/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkImageFilter_DEFINED #define SkImageFilter_DEFINED #include "../private/SkTArray.h" #include "../private/SkTemplates.h" #include "../private/SkMutex.h" #include "SkFilterQuality.h" #include "SkFlattenable.h" #include "SkMatrix.h" #include "SkRect.h" #include "SkSurfaceProps.h" class GrContext; class GrFragmentProcessor; class GrTexture; class SkBaseDevice; class SkBitmap; class SkColorFilter; struct SkIPoint; class SkSpecialImage; /** * Base class for image filters. If one is installed in the paint, then * all drawing occurs as usual, but it is as if the drawing happened into an * offscreen (before the xfermode is applied). This offscreen bitmap will * then be handed to the imagefilter, who in turn creates a new bitmap which * is what will finally be drawn to the device (using the original xfermode). */ class SK_API SkImageFilter : public SkFlattenable { public: // This cache maps from (filter's unique ID + CTM + clipBounds + src bitmap generation ID) to // (result, offset). class Cache : public SkRefCnt { public: struct Key; virtual ~Cache() {} static Cache* Create(size_t maxBytes); static Cache* Get(); virtual bool get(const Key& key, SkBitmap* result, SkIPoint* offset) const = 0; virtual SkSpecialImage* get(const Key& key, SkIPoint* offset) const = 0; virtual void set(const Key& key, const SkBitmap& result, const SkIPoint& offset) = 0; virtual void set(const Key& key, SkSpecialImage* image, const SkIPoint& offset) = 0; virtual void purge() {} virtual void purgeByKeys(const Key[], int) {} }; class Context { public: Context(const SkMatrix& ctm, const SkIRect& clipBounds, Cache* cache) : fCTM(ctm) , fClipBounds(clipBounds) , fCache(cache) {} const SkMatrix& ctm() const { return fCTM; } const SkIRect& clipBounds() const { return fClipBounds; } Cache* cache() const { return fCache; } private: SkMatrix fCTM; SkIRect fClipBounds; Cache* fCache; }; class CropRect { public: enum CropEdge { kHasLeft_CropEdge = 0x01, kHasTop_CropEdge = 0x02, kHasWidth_CropEdge = 0x04, kHasHeight_CropEdge = 0x08, kHasAll_CropEdge = 0x0F, }; CropRect() {} explicit CropRect(const SkRect& rect, uint32_t flags = kHasAll_CropEdge) : fRect(rect), fFlags(flags) {} uint32_t flags() const { return fFlags; } const SkRect& rect() const { return fRect; } #ifndef SK_IGNORE_TO_STRING void toString(SkString* str) const; #endif /** * Apply this cropRect to the imageBounds. If a given edge of the cropRect is not * set, then the corresponding edge from imageBounds will be used. If "embiggen" * is true, the crop rect is allowed to enlarge the size of the rect, otherwise * it may only reduce the rect. Filters that can affect transparent black should * pass "true", while all other filters should pass "false". * * Note: imageBounds is in "device" space, as the output cropped rectangle will be, * so the matrix is ignored for those. It is only applied the croprect's bounds. */ void applyTo(const SkIRect& imageBounds, const SkMatrix&, bool embiggen, SkIRect* cropped) const; private: SkRect fRect; uint32_t fFlags; }; enum TileUsage { kPossible_TileUsage, //!< the created device may be drawn tiled kNever_TileUsage, //!< the created device will never be drawn tiled }; class Proxy { public: virtual ~Proxy() {} virtual SkBaseDevice* createDevice(int width, int height, TileUsage usage = kNever_TileUsage) = 0; // Returns true if the proxy handled the filter itself. If this returns // false then the filter's code will be called. virtual bool filterImage(const SkImageFilter*, const SkBitmap& src, const SkImageFilter::Context&, SkBitmap* result, SkIPoint* offset) = 0; }; class DeviceProxy : public Proxy { public: DeviceProxy(SkBaseDevice* device) : fDevice(device) {} SkBaseDevice* createDevice(int width, int height, TileUsage usage = kNever_TileUsage) override; // Returns true if the proxy handled the filter itself. If this returns // false then the filter's code will be called. bool filterImage(const SkImageFilter*, const SkBitmap& src, const SkImageFilter::Context&, SkBitmap* result, SkIPoint* offset) override; private: SkBaseDevice* fDevice; }; /** * Request a new (result) image to be created from the src image. * * The context contains the environment in which the filter is occurring. * It includes the clip bounds, CTM and cache. * * Offset is the amount to translate the resulting image relative to the * src when it is drawn. This is an out-param. * * If the result image cannot be created, return null, in which case * the offset parameters will be ignored by the caller. * * TODO: Right now the imagefilters sometimes return empty result bitmaps/ * specialimages. That doesn't seem quite right. */ sk_sp filterImage(SkSpecialImage* src, const Context&, SkIPoint* offset) const; enum MapDirection { kForward_MapDirection, kReverse_MapDirection }; /** * Map a device-space rect recursively forward or backward through the * filter DAG. kForward_MapDirection is used to determine which pixels of * the destination canvas a source image rect would touch after filtering. * kReverse_MapDirection is used to determine which rect of the source * image would be required to fill the given rect (typically, clip bounds). * Used for clipping and temp-buffer allocations, so the result need not * be exact, but should never be smaller than the real answer. The default * implementation recursively unions all input bounds, or returns the * source rect if no inputs. */ SkIRect filterBounds(const SkIRect& src, const SkMatrix& ctm, MapDirection = kReverse_MapDirection) const; /** * Returns true if the filter can be processed on the GPU. This is most * often used for multi-pass effects, where intermediate results must be * rendered to textures. For single-pass effects, use asFragmentProcessor(). * The default implementation returns asFragmentProcessor(NULL, NULL, SkMatrix::I(), * SkIRect()). */ virtual bool canFilterImageGPU() const { return false; } /** * Process this image filter on the GPU. This is most often used for * multi-pass effects, where intermediate results must be rendered to * textures. For single-pass effects, use asFragmentProcessor(). src is the * source image for processing, as a texture-backed bitmap. result is * the destination bitmap, which should contain a texture-backed pixelref * on success. offset is the amount to translate the resulting image * relative to the src when it is drawn. The default implementation does * single-pass processing using asFragmentProcessor(). */ virtual bool filterImageGPUDeprecated(Proxy*, const SkBitmap&, const Context&, SkBitmap*, SkIPoint*) const { SkASSERT(false); return false; } #if SK_SUPPORT_GPU static sk_sp DrawWithFP(GrContext* context, sk_sp fp, const SkIRect& bounds, SkImageFilter::Proxy* proxy); #endif /** * Returns whether this image filter is a color filter and puts the color filter into the * "filterPtr" parameter if it can. Does nothing otherwise. * If this returns false, then the filterPtr is unchanged. * If this returns true, then if filterPtr is not null, it must be set to a ref'd colorfitler * (i.e. it may not be set to NULL). */ bool isColorFilterNode(SkColorFilter** filterPtr) const { return this->onIsColorFilterNode(filterPtr); } // DEPRECATED : use isColorFilterNode() instead bool asColorFilter(SkColorFilter** filterPtr) const { return this->isColorFilterNode(filterPtr); } /** * Returns true (and optionally returns a ref'd filter) if this imagefilter can be completely * replaced by the returned colorfilter. i.e. the two effects will affect drawing in the * same way. */ bool asAColorFilter(SkColorFilter** filterPtr) const; /** * Returns the number of inputs this filter will accept (some inputs can * be NULL). */ int countInputs() const { return fInputs.count(); } /** * Returns the input filter at a given index, or NULL if no input is * connected. The indices used are filter-specific. */ SkImageFilter* getInput(int i) const { SkASSERT(i < fInputs.count()); return fInputs[i].get(); } /** * Returns whether any edges of the crop rect have been set. The crop * rect is set at construction time, and determines which pixels from the * input image will be processed, and which pixels in the output image will be allowed. * The size of the crop rect should be * used as the size of the destination image. The origin of this rect * should be used to offset access to the input images, and should also * be added to the "offset" parameter in onFilterImage and * filterImageGPU(). (The latter ensures that the resulting buffer is * drawn in the correct location.) */ bool cropRectIsSet() const { return fCropRect.flags() != 0x0; } CropRect getCropRect() const { return fCropRect; } // Default impl returns union of all input bounds. virtual SkRect computeFastBounds(const SkRect&) const; // Can this filter DAG compute the resulting bounds of an object-space rectangle? bool canComputeFastBounds() const; /** * If this filter can be represented by another filter + a localMatrix, return that filter, * else return null. */ sk_sp makeWithLocalMatrix(const SkMatrix&) const; #ifdef SK_SUPPORT_LEGACY_IMAGEFILTER_PTR SkImageFilter* newWithLocalMatrix(const SkMatrix& matrix) const { return this->makeWithLocalMatrix(matrix).release(); } #endif /** * Create an SkMatrixImageFilter, which transforms its input by the given matrix. */ static sk_sp MakeMatrixFilter(const SkMatrix& matrix, SkFilterQuality, sk_sp input); #ifdef SK_SUPPORT_LEGACY_IMAGEFILTER_PTR static SkImageFilter* CreateMatrixFilter(const SkMatrix& matrix, SkFilterQuality filterQuality, SkImageFilter* input = nullptr) { return MakeMatrixFilter(matrix, filterQuality, sk_ref_sp(input)).release(); } #endif sk_sp filterInput(int index, SkSpecialImage* src, const Context&, SkIPoint* offset) const; #if SK_SUPPORT_GPU // Helper function which invokes GPU filter processing on the // input at the specified "index". If the input is null, it leaves // "result" and "offset" untouched, and returns true. If the input // has a GPU implementation, it will be invoked directly. // Otherwise, the filter will be processed in software and // uploaded to the GPU. bool filterInputGPUDeprecated(int index, SkImageFilter::Proxy* proxy, const SkBitmap& src, const Context&, SkBitmap* result, SkIPoint* offset) const; #endif SK_TO_STRING_PUREVIRT() SK_DEFINE_FLATTENABLE_TYPE(SkImageFilter) protected: class Common { public: /** * Attempt to unflatten the cropRect and the expected number of input filters. * If any number of input filters is valid, pass -1. * If this fails (i.e. corrupt buffer or contents) then return false and common will * be left uninitialized. * If this returns true, then inputCount() is the number of found input filters, each * of which may be NULL or a valid imagefilter. */ bool unflatten(SkReadBuffer&, int expectedInputs); const CropRect& cropRect() const { return fCropRect; } int inputCount() const { return fInputs.count(); } sk_sp* inputs() const { return fInputs.get(); } sk_sp getInput(int index) const { return fInputs[index]; } private: CropRect fCropRect; // most filters accept at most 2 input-filters SkAutoSTArray<2, sk_sp> fInputs; void allocInputs(int count); }; SkImageFilter(sk_sp* inputs, int inputCount, const CropRect* cropRect); virtual ~SkImageFilter(); /** * Constructs a new SkImageFilter read from an SkReadBuffer object. * * @param inputCount The exact number of inputs expected for this SkImageFilter object. * -1 can be used if the filter accepts any number of inputs. * @param rb SkReadBuffer object from which the SkImageFilter is read. */ explicit SkImageFilter(int inputCount, SkReadBuffer& rb); void flatten(SkWriteBuffer&) const override; /** * This is the virtual which should be overridden by the derived class * to perform image filtering. * * src is the original primitive bitmap. If the filter has a connected * input, it should recurse on that input and use that in place of src. * * The matrix is the current matrix on the canvas. * * Offset is the amount to translate the resulting image relative to the * src when it is drawn. This is an out-param. * * If the result image cannot be created, this should false, in which * case both the result and offset parameters will be ignored by the * caller. */ virtual bool onFilterImageDeprecated(Proxy*, const SkBitmap& src, const Context&, SkBitmap* result, SkIPoint* offset) const; virtual sk_sp onFilterImage(SkSpecialImage* src, const Context&, SkIPoint* offset) const; /** * This function recurses into its inputs with the given rect (first * argument), calls filterBounds() with the given map direction on each, * and returns the union of those results. If a derived class has special * recursion requirements (e.g., it has an input which does not participate * in bounds computation), it can be overridden here. * * Note that this function is *not* responsible for mapping the rect for * this node's filter bounds requirements (i.e., calling * onFilterNodeBounds()); that is handled by filterBounds(). */ virtual SkIRect onFilterBounds(const SkIRect&, const SkMatrix&, MapDirection) const; /** * Performs a forwards or reverse mapping of the given rect to accommodate * this filter's margin requirements. kForward_MapDirection is used to * determine the destination pixels which would be touched by filtering * the given given source rect (e.g., given source bitmap bounds, * determine the optimal bounds of the filtered offscreen bitmap). * kReverse_MapDirection is used to determine which pixels of the * input(s) would be required to fill the given destination rect * (e.g., clip bounds). NOTE: these operations may not be the * inverse of the other. For example, blurring expands the given rect * in both forward and reverse directions. Unlike * onFilterBounds(), this function is non-recursive. */ virtual SkIRect onFilterNodeBounds(const SkIRect&, const SkMatrix&, MapDirection) const; // Helper function which invokes filter processing on the input at the // specified "index". If the input is null, it leaves "result" and // "offset" untouched, and returns true. If the input is non-null, it // calls filterImage() on that input, and returns true on success. // i.e., return !getInput(index) || getInput(index)->filterImage(...); bool filterInputDeprecated(int index, Proxy*, const SkBitmap& src, const Context&, SkBitmap* result, SkIPoint* offset) const; /** * Return true (and return a ref'd colorfilter) if this node in the DAG is just a * colorfilter w/o CropRect constraints. */ virtual bool onIsColorFilterNode(SkColorFilter** /*filterPtr*/) const { return false; } /** Given a "srcBounds" rect, computes destination bounds for this filter. * "dstBounds" are computed by transforming the crop rect by the context's * CTM, applying it to the initial bounds, and intersecting the result with * the context's clip bounds. "srcBounds" (if non-null) are computed by * intersecting the initial bounds with "dstBounds", to ensure that we never * sample outside of the crop rect (this restriction may be relaxed in the * future). */ bool applyCropRect(const Context&, const SkIRect& srcBounds, SkIRect* dstBounds) const; /** A variant of the above call which takes the original source bitmap and * source offset. If the resulting crop rect is not entirely contained by * the source bitmap's bounds, it creates a new bitmap in "result" and * pads the edges with transparent black. In that case, the srcOffset is * modified to be the same as the bounds, since no further adjustment is * needed by the caller. This version should only be used by filters * which are not capable of processing a smaller source bitmap into a * larger destination. */ bool applyCropRectDeprecated(const Context&, Proxy* proxy, const SkBitmap& src, SkIPoint* srcOffset, SkIRect* bounds, SkBitmap* result) const; sk_sp applyCropRect(const Context&, SkSpecialImage* src, SkIPoint* srcOffset, SkIRect* bounds) const; /** * Creates a modified Context for use when recursing up the image filter DAG. * The clip bounds are adjusted to accommodate any margins that this * filter requires by calling this node's * onFilterNodeBounds(..., kReverse_MapDirection). */ Context mapContext(const Context& ctx) const; private: friend class SkGraphics; static void PurgeCache(); void init(sk_sp* inputs, int inputCount, const CropRect* cropRect); bool filterImageDeprecated(Proxy*, const SkBitmap& src, const Context&, SkBitmap* result, SkIPoint* offset) const; bool usesSrcInput() const { return fUsesSrcInput; } virtual bool affectsTransparentBlack() const { return false; } SkAutoSTArray<2, sk_sp> fInputs; bool fUsesSrcInput; CropRect fCropRect; uint32_t fUniqueID; // Globally unique mutable SkTArray fCacheKeys; mutable SkMutex fMutex; typedef SkFlattenable INHERITED; }; /** * Helper to unflatten the common data, and return NULL if we fail. */ #define SK_IMAGEFILTER_UNFLATTEN_COMMON(localVar, expectedCount) \ Common localVar; \ do { \ if (!localVar.unflatten(buffer, expectedCount)) { \ return NULL; \ } \ } while (0) #endif