/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkClipStack_DEFINED #define SkClipStack_DEFINED #include "SkDeque.h" #include "SkPath.h" #include "SkRect.h" #include "SkRegion.h" #include "SkTDArray.h" // Because a single save/restore state can have multiple clips, this class // stores the stack depth (fSaveCount) and clips (fDeque) separately. // Each clip in fDeque stores the stack state to which it belongs // (i.e., the fSaveCount in force when it was added). Restores are thus // implemented by removing clips from fDeque that have an fSaveCount larger // then the freshly decremented count. class SK_API SkClipStack { public: enum BoundsType { // The bounding box contains all the pixels that can be written to kNormal_BoundsType, // The bounding box contains all the pixels that cannot be written to. // The real bound extends out to infinity and all the pixels outside // of the bound can be written to. Note that some of the pixels inside // the bound may also be writeable but all pixels that cannot be // written to are guaranteed to be inside. kInsideOut_BoundsType }; class Element { public: enum Type { //!< This element makes the clip empty (regardless of previous elements). kEmpty_Type, //!< This element combines a rect with the current clip using a set operation kRect_Type, //!< This element combines a path with the current clip using a set operation kPath_Type, }; Element() { this->initCommon(0, SkRegion::kReplace_Op, false); this->setEmpty(); } Element(const SkRect& rect, SkRegion::Op op, bool doAA) { this->initRect(0, rect, op, doAA); } Element(const SkPath& path, SkRegion::Op op, bool doAA) { this->initPath(0, path, op, doAA); } //!< Call to get the type of the clip element. Type getType() const { return fType; } //!< Call if getType() is kPath to get the path. const SkPath& getPath() const { return fPath; } //!< Call if getType() is kRect to get the rect. const SkRect& getRect() const { return fRect; } //!< Call if getType() is not kEmpty to get the set operation used to combine this element. SkRegion::Op getOp() const { return fOp; } /** If getType() is not kEmpty this indicates whether the clip shape should be anti-aliased when it is rasterized. */ bool isAA() const { return fDoAA; } /** The GenID can be used by clip stack clients to cache representations of the clip. The ID corresponds to the set of clip elements up to and including this element within the stack not to the element itself. That is the same clip path in different stacks will have a different ID since the elements produce different clip result in the context of their stacks. */ int32_t getGenID() const { return fGenID; } private: friend class SkClipStack; SkPath fPath; SkRect fRect; int fSaveCount; // save count of stack when this element was added. SkRegion::Op fOp; Type fType; bool fDoAA; /* fFiniteBoundType and fFiniteBound are used to incrementally update the clip stack's bound. When fFiniteBoundType is kNormal_BoundsType, fFiniteBound represents the conservative bounding box of the pixels that aren't clipped (i.e., any pixels that can be drawn to are inside the bound). When fFiniteBoundType is kInsideOut_BoundsType (which occurs when a clip is inverse filled), fFiniteBound represents the conservative bounding box of the pixels that _are_ clipped (i.e., any pixels that cannot be drawn to are inside the bound). When fFiniteBoundType is kInsideOut_BoundsType the actual bound is the infinite plane. This behavior of fFiniteBoundType and fFiniteBound is required so that we can capture the cancelling out of the extensions to infinity when two inverse filled clips are Booleaned together. */ SkClipStack::BoundsType fFiniteBoundType; SkRect fFiniteBound; // When element is applied to the previous elements in the stack is the result known to be // equivalent to a single rect intersection? IIOW, is the clip effectively a rectangle. bool fIsIntersectionOfRects; int fGenID; Element(int saveCount) { this->initCommon(saveCount, SkRegion::kReplace_Op, false); this->setEmpty(); } Element(int saveCount, const SkRect& rect, SkRegion::Op op, bool doAA) { this->initRect(saveCount, rect, op, doAA); } Element(int saveCount, const SkPath& path, SkRegion::Op op, bool doAA) { this->initPath(saveCount, path, op, doAA); } void initCommon(int saveCount, SkRegion::Op op, bool doAA) { fSaveCount = saveCount; fOp = op; fDoAA = doAA; // A default of inside-out and empty bounds means the bounds are effectively void as it // indicates that nothing is known to be outside the clip. fFiniteBoundType = kInsideOut_BoundsType; fFiniteBound.setEmpty(); fIsIntersectionOfRects = false; fGenID = kInvalidGenID; } void initRect(int saveCount, const SkRect& rect, SkRegion::Op op, bool doAA) { fRect = rect; fType = kRect_Type; this->initCommon(saveCount, op, doAA); } void initPath(int saveCount, const SkPath& path, SkRegion::Op op, bool doAA) { fPath = path; fType = kPath_Type; this->initCommon(saveCount, op, doAA); } void setEmpty() { fType = kEmpty_Type; fFiniteBound.setEmpty(); fFiniteBoundType = kNormal_BoundsType; fIsIntersectionOfRects = false; fRect.setEmpty(); fPath.reset(); fGenID = kEmptyGenID; } // All Element methods below are only used within SkClipStack.cpp inline void checkEmpty() const; inline bool operator==(const Element& b) const; inline bool operator!=(const Element& b) const; inline bool canBeIntersectedInPlace(int saveCount, SkRegion::Op op) const; /* This method checks to see if two rect clips can be safely merged into one. The issue here is that to be strictly correct all the edges of the resulting rect must have the same anti-aliasing. */ bool rectRectIntersectAllowed(const SkRect& newR, bool newAA) const; /** Determines possible finite bounds for the Element given the previous element of the stack */ void updateBoundAndGenID(const Element* prior); // The different combination of fill & inverse fill when combining bounding boxes enum FillCombo { kPrev_Cur_FillCombo, kPrev_InvCur_FillCombo, kInvPrev_Cur_FillCombo, kInvPrev_InvCur_FillCombo }; // per-set operation functions used by updateBoundAndGenID(). inline void combineBoundsDiff(FillCombo combination, const SkRect& prevFinite); inline void combineBoundsXOR(int combination, const SkRect& prevFinite); inline void combineBoundsUnion(int combination, const SkRect& prevFinite); inline void combineBoundsIntersection(int combination, const SkRect& prevFinite); inline void combineBoundsRevDiff(int combination, const SkRect& prevFinite); }; SkClipStack(); SkClipStack(const SkClipStack& b); explicit SkClipStack(const SkRect& r); explicit SkClipStack(const SkIRect& r); ~SkClipStack(); SkClipStack& operator=(const SkClipStack& b); bool operator==(const SkClipStack& b) const; bool operator!=(const SkClipStack& b) const { return !(*this == b); } void reset(); int getSaveCount() const { return fSaveCount; } void save(); void restore(); /** * getBounds places the current finite bound in its first parameter. In its * second, it indicates which kind of bound is being returned. If * 'canvFiniteBound' is a normal bounding box then it encloses all writeable * pixels. If 'canvFiniteBound' is an inside out bounding box then it * encloses all the un-writeable pixels and the true/normal bound is the * infinite plane. isIntersectionOfRects is an optional parameter * that is true if 'canvFiniteBound' resulted from an intersection of rects. */ void getBounds(SkRect* canvFiniteBound, BoundsType* boundType, bool* isIntersectionOfRects = NULL) const; /** * Takes an input rect in device space and conservatively clips it to the * clip-stack. If false is returned then the rect does not intersect the * clip and is unmodified. */ bool intersectRectWithClip(SkRect* devRect) const; void clipDevRect(const SkIRect& ir, SkRegion::Op op) { SkRect r; r.set(ir); this->clipDevRect(r, op, false); } void clipDevRect(const SkRect&, SkRegion::Op, bool doAA); void clipDevPath(const SkPath&, SkRegion::Op, bool doAA); // An optimized version of clipDevRect(emptyRect, kIntersect, ...) void clipEmpty(); /** * isWideOpen returns true if the clip state corresponds to the infinite * plane (i.e., draws are not limited at all) */ bool isWideOpen() const; /** * Add a callback function that will be called whenever a clip state * is no longer viable. This will occur whenever restore * is called or when a clipDevRect or clipDevPath call updates the * clip within an existing save/restore state. Each clip state is * represented by a unique generation ID. */ typedef void (*PFPurgeClipCB)(int genID, void* data); void addPurgeClipCallback(PFPurgeClipCB callback, void* data) const; /** * Remove a callback added earlier via addPurgeClipCallback */ void removePurgeClipCallback(PFPurgeClipCB callback, void* data) const; /** * The generation ID has three reserved values to indicate special * (potentially ignorable) cases */ static const int32_t kInvalidGenID = 0; static const int32_t kEmptyGenID = 1; // no pixels writeable static const int32_t kWideOpenGenID = 2; // all pixels writeable int32_t getTopmostGenID() const; public: class Iter { public: enum IterStart { kBottom_IterStart = SkDeque::Iter::kFront_IterStart, kTop_IterStart = SkDeque::Iter::kBack_IterStart }; /** * Creates an uninitialized iterator. Must be reset() */ Iter(); Iter(const SkClipStack& stack, IterStart startLoc); struct Clip { Clip() : fRect(NULL), fPath(NULL), fOp(SkRegion::kIntersect_Op), fDoAA(false), fGenID(kInvalidGenID) {} friend bool operator==(const Clip& a, const Clip& b); friend bool operator!=(const Clip& a, const Clip& b); /** * Gets the bounds of the clip element, either the rect or path bounds. (Whether the * shape is inverse filled is not considered) */ const SkRect& getBounds() const; /** * Conservatively checks whether the clip shape (rect/path) contains the rect param. * (Whether the shape is inverse filled is not considered) */ bool contains(const SkRect&) const; /** * Is the clip shape inverse filled. */ bool isInverseFilled() const; const SkRect* fRect; // if non-null, this is a rect clip const SkPath* fPath; // if non-null, this is a path clip SkRegion::Op fOp; bool fDoAA; int32_t fGenID; }; /** * Return the clip for this element in the iterator. If next() returns * NULL, then the iterator is done. The type of clip is determined by * the pointers fRect and fPath: * * fRect==NULL fPath!=NULL path clip * fRect!=NULL fPath==NULL rect clip * fRect==NULL fPath==NULL empty clip */ const Clip* next(); const Clip* prev(); /** * This is a variant of next() that greedily attempts to combine elements when possible. * Currently it attempts to combine intersecting rectangles, though it may do more in the * future. The returned Clip may not refer to a single element in the stack, so its * generation ID may be invalid. */ const Clip* nextCombined(); /** * Moves the iterator to the topmost clip with the specified RegionOp * and returns that clip. If no clip with that op is found, * returns NULL. */ const Clip* skipToTopmost(SkRegion::Op op); /** * Restarts the iterator on a clip stack. */ void reset(const SkClipStack& stack, IterStart startLoc); private: const SkClipStack* fStack; Clip fClip; SkDeque::Iter fIter; SkRect fCombinedRect; // used for nextCombined() /** * updateClip updates fClip to the current state of fIter. It unifies * functionality needed by both next() and prev(). */ const Clip* updateClip(const SkClipStack::Element* element); }; /** * The B2TIter iterates from the bottom of the stack to the top. * It inherits privately from Iter to prevent access to reverse iteration. */ class B2TIter : private Iter { public: B2TIter() {} /** * Wrap Iter's 2 parameter ctor to force initialization to the * beginning of the deque/bottom of the stack */ B2TIter(const SkClipStack& stack) : INHERITED(stack, kBottom_IterStart) { } using Iter::Clip; using Iter::next; /** * Wrap Iter::reset to force initialization to the * beginning of the deque/bottom of the stack */ void reset(const SkClipStack& stack) { this->INHERITED::reset(stack, kBottom_IterStart); } private: typedef Iter INHERITED; }; /** * GetConservativeBounds returns a conservative bound of the current clip. * Since this could be the infinite plane (if inverse fills were involved) the * maxWidth and maxHeight parameters can be used to limit the returned bound * to the expected drawing area. Similarly, the offsetX and offsetY parameters * allow the caller to offset the returned bound to account for translated * drawing areas (i.e., those resulting from a saveLayer). For finite bounds, * the translation (+offsetX, +offsetY) is applied before the clamp to the * maximum rectangle: [0,maxWidth) x [0,maxHeight). * isIntersectionOfRects is an optional parameter that is true when * 'devBounds' is the result of an intersection of rects. In this case * 'devBounds' is the exact answer/clip. */ void getConservativeBounds(int offsetX, int offsetY, int maxWidth, int maxHeight, SkRect* devBounds, bool* isIntersectionOfRects = NULL) const; private: friend class Iter; SkDeque fDeque; int fSaveCount; // Generation ID for the clip stack. This is incremented for each // clipDevRect and clipDevPath call. 0 is reserved to indicate an // invalid ID. static int32_t gGenID; struct ClipCallbackData { PFPurgeClipCB fCallback; void* fData; friend bool operator==(const ClipCallbackData& a, const ClipCallbackData& b) { return a.fCallback == b.fCallback && a.fData == b.fData; } }; mutable SkTDArray fCallbackData; /** * Invoke all the purge callbacks passing in element's generation ID. */ void purgeClip(Element* element); /** * Return the next unique generation ID. */ static int32_t GetNextGenID(); }; #endif