/* Copyright 2010 Google Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "GrContext.h" #include "GrTypes.h" #include "GrTextureCache.h" #include "GrTextStrike.h" #include "GrMemory.h" #include "GrPathIter.h" #include "GrClipIterator.h" #include "GrIndexBuffer.h" #include "GrInOrderDrawBuffer.h" #include "GrBufferAllocPool.h" #define DEFER_TEXT_RENDERING 1 #define BATCH_RECT_TO_RECT (1 && !GR_STATIC_RECT_VB) static const size_t MAX_TEXTURE_CACHE_COUNT = 128; static const size_t MAX_TEXTURE_CACHE_BYTES = 8 * 1024 * 1024; static const size_t DRAW_BUFFER_VBPOOL_BUFFER_SIZE = 1 << 18; static const int DRAW_BUFFER_VBPOOL_PREALLOC_BUFFERS = 4; // We are currently only batching Text and drawRectToRect, both // of which use the quad index buffer. static const size_t DRAW_BUFFER_IBPOOL_BUFFER_SIZE = 0; static const int DRAW_BUFFER_IBPOOL_PREALLOC_BUFFERS = 0; GrContext* GrContext::Create(GrGpu::Engine engine, GrGpu::Platform3DContext context3D) { GrContext* ctx = NULL; GrGpu* fGpu = GrGpu::Create(engine, context3D); if (NULL != fGpu) { ctx = new GrContext(fGpu); fGpu->unref(); } return ctx; } GrContext* GrContext::CreateGLShaderContext() { return GrContext::Create(GrGpu::kOpenGL_Shaders_Engine, NULL); } GrContext::~GrContext() { fGpu->unref(); delete fTextureCache; delete fFontCache; delete fDrawBuffer; delete fDrawBufferVBAllocPool; delete fDrawBufferVBAllocPool; } void GrContext::abandonAllTextures() { fTextureCache->deleteAll(GrTextureCache::kAbandonTexture_DeleteMode); fFontCache->abandonAll(); } GrTextureEntry* GrContext::findAndLockTexture(GrTextureKey* key, const GrSamplerState& sampler) { finalizeTextureKey(key, sampler); return fTextureCache->findAndLock(*key); } static void stretchImage(void* dst, int dstW, int dstH, void* src, int srcW, int srcH, int bpp) { GrFixed dx = (srcW << 16) / dstW; GrFixed dy = (srcH << 16) / dstH; GrFixed y = dy >> 1; int dstXLimit = dstW*bpp; for (int j = 0; j < dstH; ++j) { GrFixed x = dx >> 1; void* srcRow = (uint8_t*)src + (y>>16)*srcW*bpp; void* dstRow = (uint8_t*)dst + j*dstW*bpp; for (int i = 0; i < dstXLimit; i += bpp) { memcpy((uint8_t*) dstRow + i, (uint8_t*) srcRow + (x>>16)*bpp, bpp); x += dx; } y += dy; } } GrTextureEntry* GrContext::createAndLockTexture(GrTextureKey* key, const GrSamplerState& sampler, const GrGpu::TextureDesc& desc, void* srcData, size_t rowBytes) { GrAssert(key->width() == desc.fWidth); GrAssert(key->height() == desc.fHeight); #if GR_DUMP_TEXTURE_UPLOAD GrPrintf("GrContext::createAndLockTexture [%d %d]\n", desc.fWidth, desc.fHeight); #endif GrTextureEntry* entry = NULL; bool special = finalizeTextureKey(key, sampler); if (special) { GrTextureEntry* clampEntry; GrTextureKey clampKey(*key); clampEntry = findAndLockTexture(&clampKey, GrSamplerState::ClampNoFilter()); if (NULL == clampEntry) { clampEntry = createAndLockTexture(&clampKey, GrSamplerState::ClampNoFilter(), desc, srcData, rowBytes); GrAssert(NULL != clampEntry); if (NULL == clampEntry) { return NULL; } } GrGpu::TextureDesc rtDesc = desc; rtDesc.fFlags |= GrGpu::kRenderTarget_TextureFlag | GrGpu::kNoPathRendering_TextureFlag; rtDesc.fWidth = GrNextPow2(GrMax(desc.fWidth, fGpu->minRenderTargetWidth())); rtDesc.fHeight = GrNextPow2(GrMax(desc.fHeight, fGpu->minRenderTargetHeight())); GrTexture* texture = fGpu->createTexture(rtDesc, NULL, 0); if (NULL != texture) { GrDrawTarget::AutoStateRestore asr(fGpu); fGpu->setRenderTarget(texture->asRenderTarget()); fGpu->setTexture(0, clampEntry->texture()); fGpu->setStencilPass(GrDrawTarget::kNone_StencilPass); fGpu->setViewMatrix(GrMatrix::I()); fGpu->setAlpha(0xff); fGpu->setBlendFunc(GrDrawTarget::kOne_BlendCoeff, GrDrawTarget::kZero_BlendCoeff); fGpu->disableState(GrDrawTarget::kDither_StateBit | GrDrawTarget::kClip_StateBit | GrDrawTarget::kAntialias_StateBit); GrSamplerState stretchSampler(GrSamplerState::kClamp_WrapMode, GrSamplerState::kClamp_WrapMode, sampler.isFilter()); fGpu->setSamplerState(0, stretchSampler); static const GrVertexLayout layout = GrDrawTarget::StageTexCoordVertexLayoutBit(0,0); GrDrawTarget::AutoReleaseGeometry arg(fGpu, layout, 4, 0); if (arg.succeeded()) { GrPoint* verts = (GrPoint*) arg.vertices(); verts[0].setIRectFan(0, 0, texture->width(), texture->height(), 2*sizeof(GrPoint)); verts[1].setIRectFan(0, 0, 1, 1, 2*sizeof(GrPoint)); fGpu->drawNonIndexed(GrDrawTarget::kTriangleFan_PrimitiveType, 0, 4); entry = fTextureCache->createAndLock(*key, texture); } texture->removeRenderTarget(); } else { // TODO: Our CPU stretch doesn't filter. But we create separate // stretched textures when the sampler state is either filtered or // not. Either implement filtered stretch blit on CPU or just create // one when FBO case fails. rtDesc.fFlags = 0; // no longer need to clamp at min RT size. rtDesc.fWidth = GrNextPow2(desc.fWidth); rtDesc.fHeight = GrNextPow2(desc.fHeight); int bpp = GrTexture::BytesPerPixel(desc.fFormat); GrAutoSMalloc<128*128*4> stretchedPixels(bpp * rtDesc.fWidth * rtDesc.fHeight); stretchImage(stretchedPixels.get(), rtDesc.fWidth, rtDesc.fHeight, srcData, desc.fWidth, desc.fHeight, bpp); size_t stretchedRowBytes = rtDesc.fWidth * bpp; GrTexture* texture = fGpu->createTexture(rtDesc, stretchedPixels.get(), stretchedRowBytes); GrAssert(NULL != texture); entry = fTextureCache->createAndLock(*key, texture); } fTextureCache->unlock(clampEntry); } else { GrTexture* texture = fGpu->createTexture(desc, srcData, rowBytes); if (NULL != texture) { entry = fTextureCache->createAndLock(*key, texture); } else { entry = NULL; } } return entry; } void GrContext::unlockTexture(GrTextureEntry* entry) { fTextureCache->unlock(entry); } void GrContext::detachCachedTexture(GrTextureEntry* entry) { fTextureCache->detach(entry); } void GrContext::reattachAndUnlockCachedTexture(GrTextureEntry* entry) { fTextureCache->reattachAndUnlock(entry); } GrTexture* GrContext::createUncachedTexture(const GrGpu::TextureDesc& desc, void* srcData, size_t rowBytes) { return fGpu->createTexture(desc, srcData, rowBytes); } void GrContext::getTextureCacheLimits(int* maxTextures, size_t* maxTextureBytes) const { fTextureCache->getLimits(maxTextures, maxTextureBytes); } void GrContext::setTextureCacheLimits(int maxTextures, size_t maxTextureBytes) { fTextureCache->setLimits(maxTextures, maxTextureBytes); } int GrContext::getMaxTextureDimension() { return fGpu->maxTextureDimension(); } /////////////////////////////////////////////////////////////////////////////// GrRenderTarget* GrContext::createPlatformRenderTarget(intptr_t platformRenderTarget, int width, int height) { return fGpu->createPlatformRenderTarget(platformRenderTarget, width, height); } bool GrContext::supportsIndex8PixelConfig(const GrSamplerState& sampler, int width, int height) { if (!fGpu->supports8BitPalette()) { return false; } bool isPow2 = GrIsPow2(width) && GrIsPow2(height); if (!isPow2) { if (!fGpu->npotTextureSupport()) { return false; } bool tiled = sampler.getWrapX() != GrSamplerState::kClamp_WrapMode || sampler.getWrapY() != GrSamplerState::kClamp_WrapMode; if (tiled && !fGpu->npotTextureTileSupport()) { return false; } } return true; } //////////////////////////////////////////////////////////////////////////////// void GrContext::setClip(const GrClip& clip) { fGpu->setClip(clip); fGpu->enableState(GrDrawTarget::kClip_StateBit); } void GrContext::setClip(const GrIRect& rect) { GrClip clip; clip.setRect(rect); fGpu->setClip(clip); } //////////////////////////////////////////////////////////////////////////////// void GrContext::eraseColor(GrColor color) { fGpu->eraseColor(color); } void GrContext::drawPaint(const GrPaint& paint) { // set rect to be big enough to fill the space, but not super-huge, so we // don't overflow fixed-point implementations GrRect r(fGpu->getClip().getBounds()); GrMatrix inverse; if (fGpu->getViewInverse(&inverse)) { inverse.mapRect(&r); } else { GrPrintf("---- fGpu->getViewInverse failed\n"); } this->drawRect(paint, r); } /* create a triangle strip that strokes the specified triangle. There are 8 unique vertices, but we repreat the last 2 to close up. Alternatively we could use an indices array, and then only send 8 verts, but not sure that would be faster. */ static void setStrokeRectStrip(GrPoint verts[10], const GrRect& rect, GrScalar width) { const GrScalar rad = GrScalarHalf(width); verts[0].set(rect.fLeft + rad, rect.fTop + rad); verts[1].set(rect.fLeft - rad, rect.fTop - rad); verts[2].set(rect.fRight - rad, rect.fTop + rad); verts[3].set(rect.fRight + rad, rect.fTop - rad); verts[4].set(rect.fRight - rad, rect.fBottom - rad); verts[5].set(rect.fRight + rad, rect.fBottom + rad); verts[6].set(rect.fLeft + rad, rect.fBottom - rad); verts[7].set(rect.fLeft - rad, rect.fBottom + rad); verts[8] = verts[0]; verts[9] = verts[1]; } void GrContext::drawRect(const GrPaint& paint, const GrRect& rect, GrScalar width, const GrMatrix* matrix) { bool textured = NULL != paint.getTexture(); GrDrawTarget* target = this->prepareToDraw(paint, kUnbuffered_DrawCategory); if (width >= 0) { // TODO: consider making static vertex buffers for these cases. // Hairline could be done by just adding closing vertex to // unitSquareVertexBuffer() GrVertexLayout layout = (textured) ? GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(0) : 0; static const int worstCaseVertCount = 10; GrDrawTarget::AutoReleaseGeometry geo(target, layout, worstCaseVertCount, 0); if (!geo.succeeded()) { return; } GrDrawTarget::PrimitiveType primType; int vertCount; GrPoint* vertex = geo.positions(); if (width > 0) { vertCount = 10; primType = GrDrawTarget::kTriangleStrip_PrimitiveType; setStrokeRectStrip(vertex, rect, width); } else { // hairline vertCount = 5; primType = GrDrawTarget::kLineStrip_PrimitiveType; vertex[0].set(rect.fLeft, rect.fTop); vertex[1].set(rect.fRight, rect.fTop); vertex[2].set(rect.fRight, rect.fBottom); vertex[3].set(rect.fLeft, rect.fBottom); vertex[4].set(rect.fLeft, rect.fTop); } GrDrawTarget::AutoViewMatrixRestore avmr; if (NULL != matrix) { avmr.set(target); target->preConcatViewMatrix(*matrix); target->preConcatSamplerMatrix(0, *matrix); } target->drawNonIndexed(primType, 0, vertCount); } else { #if GR_STATIC_RECT_VB GrVertexLayout layout = (textured) ? GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(0) : 0; target->setVertexSourceToBuffer(layout, fGpu->getUnitSquareVertexBuffer()); GrDrawTarget::AutoViewMatrixRestore avmr(target); GrMatrix m; m.setAll(rect.width(), 0, rect.fLeft, 0, rect.height(), rect.fTop, 0, 0, GrMatrix::I()[8]); if (NULL != matrix) { m.postConcat(*matrix); } target->preConcatViewMatrix(m); if (textured) { target->preConcatSamplerMatrix(0, m); } target->drawNonIndexed(GrDrawTarget::kTriangleFan_PrimitiveType, 0, 4); #else target->drawSimpleRect(rect, matrix, textured ? 1 : 0); #endif } } void GrContext::drawRectToRect(const GrPaint& paint, const GrRect& dstRect, const GrRect& srcRect, const GrMatrix* dstMatrix, const GrMatrix* srcMatrix) { if (NULL == paint.getTexture()) { drawRect(paint, dstRect, -1, dstMatrix); return; } GR_STATIC_ASSERT(!BATCH_RECT_TO_RECT || !GR_STATIC_RECT_VB); #if GR_STATIC_RECT_VB GrDrawTarget* target = this->prepareToDraw(paint, kUnbuffered_DrawCategory); GrVertexLayout layout = GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(0); GrDrawTarget::AutoViewMatrixRestore avmr(target); GrMatrix m; m.setAll(dstRect.width(), 0, dstRect.fLeft, 0, dstRect.height(), dstRect.fTop, 0, 0, GrMatrix::I()[8]); if (NULL != dstMatrix) { m.postConcat(*dstMatrix); } target->preConcatViewMatrix(m); m.setAll(srcRect.width(), 0, srcRect.fLeft, 0, srcRect.height(), srcRect.fTop, 0, 0, GrMatrix::I()[8]); if (NULL != srcMatrix) { m.postConcat(*srcMatrix); } target->preConcatSamplerMatrix(0, m); target->setVertexSourceToBuffer(layout, fGpu->getUnitSquareVertexBuffer()); target->drawNonIndexed(GrDrawTarget::kTriangleFan_PrimitiveType, 0, 4); #else GrDrawTarget* target; #if BATCH_RECT_TO_RECT target = this->prepareToDraw(paint, kBuffered_DrawCategory); #else target = this->prepareToDraw(paint, kUnbuffered_DrawCategory); #endif const GrRect* srcRects[GrDrawTarget::kNumStages] = {NULL}; const GrMatrix* srcMatrices[GrDrawTarget::kNumStages] = {NULL}; srcRects[0] = &srcRect; srcMatrices[0] = srcMatrix; target->drawRect(dstRect, dstMatrix, 1, srcRects, srcMatrices); #endif } void GrContext::drawVertices(const GrPaint& paint, GrDrawTarget::PrimitiveType primitiveType, int vertexCount, const GrPoint positions[], const GrPoint texCoords[], const GrColor colors[], const uint16_t indices[], int indexCount) { GrVertexLayout layout = 0; int vertexSize = sizeof(GrPoint); GrDrawTarget::AutoReleaseGeometry geo; GrDrawTarget* target = this->prepareToDraw(paint, kUnbuffered_DrawCategory); if (NULL != paint.getTexture()) { if (NULL == texCoords) { layout |= GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(0); } else { layout |= GrDrawTarget::StageTexCoordVertexLayoutBit(0,0); vertexSize += sizeof(GrPoint); } } if (NULL != colors) { layout |= GrDrawTarget::kColor_VertexLayoutBit; vertexSize += sizeof(GrColor); } if (sizeof(GrPoint) != vertexSize) { if (!geo.set(target, layout, vertexCount, 0)) { GrPrintf("Failed to get space for vertices!"); return; } int texOffsets[GrDrawTarget::kMaxTexCoords]; int colorOffset; int vsize = GrDrawTarget::VertexSizeAndOffsetsByIdx(layout, texOffsets, &colorOffset); void* curVertex = geo.vertices(); for (int i = 0; i < vertexCount; ++i) { *((GrPoint*)curVertex) = positions[i]; if (texOffsets[0] > 0) { *(GrPoint*)((intptr_t)curVertex + texOffsets[0]) = texCoords[i]; } if (colorOffset > 0) { *(GrColor*)((intptr_t)curVertex + colorOffset) = colors[i]; } curVertex = (void*)((intptr_t)curVertex + vsize); } } else { target->setVertexSourceToArray(layout, positions, vertexCount); } if (NULL != indices) { target->setIndexSourceToArray(indices, indexCount); target->drawIndexed(primitiveType, 0, 0, vertexCount, indexCount); } else { target->drawNonIndexed(primitiveType, 0, vertexCount); } } //////////////////////////////////////////////////////////////////////////////// #define STENCIL_OFF 0 // Always disable stencil (even when needed) #define EVAL_TOL GR_Scalar1 static const uint32_t MAX_POINTS_PER_CURVE = 1 << 10; static uint32_t quadratic_point_count(const GrPoint points[], GrScalar tol) { GrScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]); // TODO: fixed points sqrt if (d < tol) { return 1; } else { // Each time we subdivide, d should be cut in 4. So we need to // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x) // points. // 2^(log4(x)) = sqrt(x); d = ceilf(sqrtf(d/tol)); return GrMin(GrNextPow2((uint32_t)d), MAX_POINTS_PER_CURVE); } } static uint32_t generate_quadratic_points(const GrPoint& p0, const GrPoint& p1, const GrPoint& p2, GrScalar tolSqd, GrPoint** points, uint32_t pointsLeft) { if (pointsLeft < 2 || (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) { (*points)[0] = p2; *points += 1; return 1; } GrPoint q[] = { GrPoint(GrScalarAve(p0.fX, p1.fX), GrScalarAve(p0.fY, p1.fY)), GrPoint(GrScalarAve(p1.fX, p2.fX), GrScalarAve(p1.fY, p2.fY)), }; GrPoint r(GrScalarAve(q[0].fX, q[1].fX), GrScalarAve(q[0].fY, q[1].fY)); pointsLeft >>= 1; uint32_t a = generate_quadratic_points(p0, q[0], r, tolSqd, points, pointsLeft); uint32_t b = generate_quadratic_points(r, q[1], p2, tolSqd, points, pointsLeft); return a + b; } static uint32_t cubic_point_count(const GrPoint points[], GrScalar tol) { GrScalar d = GrMax(points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]), points[2].distanceToLineSegmentBetweenSqd(points[0], points[3])); d = sqrtf(d); if (d < tol) { return 1; } else { d = ceilf(sqrtf(d/tol)); return GrMin(GrNextPow2((uint32_t)d), MAX_POINTS_PER_CURVE); } } static uint32_t generate_cubic_points(const GrPoint& p0, const GrPoint& p1, const GrPoint& p2, const GrPoint& p3, GrScalar tolSqd, GrPoint** points, uint32_t pointsLeft) { if (pointsLeft < 2 || (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd && p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) { (*points)[0] = p3; *points += 1; return 1; } GrPoint q[] = { GrPoint(GrScalarAve(p0.fX, p1.fX), GrScalarAve(p0.fY, p1.fY)), GrPoint(GrScalarAve(p1.fX, p2.fX), GrScalarAve(p1.fY, p2.fY)), GrPoint(GrScalarAve(p2.fX, p3.fX), GrScalarAve(p2.fY, p3.fY)) }; GrPoint r[] = { GrPoint(GrScalarAve(q[0].fX, q[1].fX), GrScalarAve(q[0].fY, q[1].fY)), GrPoint(GrScalarAve(q[1].fX, q[2].fX), GrScalarAve(q[1].fY, q[2].fY)) }; GrPoint s(GrScalarAve(r[0].fX, r[1].fX), GrScalarAve(r[0].fY, r[1].fY)); pointsLeft >>= 1; uint32_t a = generate_cubic_points(p0, q[0], r[0], s, tolSqd, points, pointsLeft); uint32_t b = generate_cubic_points(s, r[1], q[2], p3, tolSqd, points, pointsLeft); return a + b; } static int worst_case_point_count(GrPathIter* path, int* subpaths, GrScalar tol) { int pointCount = 0; *subpaths = 1; bool first = true; GrPathIter::Command cmd; GrPoint pts[4]; while ((cmd = path->next(pts)) != GrPathIter::kEnd_Command) { switch (cmd) { case GrPathIter::kLine_Command: pointCount += 1; break; case GrPathIter::kQuadratic_Command: pointCount += quadratic_point_count(pts, tol); break; case GrPathIter::kCubic_Command: pointCount += cubic_point_count(pts, tol); break; case GrPathIter::kMove_Command: pointCount += 1; if (!first) { ++(*subpaths); } break; default: break; } first = false; } return pointCount; } static inline bool single_pass_path(const GrPathIter& path, GrContext::PathFills fill, const GrDrawTarget& target) { #if STENCIL_OFF return true; #else if (GrContext::kEvenOdd_PathFill == fill) { GrPathIter::ConvexHint hint = path.hint(); return hint == GrPathIter::kConvex_ConvexHint || hint == GrPathIter::kNonOverlappingConvexPieces_ConvexHint; } else if (GrContext::kWinding_PathFill == fill) { GrPathIter::ConvexHint hint = path.hint(); return hint == GrPathIter::kConvex_ConvexHint || hint == GrPathIter::kNonOverlappingConvexPieces_ConvexHint || (hint == GrPathIter::kSameWindingConvexPieces_ConvexHint && target.canDisableBlend() && !target.isDitherState()); } return false; #endif } void GrContext::drawPath(const GrPaint& paint, GrPathIter* path, PathFills fill, const GrPoint* translate) { GrDrawTarget* target = this->prepareToDraw(paint, kUnbuffered_DrawCategory); GrDrawTarget::AutoStateRestore asr(target); GrMatrix viewM = target->getViewMatrix(); // In order to tesselate the path we get a bound on how much the matrix can // stretch when mapping to screen coordinates. GrScalar stretch = viewM.getMaxStretch(); bool useStretch = stretch > 0; GrScalar tol = EVAL_TOL; if (!useStretch) { // TODO: deal with perspective in some better way. tol /= 10; } else { // TODO: fixed point divide GrScalar sinv = 1 / stretch; tol = GrMul(tol, sinv); } GrScalar tolSqd = GrMul(tol, tol); int subpathCnt; int maxPts = worst_case_point_count(path, &subpathCnt, tol); GrVertexLayout layout = 0; if (NULL != paint.getTexture()) { layout = GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(0); } // add 4 to hold the bounding rect GrDrawTarget::AutoReleaseGeometry arg(target, layout, maxPts + 4, 0); GrPoint* base = (GrPoint*) arg.vertices(); GrPoint* vert = base; GrPoint* subpathBase = base; GrAutoSTMalloc<8, uint16_t> subpathVertCount(subpathCnt); path->rewind(); // TODO: use primitve restart if available rather than multiple draws GrDrawTarget::PrimitiveType type; int passCount = 0; GrDrawTarget::StencilPass passes[3]; bool reverse = false; if (kHairLine_PathFill == fill) { type = GrDrawTarget::kLineStrip_PrimitiveType; passCount = 1; passes[0] = GrDrawTarget::kNone_StencilPass; } else { type = GrDrawTarget::kTriangleFan_PrimitiveType; if (single_pass_path(*path, fill, *target)) { passCount = 1; passes[0] = GrDrawTarget::kNone_StencilPass; } else { switch (fill) { case kInverseEvenOdd_PathFill: reverse = true; // fallthrough case kEvenOdd_PathFill: passCount = 2; passes[0] = GrDrawTarget::kEvenOddStencil_StencilPass; passes[1] = GrDrawTarget::kEvenOddColor_StencilPass; break; case kInverseWinding_PathFill: reverse = true; // fallthrough case kWinding_PathFill: passes[0] = GrDrawTarget::kWindingStencil1_StencilPass; if (fGpu->supportsSingleStencilPassWinding()) { passes[1] = GrDrawTarget::kWindingColor_StencilPass; passCount = 2; } else { passes[1] = GrDrawTarget::kWindingStencil2_StencilPass; passes[2] = GrDrawTarget::kWindingColor_StencilPass; passCount = 3; } break; default: GrAssert(!"Unknown path fill!"); return; } } } target->setReverseFill(reverse); GrPoint pts[4]; bool first = true; int subpath = 0; for (;;) { GrPathIter::Command cmd = path->next(pts); switch (cmd) { case GrPathIter::kMove_Command: if (!first) { subpathVertCount[subpath] = vert-subpathBase; subpathBase = vert; ++subpath; } *vert = pts[0]; vert++; break; case GrPathIter::kLine_Command: *vert = pts[1]; vert++; break; case GrPathIter::kQuadratic_Command: { generate_quadratic_points(pts[0], pts[1], pts[2], tolSqd, &vert, quadratic_point_count(pts, tol)); break; } case GrPathIter::kCubic_Command: { generate_cubic_points(pts[0], pts[1], pts[2], pts[3], tolSqd, &vert, cubic_point_count(pts, tol)); break; } case GrPathIter::kClose_Command: break; case GrPathIter::kEnd_Command: subpathVertCount[subpath] = vert-subpathBase; ++subpath; // this could be only in debug goto FINISHED; } first = false; } FINISHED: GrAssert(subpath == subpathCnt); GrAssert((vert - base) <= maxPts); if (translate) { int count = vert - base; for (int i = 0; i < count; i++) { base[i].offset(translate->fX, translate->fY); } } // arbitrary path complexity cutoff bool useBounds = fill != kHairLine_PathFill && (reverse || (vert - base) > 8); GrPoint* boundsVerts = base + maxPts; if (useBounds) { GrRect bounds; if (reverse) { GrAssert(NULL != target->getRenderTarget()); // draw over the whole world. bounds.setLTRB(0, 0, GrIntToScalar(target->getRenderTarget()->width()), GrIntToScalar(target->getRenderTarget()->height())); GrMatrix vmi; if (target->getViewInverse(&vmi)) { vmi.mapRect(&bounds); } } else { bounds.setBounds((GrPoint*)base, vert - base); } boundsVerts[0].setRectFan(bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom); } for (int p = 0; p < passCount; ++p) { target->setStencilPass(passes[p]); if (useBounds && (GrDrawTarget::kEvenOddColor_StencilPass == passes[p] || GrDrawTarget::kWindingColor_StencilPass == passes[p])) { target->drawNonIndexed(GrDrawTarget::kTriangleFan_PrimitiveType, maxPts, 4); } else { int baseVertex = 0; for (int sp = 0; sp < subpathCnt; ++sp) { target->drawNonIndexed(type, baseVertex, subpathVertCount[sp]); baseVertex += subpathVertCount[sp]; } } } } //////////////////////////////////////////////////////////////////////////////// void GrContext::flush(bool flushRenderTarget) { flushDrawBuffer(); if (flushRenderTarget) { fGpu->forceRenderTargetFlush(); } } void GrContext::flushText() { if (kText_DrawCategory == fLastDrawCategory) { flushDrawBuffer(); } } void GrContext::flushDrawBuffer() { #if BATCH_RECT_TO_RECT || DEFER_TEXT_RENDERING fDrawBuffer->playback(fGpu); fDrawBuffer->reset(); #endif } bool GrContext::readPixels(int left, int top, int width, int height, GrTexture::PixelConfig config, void* buffer) { this->flush(true); return fGpu->readPixels(left, top, width, height, config, buffer); } void GrContext::writePixels(int left, int top, int width, int height, GrTexture::PixelConfig config, const void* buffer, size_t stride) { // TODO: when underlying api has a direct way to do this we should use it // (e.g. glDrawPixels on desktop GL). const GrGpu::TextureDesc desc = { 0, GrGpu::kNone_AALevel, width, height, config }; GrTexture* texture = fGpu->createTexture(desc, buffer, stride); if (NULL == texture) { return; } this->flush(true); GrAutoUnref aur(texture); GrDrawTarget::AutoStateRestore asr(fGpu); GrMatrix matrix; matrix.setTranslate(GrIntToScalar(left), GrIntToScalar(top)); fGpu->setViewMatrix(matrix); fGpu->disableState(GrDrawTarget::kClip_StateBit); fGpu->setAlpha(0xFF); fGpu->setBlendFunc(GrDrawTarget::kOne_BlendCoeff, GrDrawTarget::kZero_BlendCoeff); fGpu->setTexture(0, texture); GrSamplerState sampler; sampler.setClampNoFilter(); matrix.setScale(GR_Scalar1 / width, GR_Scalar1 / height); sampler.setMatrix(matrix); fGpu->setSamplerState(0, sampler); GrVertexLayout layout = GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(0); static const int VCOUNT = 4; GrDrawTarget::AutoReleaseGeometry geo(fGpu, layout, VCOUNT, 0); if (!geo.succeeded()) { return; } ((GrPoint*)geo.vertices())->setIRectFan(0, 0, width, height); fGpu->drawNonIndexed(GrDrawTarget::kTriangleFan_PrimitiveType, 0, VCOUNT); } //////////////////////////////////////////////////////////////////////////////// void GrContext::SetPaint(const GrPaint& paint, GrDrawTarget* target) { target->setTexture(0, paint.getTexture()); target->setSamplerState(0, paint.fSampler); target->setColor(paint.fColor); if (paint.fDither) { target->enableState(GrDrawTarget::kDither_StateBit); } else { target->disableState(GrDrawTarget::kDither_StateBit); } if (paint.fAntiAlias) { target->enableState(GrDrawTarget::kAntialias_StateBit); } else { target->disableState(GrDrawTarget::kAntialias_StateBit); } target->setBlendFunc(paint.fSrcBlendCoeff, paint.fDstBlendCoeff); } GrDrawTarget* GrContext::prepareToDraw(const GrPaint& paint, DrawCategory category) { if (category != fLastDrawCategory) { flushDrawBuffer(); fLastDrawCategory = category; } SetPaint(paint, fGpu); GrDrawTarget* target = fGpu; switch (category) { case kText_DrawCategory: #if DEFER_TEXT_RENDERING target = fDrawBuffer; fDrawBuffer->initializeDrawStateAndClip(*fGpu); #else target = fGpu; #endif break; case kUnbuffered_DrawCategory: target = fGpu; break; case kBuffered_DrawCategory: target = fDrawBuffer; fDrawBuffer->initializeDrawStateAndClip(*fGpu); break; } return target; } //////////////////////////////////////////////////////////////////////////////// void GrContext::resetContext() { fGpu->resetContext(); } void GrContext::setRenderTarget(GrRenderTarget* target) { flush(false); fGpu->setRenderTarget(target); } GrRenderTarget* GrContext::getRenderTarget() { return fGpu->getRenderTarget(); } const GrRenderTarget* GrContext::getRenderTarget() const { return fGpu->getRenderTarget(); } const GrMatrix& GrContext::getMatrix() const { return fGpu->getViewMatrix(); } void GrContext::setMatrix(const GrMatrix& m) { fGpu->setViewMatrix(m); } void GrContext::concatMatrix(const GrMatrix& m) const { fGpu->preConcatViewMatrix(m); } static inline intptr_t setOrClear(intptr_t bits, int shift, intptr_t pred) { intptr_t mask = 1 << shift; if (pred) { bits |= mask; } else { bits &= ~mask; } return bits; } void GrContext::resetStats() { fGpu->resetStats(); } const GrGpu::Stats& GrContext::getStats() const { return fGpu->getStats(); } void GrContext::printStats() const { fGpu->printStats(); } GrContext::GrContext(GrGpu* gpu) { fGpu = gpu; fGpu->ref(); fTextureCache = new GrTextureCache(MAX_TEXTURE_CACHE_COUNT, MAX_TEXTURE_CACHE_BYTES); fFontCache = new GrFontCache(fGpu); fLastDrawCategory = kUnbuffered_DrawCategory; #if DEFER_TEXT_RENDERING || BATCH_RECT_TO_RECT fDrawBufferVBAllocPool = new GrVertexBufferAllocPool(gpu, false, DRAW_BUFFER_VBPOOL_BUFFER_SIZE, DRAW_BUFFER_VBPOOL_PREALLOC_BUFFERS); fDrawBufferIBAllocPool = new GrIndexBufferAllocPool(gpu, false, DRAW_BUFFER_IBPOOL_BUFFER_SIZE, DRAW_BUFFER_IBPOOL_PREALLOC_BUFFERS); fDrawBuffer = new GrInOrderDrawBuffer(fDrawBufferVBAllocPool, fDrawBufferIBAllocPool); #else fDrawBuffer = NULL; fDrawBufferVBAllocPool = NULL; fDrawBufferIBAllocPool = NULL; #endif #if BATCH_RECT_TO_RECT fDrawBuffer->setQuadIndexBuffer(this->getQuadIndexBuffer()); #endif } bool GrContext::finalizeTextureKey(GrTextureKey* key, const GrSamplerState& sampler) const { uint32_t bits = 0; uint16_t width = key->width(); uint16_t height = key->height(); if (!fGpu->npotTextureTileSupport()) { bool isPow2 = GrIsPow2(width) && GrIsPow2(height); bool tiled = (sampler.getWrapX() != GrSamplerState::kClamp_WrapMode) || (sampler.getWrapY() != GrSamplerState::kClamp_WrapMode); if (tiled && !isPow2) { bits |= 1; bits |= sampler.isFilter() ? 2 : 0; } } key->finalize(bits); return 0 != bits; } GrDrawTarget* GrContext::getTextTarget(const GrPaint& paint) { GrDrawTarget* target; #if DEFER_TEXT_RENDERING target = prepareToDraw(paint, kText_DrawCategory); #else target = prepareToDraw(paint, kUnbuffered_DrawCategory); #endif SetPaint(paint, target); return target; } const GrIndexBuffer* GrContext::getQuadIndexBuffer() const { return fGpu->getQuadIndexBuffer(); }