkOnce a second function to be called at exit for cleanup. #include "SkDynamicAnnotations.h" #include "SkThread.h" #include "SkTypes.h" #define SK_ONCE_INIT { false, { 0, SkDEBUGCODE(0) } } #define SK_DECLARE_STATIC_ONCE(name) static SkOnceFlag name = SK_ONCE_INIT struct SkOnceFlag; // If manually created, initialize with SkOnceFlag once = SK_ONCE_INIT template inline void SkOnce(SkOnceFlag* once, Func f, Arg arg, void(*atExit)() = NULL); // If you've already got a lock and a flag to use, this variant lets you avoid an extra SkOnceFlag. template inline void SkOnce(bool* done, Lock* lock, Func f, Arg arg, void(*atExit)() = NULL); // ---------------------- Implementation details below here. ----------------------------- // This is POD and must be zero-initialized. struct SkSpinlock { void acquire() { SkASSERT(shouldBeZero == 0); // No memory barrier needed, but sk_atomic_cas gives us at least release anyway. while (!sk_atomic_cas(&thisIsPrivate, 0, 1)) { // spin } } void release() { SkASSERT(shouldBeZero == 0); // This requires a release memory barrier before storing, which sk_atomic_cas guarantees. SkAssertResult(sk_atomic_cas(&thisIsPrivate, 1, 0)); } int32_t thisIsPrivate; SkDEBUGCODE(int32_t shouldBeZero;) }; struct SkOnceFlag { bool done; SkSpinlock lock; }; // TODO(bungeman, mtklein): move all these *barrier* functions to SkThread when refactoring lands. #ifdef SK_BUILD_FOR_WIN # include inline static void compiler_barrier() { _ReadWriteBarrier(); } #else inline static void compiler_barrier() { asm volatile("" : : : "memory"); } #endif inline static void full_barrier_on_arm() { #if (defined(SK_CPU_ARM) && SK_ARM_ARCH >= 7) || defined(SK_CPU_ARM64) asm volatile("dmb ish" : : : "memory"); #elif defined(SK_CPU_ARM) asm volatile("mcr p15, 0, %0, c7, c10, 5" : : "r" (0) : "memory"); #endif } // On every platform, we issue a compiler barrier to prevent it from reordering // code. That's enough for platforms like x86 where release and acquire // barriers are no-ops. On other platforms we may need to be more careful; // ARM, in particular, needs real code for both acquire and release. We use a // full barrier, which acts as both, because that the finest precision ARM // provides. inline static void release_barrier() { compiler_barrier(); full_barrier_on_arm(); } inline static void acquire_barrier() { compiler_barrier(); full_barrier_on_arm(); } // Works with SkSpinlock or SkMutex. template class SkAutoLockAcquire { public: explicit SkAutoLockAcquire(Lock* lock) : fLock(lock) { fLock->acquire(); } ~SkAutoLockAcquire() { fLock->release(); } private: Lock* fLock; }; // We've pulled a pretty standard double-checked locking implementation apart // into its main fast path and a slow path that's called when we suspect the // one-time code hasn't run yet. // This is the guts of the code, called when we suspect the one-time code hasn't been run yet. // This should be rarely called, so we separate it from SkOnce and don't mark it as inline. // (We don't mind if this is an actual function call, but odds are it'll be inlined anyway.) template static void sk_once_slow(bool* done, Lock* lock, Func f, Arg arg, void (*atExit)()) { const SkAutoLockAcquire locked(lock); if (!*done) { f(arg); if (atExit != NULL) { atexit(atExit); } // Also known as a store-store/load-store barrier, this makes sure that the writes // done before here---in particular, those done by calling f(arg)---are observable // before the writes after the line, *done = true. // // In version control terms this is like saying, "check in the work up // to and including f(arg), then check in *done=true as a subsequent change". // // We'll use this in the fast path to make sure f(arg)'s effects are // observable whenever we observe *done == true. release_barrier(); *done = true; } } // This is our fast path, called all the time. We do really want it to be inlined. template inline void SkOnce(bool* done, Lock* lock, Func f, Arg arg, void(*atExit)()) { if (!SK_ANNOTATE_UNPROTECTED_READ(*done)) { sk_once_slow(done, lock, f, arg, atExit); } // Also known as a load-load/load-store barrier, this acquire barrier makes // sure that anything we read from memory---in particular, memory written by // calling f(arg)---is at least as current as the value we read from once->done. // // In version control terms, this is a lot like saying "sync up to the // commit where we wrote once->done = true". // // The release barrier in sk_once_slow guaranteed that once->done = true // happens after f(arg), so by syncing to once->done = true here we're // forcing ourselves to also wait until the effects of f(arg) are readble. acquire_barrier(); } template inline void SkOnce(SkOnceFlag* once, Func f, Arg arg, void(*atExit)()) { return SkOnce(&once->done, &once->lock, f, arg, atExit); } #undef SK_ANNOTATE_BENIGN_RACE #endif // SkOnce_DEFINED