/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkImageFilter_DEFINED #define SkImageFilter_DEFINED #include "SkFlattenable.h" #include "SkMatrix.h" #include "SkRect.h" class SkBitmap; class SkColorFilter; class SkBaseDevice; struct SkIPoint; class SkShader; class GrEffectRef; class GrTexture; /** * Base class for image filters. If one is installed in the paint, then * all drawing occurs as usual, but it is as if the drawing happened into an * offscreen (before the xfermode is applied). This offscreen bitmap will * then be handed to the imagefilter, who in turn creates a new bitmap which * is what will finally be drawn to the device (using the original xfermode). */ class SK_API SkImageFilter : public SkFlattenable { public: SK_DECLARE_INST_COUNT(SkImageFilter) class CropRect { public: enum CropEdge { kHasLeft_CropEdge = 0x01, kHasTop_CropEdge = 0x02, kHasRight_CropEdge = 0x04, kHasBottom_CropEdge = 0x08, kHasAll_CropEdge = 0x0F, }; CropRect() {} explicit CropRect(const SkRect& rect, uint32_t flags = kHasAll_CropEdge) : fRect(rect), fFlags(flags) {} uint32_t flags() const { return fFlags; } const SkRect& rect() const { return fRect; } private: SkRect fRect; uint32_t fFlags; }; class Context { public: Context(const SkMatrix& ctm, const SkIRect& clipBounds) : fCTM(ctm), fClipBounds(clipBounds) { } const SkMatrix& ctm() const { return fCTM; } const SkIRect& clipBounds() const { return fClipBounds; } private: SkMatrix fCTM; SkIRect fClipBounds; }; class Proxy { public: virtual ~Proxy() {}; virtual SkBaseDevice* createDevice(int width, int height) = 0; // returns true if the proxy can handle this filter natively virtual bool canHandleImageFilter(const SkImageFilter*) = 0; // returns true if the proxy handled the filter itself. if this returns // false then the filter's code will be called. virtual bool filterImage(const SkImageFilter*, const SkBitmap& src, const Context&, SkBitmap* result, SkIPoint* offset) = 0; }; /** * Request a new (result) image to be created from the src image. * If the src has no pixels (isNull()) then the request just wants to * receive the config and width/height of the result. * * The matrix is the current matrix on the canvas. * * Offset is the amount to translate the resulting image relative to the * src when it is drawn. This is an out-param. * * If the result image cannot be created, return false, in which case both * the result and offset parameters will be ignored by the caller. */ bool filterImage(Proxy*, const SkBitmap& src, const Context&, SkBitmap* result, SkIPoint* offset) const; /** * Given the src bounds of an image, this returns the bounds of the result * image after the filter has been applied. */ bool filterBounds(const SkIRect& src, const SkMatrix& ctm, SkIRect* dst) const; /** * Returns true if the filter can be processed on the GPU. This is most * often used for multi-pass effects, where intermediate results must be * rendered to textures. For single-pass effects, use asNewEffect(). * The default implementation returns asNewEffect(NULL, NULL, SkMatrix::I(), * SkIRect()). */ virtual bool canFilterImageGPU() const; /** * Process this image filter on the GPU. This is most often used for * multi-pass effects, where intermediate results must be rendered to * textures. For single-pass effects, use asNewEffect(). src is the * source image for processing, as a texture-backed bitmap. result is * the destination bitmap, which should contain a texture-backed pixelref * on success. offset is the amount to translate the resulting image * relative to the src when it is drawn. The default implementation does * single-pass processing using asNewEffect(). */ virtual bool filterImageGPU(Proxy*, const SkBitmap& src, const Context&, SkBitmap* result, SkIPoint* offset) const; /** * Returns whether this image filter is a color filter and puts the color filter into the * "filterPtr" parameter if it can. Does nothing otherwise. * If this returns false, then the filterPtr is unchanged. * If this returns true, then if filterPtr is not null, it must be set to a ref'd colorfitler * (i.e. it may not be set to NULL). */ virtual bool asColorFilter(SkColorFilter** filterPtr) const; /** * Returns the number of inputs this filter will accept (some inputs can * be NULL). */ int countInputs() const { return fInputCount; } /** * Returns the input filter at a given index, or NULL if no input is * connected. The indices used are filter-specific. */ SkImageFilter* getInput(int i) const { SkASSERT(i < fInputCount); return fInputs[i]; } /** * Returns whether any edges of the crop rect have been set. The crop * rect is set at construction time, and determines which pixels from the * input image will be processed. The size of the crop rect should be * used as the size of the destination image. The origin of this rect * should be used to offset access to the input images, and should also * be added to the "offset" parameter in onFilterImage and * filterImageGPU(). (The latter ensures that the resulting buffer is * drawn in the correct location.) */ bool cropRectIsSet() const { return fCropRect.flags() != 0x0; } // Default impl returns union of all input bounds. virtual void computeFastBounds(const SkRect&, SkRect*) const; #ifdef SK_SUPPORT_GPU /** * Wrap the given texture in a texture-backed SkBitmap. */ static void WrapTexture(GrTexture* texture, int width, int height, SkBitmap* result); /** * Recursively evaluate this filter on the GPU. If the filter has no GPU * implementation, it will be processed in software and uploaded to the GPU. */ bool getInputResultGPU(SkImageFilter::Proxy* proxy, const SkBitmap& src, const Context&, SkBitmap* result, SkIPoint* offset) const; #endif SK_DEFINE_FLATTENABLE_TYPE(SkImageFilter) protected: SkImageFilter(int inputCount, SkImageFilter** inputs, const CropRect* cropRect = NULL); // Convenience constructor for 1-input filters. explicit SkImageFilter(SkImageFilter* input, const CropRect* cropRect = NULL); // Convenience constructor for 2-input filters. SkImageFilter(SkImageFilter* input1, SkImageFilter* input2, const CropRect* cropRect = NULL); virtual ~SkImageFilter(); /** * Constructs a new SkImageFilter read from an SkReadBuffer object. * * @param inputCount The exact number of inputs expected for this SkImageFilter object. * -1 can be used if the filter accepts any number of inputs. * @param rb SkReadBuffer object from which the SkImageFilter is read. */ explicit SkImageFilter(int inputCount, SkReadBuffer& rb); virtual void flatten(SkWriteBuffer& wb) const SK_OVERRIDE; /** * This is the virtual which should be overridden by the derived class * to perform image filtering. * * src is the original primitive bitmap. If the filter has a connected * input, it should recurse on that input and use that in place of src. * * The matrix is the current matrix on the canvas. * * Offset is the amount to translate the resulting image relative to the * src when it is drawn. This is an out-param. * * If the result image cannot be created, this should false, in which * case both the result and offset parameters will be ignored by the * caller. */ virtual bool onFilterImage(Proxy*, const SkBitmap& src, const Context&, SkBitmap* result, SkIPoint* offset) const; // Given the bounds of the destination rect to be filled in device // coordinates (first parameter), and the CTM, compute (conservatively) // which rect of the source image would be required (third parameter). // Used for clipping and temp-buffer allocations, so the result need not // be exact, but should never be smaller than the real answer. The default // implementation recursively unions all input bounds, or returns false if // no inputs. virtual bool onFilterBounds(const SkIRect&, const SkMatrix&, SkIRect*) const; /** Computes source bounds as the src bitmap bounds offset by srcOffset. * Apply the transformed crop rect to the bounds if any of the * corresponding edge flags are set. Intersects the result against the * context's clipBounds, and returns the result in "bounds". If there is * no intersection, returns false and leaves "bounds" unchanged. */ bool applyCropRect(const Context&, const SkBitmap& src, const SkIPoint& srcOffset, SkIRect* bounds) const; /** Same as the above call, except that if the resulting crop rect is not * entirely contained by the source bitmap's bounds, it creates a new * bitmap in "result" and pads the edges with transparent black. In that * case, the srcOffset is modified to be the same as the bounds, since no * further adjustment is needed by the caller. This version should only * be used by filters which are not capable of processing a smaller * source bitmap into a larger destination. */ bool applyCropRect(const Context&, Proxy* proxy, const SkBitmap& src, SkIPoint* srcOffset, SkIRect* bounds, SkBitmap* result) const; /** * Returns true if the filter can be expressed a single-pass * GrEffect, used to process this filter on the GPU, or false if * not. * * If effect is non-NULL, a new GrEffect instance is stored * in it. The caller assumes ownership of the stage, and it is up to the * caller to unref it. * * The effect can assume its vertexCoords space maps 1-to-1 with texels * in the texture. "matrix" is a transformation to apply to filter * parameters before they are used in the effect. Note that this function * will be called with (NULL, NULL, SkMatrix::I()) to query for support, * so returning "true" indicates support for all possible matrices. */ virtual bool asNewEffect(GrEffectRef** effect, GrTexture*, const SkMatrix& matrix, const SkIRect& bounds) const; private: typedef SkFlattenable INHERITED; int fInputCount; SkImageFilter** fInputs; CropRect fCropRect; }; #endif