/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkLazyPtr_DEFINED #define SkLazyPtr_DEFINED /** Declare a lazily-chosen static pointer (or array of pointers) of type T. * * Example usage: * * Foo* GetSingletonFoo() { * SK_DECLARE_STATIC_LAZY_PTR(Foo, singleton); // Created with SkNEW, destroyed with SkDELETE. * return singleton.get(); * } * * These macros take an optional T* (*Create)() and void (*Destroy)(T*) at the end. * If not given, we'll use SkNEW and SkDELETE. * These options are most useful when T doesn't have a public constructor or destructor. * Create comes first, so you may use a custom Create with a default Destroy, but not vice versa. * * Foo* CustomCreate() { return ...; } * void CustomDestroy(Foo* ptr) { ... } * Foo* GetSingletonFooWithCustomCleanup() { * SK_DECLARE_STATIC_LAZY_PTR(Foo, singleton, CustomCreate, CustomDestroy); * return singleton.get(); * } * * If you have a bunch of related static pointers of the same type, you can * declare an array of lazy pointers together, and we'll pass the index to Create(). * * Foo* CreateFoo(int i) { return ...; } * Foo* GetCachedFoo(Foo::Enum enumVal) { * SK_DECLARE_STATIC_LAZY_PTR_ARRAY(Foo, Foo::kEnumCount, cachedFoos, CreateFoo); * return cachedFoos[enumVal]; * } * * * You can think of SK_DECLARE_STATIC_LAZY_PTR as a cheaper specialization of * SkOnce. There is no mutex or extra storage used past the pointer itself. * * We may call Create more than once, but all threads will see the same pointer * returned from get(). Any extra calls to Create will be cleaned up. * * These macros must be used in a global scope, not in function scope or as a class member. */ #define SK_DECLARE_STATIC_LAZY_PTR(T, name, ...) \ namespace {} static Private::SkStaticLazyPtr name #define SK_DECLARE_STATIC_LAZY_PTR_ARRAY(T, name, N, ...) \ namespace {} static Private::SkStaticLazyPtrArray name // namespace {} forces these macros to only be legal in global scopes. Chrome has thread-safety // problems with them in function-local statics because it uses -fno-threadsafe-statics, and even // in builds with threadsafe statics, those threadsafe statics are just unnecessary overhead. // Everything below here is private implementation details. Don't touch, don't even look. #include "SkAtomics.h" // See FIXME below. class SkFontConfigInterfaceDirect; namespace Private { // Set *dst to ptr if *dst is NULL. Returns value of *dst, destroying ptr if not swapped in. // Issues acquire memory barrier on failure, release on success. template static P try_cas(P* dst, P ptr) { P prev = NULL; if (sk_atomic_compare_exchange(dst, &prev, ptr, sk_memory_order_release/*on success*/, sk_memory_order_acquire/*on failure*/)) { // We need a release barrier before returning ptr. The compare_exchange provides it. SkASSERT(!prev); return ptr; } else { Destroy(ptr); // We need an acquire barrier before returning prev. The compare_exchange provided it. SkASSERT(prev); return prev; } } template T* sk_new() { return SkNEW(T); } template void sk_delete(T* ptr) { SkDELETE(ptr); } // We're basing these implementations here on this article: // http://preshing.com/20140709/the-purpose-of-memory_order_consume-in-cpp11/ // // Because the users of SkLazyPtr and SkLazyPtrArray will read the pointers // _through_ our atomically set pointer, there is a data dependency between our // atomic and the guarded data, and so we only need writer-releases / // reader-consumes memory pairing rather than the more general write-releases / // reader-acquires convention. // // This is nice, because a consume load is free on all our platforms: x86, // ARM, MIPS. In contrast, an acquire load issues a memory barrier on non-x86. template T consume_load(T* ptr) { #if defined(THREAD_SANITIZER) // TSAN gets anxious if we don't tell it what we're actually doing, a consume load. return sk_atomic_load(ptr, sk_memory_order_consume); #else // All current compilers blindly upgrade consume memory order to acquire memory order. // For our purposes, though, no memory barrier is required, so we lie and use relaxed. return sk_atomic_load(ptr, sk_memory_order_relaxed); #endif } // This has no constructor and must be zero-initalized (the macro above does this). template , void (*Destroy)(T*) = sk_delete > class SkStaticLazyPtr { public: T* get() { // If fPtr has already been filled, we need a consume barrier when loading it. // If not, we need a release barrier when setting it. try_cas will do that. T* ptr = consume_load(&fPtr); return ptr ? ptr : try_cas(&fPtr, Create()); } private: T* fPtr; }; template T* sk_new_arg(int i) { return SkNEW_ARGS(T, (i)); } // This has no constructor and must be zero-initalized (the macro above does this). template , void (*Destroy)(T*) = sk_delete > class SkStaticLazyPtrArray { public: T* operator[](int i) { SkASSERT(i >= 0 && i < N); // If fPtr has already been filled, we need an consume barrier when loading it. // If not, we need a release barrier when setting it. try_cas will do that. T* ptr = consume_load(&fArray[i]); return ptr ? ptr : try_cas(&fArray[i], Create(i)); } private: T* fArray[N]; }; } // namespace Private // This version is suitable for use as a class member. // It's much the same as above except: // - it has a constructor to zero itself; // - it has a destructor to clean up; // - get() calls SkNew(T) to create the pointer; // - get(functor) calls functor to create the pointer. template > class SkLazyPtr : SkNoncopyable { public: SkLazyPtr() : fPtr(NULL) {} ~SkLazyPtr() { if (fPtr) { Destroy((T*)fPtr); } } T* get() const { T* ptr = Private::consume_load(&fPtr); return ptr ? ptr : Private::try_cas(&fPtr, SkNEW(T)); } template T* get(const Create& create) const { T* ptr = Private::consume_load(&fPtr); return ptr ? ptr : Private::try_cas(&fPtr, create()); } private: mutable T* fPtr; }; #endif//SkLazyPtr_DEFINED