/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include #include "gm.h" #include "Resources.h" #include "SkCodec.h" #include "SkColorSpace_Base.h" #include "SkColorSpace_A2B.h" #include "SkColorSpacePriv.h" #include "SkData.h" #include "SkFloatingPoint.h" #include "SkImageInfo.h" #include "SkScalar.h" #include "SkSRGB.h" #include "SkStream.h" #include "SkSurface.h" #include "SkTypes.h" static inline void interp_3d_clut(float dst[3], float src[3], const SkColorLookUpTable* colorLUT) { // Call the src components x, y, and z. uint8_t maxX = colorLUT->fGridPoints[0] - 1; uint8_t maxY = colorLUT->fGridPoints[1] - 1; uint8_t maxZ = colorLUT->fGridPoints[2] - 1; // An approximate index into each of the three dimensions of the table. float x = src[0] * maxX; float y = src[1] * maxY; float z = src[2] * maxZ; // This gives us the low index for our interpolation. int ix = sk_float_floor2int(x); int iy = sk_float_floor2int(y); int iz = sk_float_floor2int(z); // Make sure the low index is not also the max index. ix = (maxX == ix) ? ix - 1 : ix; iy = (maxY == iy) ? iy - 1 : iy; iz = (maxZ == iz) ? iz - 1 : iz; // Weighting factors for the interpolation. float diffX = x - ix; float diffY = y - iy; float diffZ = z - iz; // Constants to help us navigate the 3D table. // Ex: Assume x = a, y = b, z = c. // table[a * n001 + b * n010 + c * n100] logically equals table[a][b][c]. const int n000 = 0; const int n001 = 3 * colorLUT->fGridPoints[1] * colorLUT->fGridPoints[2]; const int n010 = 3 * colorLUT->fGridPoints[2]; const int n011 = n001 + n010; const int n100 = 3; const int n101 = n100 + n001; const int n110 = n100 + n010; const int n111 = n110 + n001; // Base ptr into the table. const float* ptr = &(colorLUT->table()[ix*n001 + iy*n010 + iz*n100]); // The code below performs a tetrahedral interpolation for each of the three // dst components. Once the tetrahedron containing the interpolation point is // identified, the interpolation is a weighted sum of grid values at the // vertices of the tetrahedron. The claim is that tetrahedral interpolation // provides a more accurate color conversion. // blogs.mathworks.com/steve/2006/11/24/tetrahedral-interpolation-for-colorspace-conversion/ // // I have one test image, and visually I can't tell the difference between // tetrahedral and trilinear interpolation. In terms of computation, the // tetrahedral code requires more branches but less computation. The // SampleICC library provides an option for the client to choose either // tetrahedral or trilinear. for (int i = 0; i < 3; i++) { if (diffZ < diffY) { if (diffZ < diffX) { dst[i] = (ptr[n000] + diffZ * (ptr[n110] - ptr[n010]) + diffY * (ptr[n010] - ptr[n000]) + diffX * (ptr[n111] - ptr[n110])); } else if (diffY < diffX) { dst[i] = (ptr[n000] + diffZ * (ptr[n111] - ptr[n011]) + diffY * (ptr[n011] - ptr[n001]) + diffX * (ptr[n001] - ptr[n000])); } else { dst[i] = (ptr[n000] + diffZ * (ptr[n111] - ptr[n011]) + diffY * (ptr[n010] - ptr[n000]) + diffX * (ptr[n011] - ptr[n010])); } } else { if (diffZ < diffX) { dst[i] = (ptr[n000] + diffZ * (ptr[n101] - ptr[n001]) + diffY * (ptr[n111] - ptr[n101]) + diffX * (ptr[n001] - ptr[n000])); } else if (diffY < diffX) { dst[i] = (ptr[n000] + diffZ * (ptr[n100] - ptr[n000]) + diffY * (ptr[n111] - ptr[n101]) + diffX * (ptr[n101] - ptr[n100])); } else { dst[i] = (ptr[n000] + diffZ * (ptr[n100] - ptr[n000]) + diffY * (ptr[n110] - ptr[n100]) + diffX * (ptr[n111] - ptr[n110])); } } // Increment the table ptr in order to handle the next component. // Note that this is the how table is designed: all of nXXX // variables are multiples of 3 because there are 3 output // components. ptr++; } } /** * This tests decoding from a Lab source image and displays on the left * the image as raw RGB values, and on the right a Lab PCS. * It currently does NOT apply a/b/m-curves, as in the .icc profile * We are testing it on these are all identity transforms. */ class LabPCSDemoGM : public skiagm::GM { public: LabPCSDemoGM() : fWidth(1080) , fHeight(480) {} protected: SkString onShortName() override { return SkString("labpcsdemo"); } SkISize onISize() override { return SkISize::Make(fWidth, fHeight); } void onDraw(SkCanvas* canvas) override { canvas->drawColor(SK_ColorGREEN); const char* filename = "brickwork-texture.jpg"; renderImage(canvas, filename, 0, false); renderImage(canvas, filename, 1, true); } void renderImage(SkCanvas* canvas, const char* filename, int col, bool convertLabToXYZ) { SkBitmap bitmap; SkStream* stream(GetResourceAsStream(filename)); if (stream == nullptr) { return; } std::unique_ptr codec(SkCodec::NewFromStream(stream)); // srgb_lab_pcs.icc is an elaborate way to specify sRGB but uses // Lab as the PCS, so we can take any arbitrary image that should // be sRGB and this should show a reasonable image const SkString iccFilename(GetResourcePath("icc_profiles/srgb_lab_pcs.icc")); sk_sp iccData = SkData::MakeFromFileName(iccFilename.c_str()); if (iccData == nullptr) { return; } sk_sp colorSpace = SkColorSpace::MakeICC(iccData->bytes(), iccData->size()); const int imageWidth = codec->getInfo().width(); const int imageHeight = codec->getInfo().height(); // Using nullptr as the color space instructs the codec to decode in legacy mode, // meaning that we will get the raw encoded bytes without any color correction. SkImageInfo imageInfo = SkImageInfo::Make(imageWidth, imageHeight, kN32_SkColorType, kOpaque_SkAlphaType, nullptr); bitmap.allocPixels(imageInfo); codec->getPixels(imageInfo, bitmap.getPixels(), bitmap.rowBytes()); if (convertLabToXYZ) { SkASSERT(SkColorSpace_Base::Type::kA2B == as_CSB(colorSpace)->type()); SkColorSpace_A2B& cs = *static_cast(colorSpace.get()); const SkColorLookUpTable* colorLUT = nullptr; bool printConversions = false; // We're skipping evaluating the TRCs and the matrix here since they aren't // in the ICC profile initially used here. for (size_t e = 0; e < cs.count(); ++e) { switch (cs.element(e).type()) { case SkColorSpace_A2B::Element::Type::kGammaNamed: SkASSERT(kLinear_SkGammaNamed == cs.element(e).gammaNamed()); break; case SkColorSpace_A2B::Element::Type::kGammas: SkASSERT(false); break; case SkColorSpace_A2B::Element::Type::kCLUT: colorLUT = &cs.element(e).colorLUT(); break; case SkColorSpace_A2B::Element::Type::kMatrix: SkASSERT(cs.element(e).matrix().isIdentity()); break; } } SkASSERT(colorLUT); for (int y = 0; y < imageHeight; ++y) { for (int x = 0; x < imageWidth; ++x) { uint32_t& p = *bitmap.getAddr32(x, y); const int r = SkColorGetR(p); const int g = SkColorGetG(p); const int b = SkColorGetB(p); if (printConversions) { SkColorSpacePrintf("\nraw = (%d, %d, %d)\t", r, g, b); } float lab[4] = { r * (1.f/255.f), g * (1.f/255.f), b * (1.f/255.f), 1.f }; interp_3d_clut(lab, lab, colorLUT); // Lab has ranges [0,100] for L and [-128,127] for a and b // but the ICC profile loader stores as [0,1]. The ICC // specifies an offset of -128 to convert. // note: formula could be adjusted to remove this conversion, // but for now let's keep it like this for clarity until // an optimized version is added. lab[0] *= 100.f; lab[1] = 255.f * lab[1] - 128.f; lab[2] = 255.f * lab[2] - 128.f; if (printConversions) { SkColorSpacePrintf("Lab = < %f, %f, %f >\n", lab[0], lab[1], lab[2]); } // convert from Lab to XYZ float Y = (lab[0] + 16.f) * (1.f/116.f); float X = lab[1] * (1.f/500.f) + Y; float Z = Y - (lab[2] * (1.f/200.f)); float cubed; cubed = X*X*X; if (cubed > 0.008856f) X = cubed; else X = (X - (16.f/116.f)) * (1.f/7.787f); cubed = Y*Y*Y; if (cubed > 0.008856f) Y = cubed; else Y = (Y - (16.f/116.f)) * (1.f/7.787f); cubed = Z*Z*Z; if (cubed > 0.008856f) Z = cubed; else Z = (Z - (16.f/116.f)) * (1.f/7.787f); // adjust to D50 illuminant X *= 0.96422f; Y *= 1.00000f; Z *= 0.82521f; if (printConversions) { SkColorSpacePrintf("XYZ = (%4f, %4f, %4f)\t", X, Y, Z); } // convert XYZ -> linear sRGB Sk4f lRGB( 3.1338561f*X - 1.6168667f*Y - 0.4906146f*Z, -0.9787684f*X + 1.9161415f*Y + 0.0334540f*Z, 0.0719453f*X - 0.2289914f*Y + 1.4052427f*Z, 1.f); // and apply sRGB gamma Sk4i sRGB = sk_linear_to_srgb(lRGB); if (printConversions) { SkColorSpacePrintf("sRGB = (%d, %d, %d)\n", sRGB[0], sRGB[1], sRGB[2]); } p = SkColorSetRGB(sRGB[0], sRGB[1], sRGB[2]); } } } const int freeWidth = fWidth - 2*imageWidth; const int freeHeight = fHeight - imageHeight; canvas->drawBitmap(bitmap, static_cast((col+1) * (freeWidth / 3) + col*imageWidth), static_cast(freeHeight / 2)); ++col; } private: const int fWidth; const int fHeight; typedef skiagm::GM INHERITED; }; DEF_GM( return new LabPCSDemoGM; )